1
|
|
|
""" |
2
|
|
|
Ways that a plot of a selected sensor can be displayed |
3
|
|
|
""" |
4
|
|
|
|
5
|
|
|
from flask import make_response, request |
6
|
|
|
import datetime |
7
|
|
|
try: |
8
|
|
|
from StringIO import StringIO |
9
|
|
|
except ImportError: |
10
|
|
|
from io import BytesIO |
11
|
|
|
|
12
|
|
|
from .blueprint import main |
13
|
|
|
from ..models import Gage, Sensor, Sample, Correlation, River, Section |
14
|
|
|
|
15
|
|
|
#import PyQt5 |
16
|
|
|
import matplotlib |
17
|
|
|
matplotlib.use('Cairo', force=True) |
18
|
|
|
from matplotlib.backends.backend_cairo import FigureCanvasCairo as FigureCanvas |
19
|
|
|
|
20
|
|
|
class BasePlot(object): |
21
|
|
|
""" |
22
|
|
|
Base class for all plots |
23
|
|
|
""" |
24
|
|
|
def data(self): |
25
|
|
|
""" |
26
|
|
|
Returns sensor data |
27
|
|
|
|
28
|
|
|
Defaults to data within last seven days |
29
|
|
|
""" |
30
|
|
|
start, end = self.startend() |
31
|
|
|
if start and end: |
32
|
|
|
return Sample.query.filter(start < Sample.datetime, |
33
|
|
|
Sample.datetime < end, |
34
|
|
|
Sample.sensor_id == self.sid)\ |
35
|
|
|
.order_by(Sample.datetime) |
36
|
|
|
if start: |
37
|
|
|
return Sample.query.filter(start < Sample.datetime, |
38
|
|
|
Sample.sensor_id == self.sid)\ |
39
|
|
|
.order_by(Sample.datetime) |
40
|
|
|
seven_ago = datetime.datetime.utcnow() - datetime.timedelta(days=7) |
41
|
|
|
return Sample.query.filter(Sample.datetime > seven_ago, |
42
|
|
|
Sample.sensor_id == self.sid)\ |
43
|
|
|
.order_by(Sample.datetime) |
44
|
|
|
|
45
|
|
|
@staticmethod |
46
|
|
|
def startend(): |
47
|
|
|
""" |
48
|
|
|
Return datetime objects if start and end arguments are in url. |
49
|
|
|
Otherwise return None. |
50
|
|
|
""" |
51
|
|
|
start = request.args.get('start') |
52
|
|
|
end = request.args.get('end') |
53
|
|
|
if start: |
54
|
|
|
start = datetime.datetime.strptime(start, '%Y%m%d') |
55
|
|
|
if end: |
56
|
|
|
end = datetime.datetime.strptime(end, '%Y%m%d') |
57
|
|
|
return (start, end) |
58
|
|
|
|
59
|
|
|
def _setaxislimits(self, axis, ymin, ymax): |
60
|
|
|
""" |
61
|
|
|
Set limits for y axis. If not set on sensor, then use a buffer of 10% |
62
|
|
|
""" |
63
|
|
|
if ymin == ymax: |
64
|
|
|
ybuff = 0.1*ymin |
65
|
|
|
else: |
66
|
|
|
ybuff = 0.1*(ymax-ymin) |
67
|
|
|
if self.sensor.minimum: |
68
|
|
|
axis.set_ylim(ymin=self.sensor.minimum) |
69
|
|
|
else: |
70
|
|
|
axis.set_ylim(ymin=ymin-ybuff) |
71
|
|
|
if self.sensor.maximum: |
72
|
|
|
axis.set_ylim(ymax=self.sensor.maximum) |
73
|
|
|
else: |
74
|
|
|
axis.set_ylim(ymax=ymax+ybuff) |
75
|
|
|
|
76
|
|
|
def png(self): |
77
|
|
|
""" |
78
|
|
|
Returns a StringIO PNG plot for the sensor |
79
|
|
|
""" |
80
|
|
|
|
81
|
|
|
fig = self.matplot() |
82
|
|
|
canvas = FigureCanvas(fig) |
83
|
|
|
try: |
84
|
|
|
png_output = StringIO() |
85
|
|
|
except NameError: |
86
|
|
|
png_output = BytesIO() |
87
|
|
|
canvas.print_png(png_output) |
88
|
|
|
return png_output.getvalue() |
89
|
|
|
|
90
|
|
|
def jpg(self): |
91
|
|
|
""" |
92
|
|
|
Returns a StringIO JPG plot for the sensor |
93
|
|
|
""" |
94
|
|
|
fig = self.matplot() |
95
|
|
|
canvas = FigureCanvas(fig) |
96
|
|
|
try: |
97
|
|
|
jpg_output = StringIO() |
98
|
|
|
except NameError: |
99
|
|
|
jpg_output = BytesIO() |
100
|
|
|
canvas.print_jpg(jpg_output) |
101
|
|
|
return jpg_output.getvalue() |
102
|
|
|
|
103
|
|
|
def _axisfigure(self): |
104
|
|
|
""" |
105
|
|
|
Returns axis and figure |
106
|
|
|
""" |
107
|
|
|
#import matplotlib |
108
|
|
|
#matplotlib.use('Qt5Agg') |
109
|
|
|
import PyQt5 |
110
|
|
|
import matplotlib |
111
|
|
|
matplotlib.use('Qt5Agg', force=True) |
112
|
|
|
from matplotlib.figure import Figure |
113
|
|
|
import seaborn as sns |
114
|
|
|
sns.set() |
115
|
|
|
data = self.data() |
116
|
|
|
fig = Figure() |
117
|
|
|
ax = fig.add_subplot(1, 1, 1) |
118
|
|
|
x = [] |
119
|
|
|
y = [] |
120
|
|
|
for sample in data: |
121
|
|
|
x.append(sample.datetime) |
122
|
|
|
y.append(sample.value) |
123
|
|
|
ax.plot(x, y, '-') |
124
|
|
|
self._setaxislimits(ax, min(y), max(y)) |
125
|
|
|
if self.sensor.name: |
126
|
|
|
ax.set_title('{0} - {1}'.format(self.sensor.gage.name, self.sensor.name)) |
127
|
|
|
else: |
128
|
|
|
ax.set_title('{0} - {1}'.format(self.sensor.gage.name, self.sensor.stype.capitalize())) |
129
|
|
|
return ax, fig |
130
|
|
|
|
131
|
|
|
def matplot(self): |
132
|
|
|
""" |
133
|
|
|
Returns a matplotlib figure for building into a plot |
134
|
|
|
""" |
135
|
|
|
|
136
|
|
|
ax, fig = self._axisfigure() |
137
|
|
|
return fig |
138
|
|
|
|
139
|
|
|
|
140
|
|
|
class SensorPlot(BasePlot): |
141
|
|
|
""" |
142
|
|
|
Plot class for Sensors |
143
|
|
|
|
144
|
|
|
Arguments: |
145
|
|
|
gid (int): Gage.id |
146
|
|
|
stype (string): sensor type for gage |
147
|
|
|
|
148
|
|
|
Currently supports matplotlib, but designed to be adaptable to support bokeh |
149
|
|
|
or others |
150
|
|
|
|
151
|
|
|
If ?start=YYYYMMDD(&end=YYYYMMDD) argument, then the plot will use those |
152
|
|
|
dates instead of the default 7 days. |
153
|
|
|
""" |
154
|
|
|
def __init__(self, gid, stype): |
155
|
|
|
self.gid = gid |
156
|
|
|
self.stype = stype.lower() |
157
|
|
|
self.sensor = Sensor.query.filter_by(gage_id=self.gid).filter_by(stype=self.stype).first_or_404() |
158
|
|
|
self.sid = self.sensor.id |
159
|
|
|
|
160
|
|
|
|
161
|
|
|
class CorrelationPlot(BasePlot): |
162
|
|
|
""" |
163
|
|
|
Plot class for correlations |
164
|
|
|
""" |
165
|
|
|
def __init__(self, section_id, sensor_id): |
166
|
|
|
self.section_id = section_id |
167
|
|
|
self.correlation = Correlation.query.filter_by(section_id=section_id)\ |
168
|
|
|
.filter_by(sensor_id=sensor_id)\ |
169
|
|
|
.first_or_404() |
170
|
|
|
self.sid = sensor_id |
171
|
|
|
self.sensor = self.correlation.sensor |
172
|
|
|
|
173
|
|
|
def levels(self): |
174
|
|
|
""" |
175
|
|
|
Return the correlated levels |
176
|
|
|
""" |
177
|
|
|
return (self.correlation.minimum, |
178
|
|
|
self.correlation.low, |
179
|
|
|
self.correlation.medium, |
180
|
|
|
self.correlation.high, |
181
|
|
|
self.correlation.huge) |
182
|
|
|
|
183
|
|
|
def matplot(self): |
184
|
|
|
ax, fig = self._axisfigure() |
185
|
|
|
lmin, llow, lmed, lhig, lhug = self.levels() |
186
|
|
|
if lmin: |
187
|
|
|
ax.axhline(y=lmin, color='#ffffff', lw=8, ls='dashed', zorder=1) |
188
|
|
|
if llow: |
189
|
|
|
ax.axhline(y=llow, color='#fcf8e3', lw=8, ls='dashed', zorder=1) |
190
|
|
|
if lmed: |
191
|
|
|
ax.axhline(y=lmed, color='#dff0d8', lw=8, ls='dashed', zorder=1) |
192
|
|
|
if lhig: |
193
|
|
|
ax.axhline(y=lhig, color='#d9edf7', lw=8, ls='dashed', zorder=1) |
194
|
|
|
if lhug: |
195
|
|
|
ax.axhline(y=lhug, color='#f2dede', lw=8, ls='dashed', zorder=1) |
196
|
|
|
return fig |
197
|
|
|
|
198
|
|
|
|
199
|
|
|
@main.route('/gage/<int:gid>/<stype>.png') |
200
|
|
|
@main.route('/gage/<slug>/<stype>.png') |
201
|
|
|
def gagesensorplot(stype, gid=None, slug=None): |
202
|
|
|
"""**/gage/<id>/<sensor type>.png** |
203
|
|
|
|
204
|
|
|
Draw a PNG plot for the requested gage's sensor |
205
|
|
|
""" |
206
|
|
|
if slug: |
207
|
|
|
gid = Gage.query.filter_by(slug=slug).first_or_404().id |
208
|
|
|
response = make_response(SensorPlot(gid, stype).png()) |
209
|
|
|
response.headers['Content-Type'] = 'image/png' |
210
|
|
|
return response |
211
|
|
|
|
212
|
|
|
|
213
|
|
|
@main.route('/gage/<int:gid>/<stype>.jpg') |
214
|
|
|
@main.route('/gage/<int:gid>/<stype>.jpeg') |
215
|
|
|
@main.route('/gage/<slug>/stype.jpeg') |
216
|
|
|
@main.route('/gage/<slug>/stype.jpg') |
217
|
|
|
def gagesensorplotjpg(stype, gid=None, slug=None): |
218
|
|
|
"""**/gage/<id>/<sensor type>.jpg** |
219
|
|
|
**/gage/<id>/<sensor type>.jpeg** |
220
|
|
|
|
221
|
|
|
Draw a JPEG plot for the requested gage's sensor |
222
|
|
|
""" |
223
|
|
|
if slug: |
224
|
|
|
gid = Gage.query.filter_by(slug=slug).first_or_404().id |
225
|
|
|
response = make_response(SensorPlot(gid, stype).jpg()) |
226
|
|
|
response.headers['Content-Type'] = 'image/jpeg' |
227
|
|
|
return response |
228
|
|
|
|
229
|
|
|
|
230
|
|
|
@main.route('/river/<river>/<section>/<gage>/<stype>.png') |
231
|
|
|
def correlationplotpng(stype, gage, section, river): |
232
|
|
|
correlation = Correlation.query.join(Correlation.sensor)\ |
233
|
|
|
.join(Sensor.gage)\ |
234
|
|
|
.join(Correlation.section)\ |
235
|
|
|
.join(Section.river)\ |
236
|
|
|
.filter(River.slug==river, |
237
|
|
|
Section.slug==section, |
238
|
|
|
Sensor.stype==stype, |
239
|
|
|
Gage.slug==gage)\ |
240
|
|
|
.first_or_404() |
241
|
|
|
print(correlation) |
242
|
|
|
response = make_response(CorrelationPlot(correlation.section.id, correlation.sensor.id).png()) |
243
|
|
|
response.headers['Content-Type'] = 'image/png' |
244
|
|
|
return response |
245
|
|
|
|