Total Complexity | 3 |
Total Lines | 31 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | |||
2 | from apoor import data |
||
3 | |||
4 | |||
5 | def test_list_datasets(): |
||
6 | d = data.list_datasets() |
||
7 | assert "iris" in d |
||
8 | assert "boston" in d |
||
9 | |||
10 | def test_load_iris(): |
||
11 | df = data.load_iris() |
||
12 | iris_shape = (150, 5) |
||
13 | assert df.shape == iris_shape |
||
14 | iris_cols = [ |
||
15 | 'sepal_length','sepal_width', |
||
16 | 'petal_length','petal_width', |
||
17 | 'target'] |
||
18 | assert df.columns.to_list() == iris_cols |
||
19 | |||
20 | def test_load_boston(): |
||
21 | df = data.load_boston() |
||
22 | boston_shape = (506, 14) |
||
23 | assert df.shape == boston_shape |
||
24 | boston_cols = [ |
||
25 | 'CRIM','ZN','INDUS', |
||
26 | 'CHAS','NOX','RM', |
||
27 | 'AGE','DIS','RAD','TAX', |
||
28 | 'PTRATIO','B','LSTAT', |
||
29 | 'MEDV'] |
||
30 | assert df.columns.to_list() == boston_cols |
||
31 | |||
32 |