@@ -18,7 +18,7 @@ |
||
18 | 18 | $limit_start = 0; |
19 | 19 | $limit_end = 25; |
20 | 20 | $absolute_difference = 25; |
21 | -} else { |
|
21 | +} else { |
|
22 | 22 | $limit_explode = explode(",", $_GET['limit']); |
23 | 23 | $limit_start = $limit_explode[0]; |
24 | 24 | $limit_end = $limit_explode[1]; |
@@ -6,7 +6,7 @@ discard block |
||
6 | 6 | |
7 | 7 | if (isset($_POST['category'])) |
8 | 8 | { |
9 | - $category = filter_input(INPUT_POST,'category',FILTER_SANITIZE_STRING); |
|
9 | + $category = filter_input(INPUT_POST, 'category', FILTER_SANITIZE_STRING); |
|
10 | 10 | header('Location: '.$globalURL.'/newest/'.$category); |
11 | 11 | } |
12 | 12 | |
@@ -14,18 +14,18 @@ discard block |
||
14 | 14 | require_once('header.php'); |
15 | 15 | |
16 | 16 | //calculuation for the pagination |
17 | -if(!isset($_GET['limit'])) |
|
17 | +if (!isset($_GET['limit'])) |
|
18 | 18 | { |
19 | 19 | $limit_start = 0; |
20 | 20 | $limit_end = 25; |
21 | 21 | $absolute_difference = 25; |
22 | -} else { |
|
22 | +} else { |
|
23 | 23 | $limit_explode = explode(",", $_GET['limit']); |
24 | 24 | $limit_start = $limit_explode[0]; |
25 | 25 | $limit_end = $limit_explode[1]; |
26 | 26 | } |
27 | 27 | |
28 | -$sort = filter_input(INPUT_GET,'sort',FILTER_SANITIZE_STRING); |
|
28 | +$sort = filter_input(INPUT_GET, 'sort', FILTER_SANITIZE_STRING); |
|
29 | 29 | |
30 | 30 | $absolute_difference = abs($limit_start - $limit_end); |
31 | 31 | $limit_next = $limit_end + $absolute_difference; |
@@ -36,7 +36,7 @@ discard block |
||
36 | 36 | { |
37 | 37 | $category = "aircraft"; |
38 | 38 | } else { |
39 | - $category = filter_input(INPUT_GET,'category',FILTER_SANITIZE_STRING); |
|
39 | + $category = filter_input(INPUT_GET, 'category', FILTER_SANITIZE_STRING); |
|
40 | 40 | } |
41 | 41 | |
42 | 42 | $page_url = $globalURL.'/newest/'.$category; |
@@ -3,9 +3,9 @@ discard block |
||
3 | 3 | </span> |
4 | 4 | <div class="sub-menu sub-menu-container"> |
5 | 5 | <ul class="nav nav-pills"> |
6 | - <li><a href="<?php print $globalURL; ?>/country/<?php print $country; ?>" <?php if (strtolower($current_page) == "country-detailed"){ print 'class="active"'; } ?>><?php echo _("Detailed"); ?></a></li> |
|
6 | + <li><a href="<?php print $globalURL; ?>/country/<?php print $country; ?>" <?php if (strtolower($current_page) == "country-detailed") { print 'class="active"'; } ?>><?php echo _("Detailed"); ?></a></li> |
|
7 | 7 | <li class="dropdown"> |
8 | - <a class="dropdown-toggle <?php if(strtolower($current_page) == "country-statistics-aircraft" || strtolower($current_page) == "country-statistics-registration" || strtolower($current_page) == "country-statistics-manufacturer"){ print 'active'; } ?>" data-toggle="dropdown" href="#"> |
|
8 | + <a class="dropdown-toggle <?php if (strtolower($current_page) == "country-statistics-aircraft" || strtolower($current_page) == "country-statistics-registration" || strtolower($current_page) == "country-statistics-manufacturer") { print 'active'; } ?>" data-toggle="dropdown" href="#"> |
|
9 | 9 | <?php echo _("Aircraft"); ?> <span class="caret"></span> |
10 | 10 | </a> |
11 | 11 | <ul class="dropdown-menu" role="menu"> |
@@ -15,7 +15,7 @@ discard block |
||
15 | 15 | </ul> |
16 | 16 | </li> |
17 | 17 | <li class="dropdown"> |
18 | - <a class="dropdown-toggle <?php if(strtolower($current_page) == "country-statistics-airline" || strtolower($current_page) == "country-statistics-airline-country"){ print 'active'; } ?>" data-toggle="dropdown" href="#"> |
|
18 | + <a class="dropdown-toggle <?php if (strtolower($current_page) == "country-statistics-airline" || strtolower($current_page) == "country-statistics-airline-country") { print 'active'; } ?>" data-toggle="dropdown" href="#"> |
|
19 | 19 | <?php echo _("Airline"); ?> <span class="caret"></span> |
20 | 20 | </a> |
21 | 21 | <ul class="dropdown-menu" role="menu"> |
@@ -24,7 +24,7 @@ discard block |
||
24 | 24 | </ul> |
25 | 25 | </li> |
26 | 26 | <li class="dropdown"> |
27 | - <a class="dropdown-toggle <?php if(strtolower($current_page) == "country-statistics-departure-airport" || strtolower($current_page) == "country-statistics-departure-airport-country" || strtolower($current_page) == "country-statistics-arrival-airport" || strtolower($current_page) == "country-statistics-arrival-airport-country"){ print 'active'; } ?>" data-toggle="dropdown" href="#"> |
|
27 | + <a class="dropdown-toggle <?php if (strtolower($current_page) == "country-statistics-departure-airport" || strtolower($current_page) == "country-statistics-departure-airport-country" || strtolower($current_page) == "country-statistics-arrival-airport" || strtolower($current_page) == "country-statistics-arrival-airport-country") { print 'active'; } ?>" data-toggle="dropdown" href="#"> |
|
28 | 28 | <?php echo _("Airport"); ?> <span class="caret"></span> |
29 | 29 | </a> |
30 | 30 | <ul class="dropdown-menu" role="menu"> |
@@ -34,7 +34,7 @@ discard block |
||
34 | 34 | <li><a href="<?php print $globalURL; ?>/country/statistics/arrival-airport-country/<?php print $country; ?>"><?php echo _("Arrival Airport by Country"); ?></a></li> |
35 | 35 | </ul> |
36 | 36 | </li> |
37 | - <li><a href="<?php print $globalURL; ?>/country/statistics/route/<?php print $country; ?>" <?php if (strtolower($current_page) == "country-statistics-route"){ print 'class="active"'; } ?>><?php echo _("Route"); ?></a></li> |
|
38 | - <li><a href="<?php print $globalURL; ?>/country/statistics/time/<?php print $country; ?>" <?php if (strtolower($current_page) == "country-statistics-time"){ print 'class="active"'; } ?>><?php echo _("Time"); ?></a></li> |
|
37 | + <li><a href="<?php print $globalURL; ?>/country/statistics/route/<?php print $country; ?>" <?php if (strtolower($current_page) == "country-statistics-route") { print 'class="active"'; } ?>><?php echo _("Route"); ?></a></li> |
|
38 | + <li><a href="<?php print $globalURL; ?>/country/statistics/time/<?php print $country; ?>" <?php if (strtolower($current_page) == "country-statistics-time") { print 'class="active"'; } ?>><?php echo _("Time"); ?></a></li> |
|
39 | 39 | </ul> |
40 | 40 | </div> |
41 | 41 | \ No newline at end of file |
@@ -8,7 +8,9 @@ |
||
8 | 8 | if ($registration != '') { |
9 | 9 | $spotter_array = $Spotter->getSpotterDataByRegistration($registration, "0,1", $sort); |
10 | 10 | $aircraft_array = $Spotter->getAircraftInfoByRegistration($registration); |
11 | -} else $spotter_array=array(); |
|
11 | +} else { |
|
12 | + $spotter_array=array(); |
|
13 | +} |
|
12 | 14 | |
13 | 15 | if (!empty($spotter_array)) |
14 | 16 | { |
@@ -3,16 +3,16 @@ discard block |
||
3 | 3 | require_once('require/class.Spotter.php'); |
4 | 4 | require_once('require/class.Language.php'); |
5 | 5 | $Spotter = new Spotter(); |
6 | -$sort=filter_input(INPUT_GET,'sort',FILTER_SANITIZE_STRING); |
|
7 | -$registration = filter_input(INPUT_GET,'registration',FILTER_SANITIZE_STRING); |
|
6 | +$sort = filter_input(INPUT_GET, 'sort', FILTER_SANITIZE_STRING); |
|
7 | +$registration = filter_input(INPUT_GET, 'registration', FILTER_SANITIZE_STRING); |
|
8 | 8 | if ($registration != '') { |
9 | 9 | $spotter_array = $Spotter->getSpotterDataByRegistration($registration, "0,1", $sort); |
10 | 10 | $aircraft_array = $Spotter->getAircraftInfoByRegistration($registration); |
11 | -} else $spotter_array=array(); |
|
11 | +} else $spotter_array = array(); |
|
12 | 12 | |
13 | 13 | if (!empty($spotter_array)) |
14 | 14 | { |
15 | - $title = sprintf(_("Most Common Arrival Airports of aircraft with registration %s"),$registration); |
|
15 | + $title = sprintf(_("Most Common Arrival Airports of aircraft with registration %s"), $registration); |
|
16 | 16 | |
17 | 17 | require_once('header.php'); |
18 | 18 | print '<div class="info column">'; |
@@ -25,7 +25,7 @@ discard block |
||
25 | 25 | include('registration-sub-menu.php'); |
26 | 26 | print '<div class="column">'; |
27 | 27 | print '<h2>'._("Most Common Arrival Airports").'</h2>'; |
28 | - print '<p>'.sprintf(_("The statistic below shows all arrival airports of flights with aircraft registration <strong>%s</strong>."),$registration).'</p>'; |
|
28 | + print '<p>'.sprintf(_("The statistic below shows all arrival airports of flights with aircraft registration <strong>%s</strong>."), $registration).'</p>'; |
|
29 | 29 | $airport_airport_array = $Spotter->countAllArrivalAirportsByRegistration($registration); |
30 | 30 | print '<script type="text/javascript" src="'.$globalURL.'/js/d3.min.js"></script>'; |
31 | 31 | print '<script type="text/javascript" src="'.$globalURL.'/js/topojson.v2.min.js"></script>'; |
@@ -34,7 +34,7 @@ discard block |
||
34 | 34 | print '<script>'; |
35 | 35 | print 'var series = ['; |
36 | 36 | $airport_data = ''; |
37 | - foreach($airport_airport_array as $airport_item) |
|
37 | + foreach ($airport_airport_array as $airport_item) |
|
38 | 38 | { |
39 | 39 | $airport_data .= '[ "'.$airport_item['airport_arrival_icao_count'].'", "'.$airport_item['airport_arrival_name'].' ('.$airport_item['airport_arrival_icao'].')",'.$airport_item['airport_arrival_latitude'].','.$airport_item['airport_arrival_longitude'].'],'; |
40 | 40 | } |
@@ -88,7 +88,7 @@ discard block |
||
88 | 88 | print '</thead>'; |
89 | 89 | print '<tbody>'; |
90 | 90 | $i = 1; |
91 | - foreach($airport_airport_array as $airport_item) |
|
91 | + foreach ($airport_airport_array as $airport_item) |
|
92 | 92 | { |
93 | 93 | print '<tr>'; |
94 | 94 | print '<td><strong>'.$i.'</strong></td>'; |
@@ -8,7 +8,9 @@ |
||
8 | 8 | if ($registration != '') { |
9 | 9 | $spotter_array = $Spotter->getSpotterDataByRegistration($registration, "0,1", $sort); |
10 | 10 | $aircraft_array = $Spotter->getAircraftInfoByRegistration($registration); |
11 | -} else $spotter_array=array(); |
|
11 | +} else { |
|
12 | + $spotter_array=array(); |
|
13 | +} |
|
12 | 14 | |
13 | 15 | if (!empty($spotter_array)) |
14 | 16 | { |
@@ -3,16 +3,16 @@ discard block |
||
3 | 3 | require_once('require/class.Spotter.php'); |
4 | 4 | require_once('require/class.Language.php'); |
5 | 5 | $Spotter = new Spotter(); |
6 | -$sort = filter_input(INPUT_GET,'sort',FILTER_SANITIZE_STRING); |
|
7 | -$registration = filter_input(INPUT_GET,'registration',FILTER_SANITIZE_STRING); |
|
6 | +$sort = filter_input(INPUT_GET, 'sort', FILTER_SANITIZE_STRING); |
|
7 | +$registration = filter_input(INPUT_GET, 'registration', FILTER_SANITIZE_STRING); |
|
8 | 8 | if ($registration != '') { |
9 | 9 | $spotter_array = $Spotter->getSpotterDataByRegistration($registration, "0,1", $sort); |
10 | 10 | $aircraft_array = $Spotter->getAircraftInfoByRegistration($registration); |
11 | -} else $spotter_array=array(); |
|
11 | +} else $spotter_array = array(); |
|
12 | 12 | |
13 | 13 | if (!empty($spotter_array)) |
14 | 14 | { |
15 | - $title = sprintf(_("Most Common Arrival Airports by Country of aircraft with registration %s"),$registration); |
|
15 | + $title = sprintf(_("Most Common Arrival Airports by Country of aircraft with registration %s"), $registration); |
|
16 | 16 | require_once('header.php'); |
17 | 17 | print '<div class="info column">'; |
18 | 18 | print '<h1>'.$registration.' - '.$aircraft_array[0]['aircraft_name'].' ('.$aircraft_array[0]['aircraft_icao'].')</h1>'; |
@@ -24,7 +24,7 @@ discard block |
||
24 | 24 | include('registration-sub-menu.php'); |
25 | 25 | print '<div class="column">'; |
26 | 26 | print '<h2>'._("Most Common Arrival Airports by Country").'</h2>'; |
27 | - print '<p>'.sprintf(_("The statistic below shows all arrival airports by Country of origin of flights with aircraft registration <strong>%s</strong>."),$registration).'</p>'; |
|
27 | + print '<p>'.sprintf(_("The statistic below shows all arrival airports by Country of origin of flights with aircraft registration <strong>%s</strong>."), $registration).'</p>'; |
|
28 | 28 | $airport_country_array = $Spotter->countAllArrivalAirportCountriesByRegistration($registration); |
29 | 29 | print '<script type="text/javascript" src="'.$globalURL.'/js/d3.min.js"></script>'; |
30 | 30 | print '<script type="text/javascript" src="'.$globalURL.'/js/topojson.v2.min.js"></script>'; |
@@ -32,7 +32,7 @@ discard block |
||
32 | 32 | print '<div id="chartCountry" class="chart" width="100%"></div><script>'; |
33 | 33 | print 'var series = ['; |
34 | 34 | $country_data = ''; |
35 | - foreach($airport_country_array as $airport_item) |
|
35 | + foreach ($airport_country_array as $airport_item) |
|
36 | 36 | { |
37 | 37 | $country_data .= '[ "'.$airport_item['arrival_airport_country_iso3'].'",'.$airport_item['airport_arrival_country_count'].'],'; |
38 | 38 | } |
@@ -79,7 +79,7 @@ discard block |
||
79 | 79 | print '</thead>'; |
80 | 80 | print '<tbody>'; |
81 | 81 | $i = 1; |
82 | - foreach($airport_country_array as $airport_item) |
|
82 | + foreach ($airport_country_array as $airport_item) |
|
83 | 83 | { |
84 | 84 | print '<tr>'; |
85 | 85 | print '<td><strong>'.$i.'</strong></td>'; |
@@ -35,7 +35,9 @@ |
||
35 | 35 | $first = ''; |
36 | 36 | foreach($data as $value => $key) { |
37 | 37 | $final_coord = $Common->getCoordfromDistanceBearing($initial_latitude,$initial_longitude,$value*22.5,$key); |
38 | - if ($first == '') $first = '['.round($final_coord['longitude'],5).','.round($final_coord['latitude'],5).']'; |
|
38 | + if ($first == '') { |
|
39 | + $first = '['.round($final_coord['longitude'],5).','.round($final_coord['latitude'],5).']'; |
|
40 | + } |
|
39 | 41 | $output .= '['.$final_coord['longitude'].','.$final_coord['latitude'].'],'; |
40 | 42 | } |
41 | 43 | $output .= $first; |
@@ -17,10 +17,10 @@ discard block |
||
17 | 17 | header('Content-Type: text/javascript'); |
18 | 18 | |
19 | 19 | |
20 | -$polar = $Stats->getStatsSource('polar',date('Y'),date('m'),date('d')); |
|
20 | +$polar = $Stats->getStatsSource('polar', date('Y'), date('m'), date('d')); |
|
21 | 21 | $output = '{"type": "FeatureCollection","features": ['; |
22 | 22 | if (!empty($polar)) { |
23 | - foreach($polar as $eachpolar) { |
|
23 | + foreach ($polar as $eachpolar) { |
|
24 | 24 | $data = json_decode($eachpolar['source_data']); |
25 | 25 | $name = $eachpolar['source_name']; |
26 | 26 | $coord = $Location->getLocationInfobySourceName($name); |
@@ -33,15 +33,15 @@ discard block |
||
33 | 33 | $initial_longitude = $globalCenterLongitude; |
34 | 34 | } |
35 | 35 | $first = ''; |
36 | - foreach($data as $value => $key) { |
|
37 | - $final_coord = $Common->getCoordfromDistanceBearing($initial_latitude,$initial_longitude,$value*22.5,$key); |
|
38 | - if ($first == '') $first = '['.round($final_coord['longitude'],5).','.round($final_coord['latitude'],5).']'; |
|
36 | + foreach ($data as $value => $key) { |
|
37 | + $final_coord = $Common->getCoordfromDistanceBearing($initial_latitude, $initial_longitude, $value*22.5, $key); |
|
38 | + if ($first == '') $first = '['.round($final_coord['longitude'], 5).','.round($final_coord['latitude'], 5).']'; |
|
39 | 39 | $output .= '['.$final_coord['longitude'].','.$final_coord['latitude'].'],'; |
40 | 40 | } |
41 | 41 | $output .= $first; |
42 | 42 | $output .= ']]}},'; |
43 | 43 | } |
44 | - $output = substr($output, 0, -1); |
|
44 | + $output = substr($output, 0, -1); |
|
45 | 45 | } |
46 | 46 | $output .= ']}'; |
47 | 47 | print $output; |
@@ -146,20 +146,6 @@ discard block |
||
146 | 146 | |
147 | 147 | /** Predict first pass after a certain time. |
148 | 148 | * |
149 | - * @param Predict_Sat $sat The satellite data. |
|
150 | - * @param Predict_QTH $qth The observer's location data. |
|
151 | - * @param float $start Starting time. |
|
152 | - * @param int $maxdt The maximum number of days to look ahead (0 for no limit). |
|
153 | - * |
|
154 | - * @return Predict_Pass or NULL if there was an error. |
|
155 | - * |
|
156 | - * This function will find the first upcoming pass with AOS no earlier than |
|
157 | - * t = start and no later than t = (start+maxdt). |
|
158 | - * |
|
159 | - * note For no time limit use maxdt = 0.0 |
|
160 | - * |
|
161 | - * note the data in sat will be corrupt (future) and must be refreshed |
|
162 | - * by the caller, if the caller will need it later on |
|
163 | 149 | */ |
164 | 150 | public function get_pass(Predict_Sat $sat_in, Predict_QTH $qth, $start, $maxdt) |
165 | 151 | { |
@@ -407,7 +393,7 @@ discard block |
||
407 | 393 | * @param Predict_QTH $qth The observer's location (QTH) data. |
408 | 394 | * @param float $start The julian date where calculation should start. |
409 | 395 | * @param int $maxdt The upper time limit in days (0.0 = no limit) |
410 | - * @return The julain date of the next AOS or 0.0 if the satellite has no AOS. |
|
396 | + * @return double julain date of the next AOS or 0.0 if the satellite has no AOS. |
|
411 | 397 | * |
412 | 398 | * This function finds the time of AOS for the first coming pass taking place |
413 | 399 | * no earlier that start. |
@@ -563,7 +549,7 @@ discard block |
||
563 | 549 | * @param Predict_QTH $qth The QTH observer location data. |
564 | 550 | * @param float $start The time where calculation should start. (Julian Date) |
565 | 551 | * @param int $maxdt The upper time limit in days (0.0 = no limit) |
566 | - * @return The time (julian date) of the next LOS or 0.0 if the satellite has no LOS. |
|
552 | + * @return double time (julian date) of the next LOS or 0.0 if the satellite has no LOS. |
|
567 | 553 | * |
568 | 554 | * This function finds the time of LOS for the first coming pass taking place |
569 | 555 | * no earlier that start. |
@@ -648,7 +634,7 @@ discard block |
||
648 | 634 | * @param Predict_Sat $sat The satellite to find AOS for. |
649 | 635 | * @param Predict_QTH $qth The ground station. |
650 | 636 | * @param float $start Start time, prefereably now. |
651 | - * @return The time of the previous AOS or 0.0 if the satellite has no AOS. |
|
637 | + * @return double time of the previous AOS or 0.0 if the satellite has no AOS. |
|
652 | 638 | * |
653 | 639 | * This function can be used to find the AOS time in the past of the |
654 | 640 | * current pass. |
@@ -52,824 +52,824 @@ |
||
52 | 52 | */ |
53 | 53 | class Predict |
54 | 54 | { |
55 | - const de2ra = 1.74532925E-2; /* Degrees to Radians */ |
|
56 | - const pi = 3.1415926535898; /* Pi */ |
|
57 | - const pio2 = 1.5707963267949; /* Pi/2 */ |
|
58 | - const x3pio2 = 4.71238898; /* 3*Pi/2 */ |
|
59 | - const twopi = 6.2831853071796; /* 2*Pi */ |
|
60 | - const e6a = 1.0E-6; |
|
61 | - const tothrd = 6.6666667E-1; /* 2/3 */ |
|
62 | - const xj2 = 1.0826158E-3; /* J2 Harmonic */ |
|
63 | - const xj3 = -2.53881E-6; /* J3 Harmonic */ |
|
64 | - const xj4 = -1.65597E-6; /* J4 Harmonic */ |
|
65 | - const xke = 7.43669161E-2; |
|
66 | - const xkmper = 6.378135E3; /* Earth radius km */ |
|
67 | - const xmnpda = 1.44E3; /* Minutes per day */ |
|
68 | - const km2mi = 0.621371; /* Kilometers per Mile */ |
|
69 | - const ae = 1.0; |
|
70 | - const ck2 = 5.413079E-4; |
|
71 | - const ck4 = 6.209887E-7; |
|
72 | - const __f = 3.352779E-3; |
|
73 | - const ge = 3.986008E5; |
|
74 | - const __s__ = 1.012229; |
|
75 | - const qoms2t = 1.880279E-09; |
|
76 | - const secday = 8.6400E4; /* Seconds per day */ |
|
77 | - const omega_E = 1.0027379; |
|
78 | - const omega_ER = 6.3003879; |
|
79 | - const zns = 1.19459E-5; |
|
80 | - const c1ss = 2.9864797E-6; |
|
81 | - const zes = 1.675E-2; |
|
82 | - const znl = 1.5835218E-4; |
|
83 | - const c1l = 4.7968065E-7; |
|
84 | - const zel = 5.490E-2; |
|
85 | - const zcosis = 9.1744867E-1; |
|
86 | - const zsinis = 3.9785416E-1; |
|
87 | - const zsings = -9.8088458E-1; |
|
88 | - const zcosgs = 1.945905E-1; |
|
89 | - const zcoshs = 1; |
|
90 | - const zsinhs = 0; |
|
91 | - const q22 = 1.7891679E-6; |
|
92 | - const q31 = 2.1460748E-6; |
|
93 | - const q33 = 2.2123015E-7; |
|
94 | - const g22 = 5.7686396; |
|
95 | - const g32 = 9.5240898E-1; |
|
96 | - const g44 = 1.8014998; |
|
97 | - const g52 = 1.0508330; |
|
98 | - const g54 = 4.4108898; |
|
99 | - const root22 = 1.7891679E-6; |
|
100 | - const root32 = 3.7393792E-7; |
|
101 | - const root44 = 7.3636953E-9; |
|
102 | - const root52 = 1.1428639E-7; |
|
103 | - const root54 = 2.1765803E-9; |
|
104 | - const thdt = 4.3752691E-3; |
|
105 | - const rho = 1.5696615E-1; |
|
106 | - const mfactor = 7.292115E-5; |
|
107 | - const __sr__ = 6.96000E5; /*Solar radius - kilometers (IAU 76)*/ |
|
108 | - const AU = 1.49597870E8; /*Astronomical unit - kilometers (IAU 76)*/ |
|
109 | - |
|
110 | - /* visibility constants */ |
|
111 | - const SAT_VIS_NONE = 0; |
|
112 | - const SAT_VIS_VISIBLE = 1; |
|
113 | - const SAT_VIS_DAYLIGHT = 2; |
|
114 | - const SAT_VIS_ECLIPSED = 3; |
|
115 | - |
|
116 | - /* preferences */ |
|
117 | - public $minEle = 10; // Minimum elevation |
|
118 | - public $timeRes = 10; // Pass details: time resolution |
|
119 | - public $numEntries = 20; // Pass details: number of entries |
|
120 | - public $threshold = -6; // Twilight threshold |
|
121 | - |
|
122 | - /** |
|
123 | - * Predict the next pass. |
|
124 | - * |
|
125 | - * This function simply wraps the get_pass function using the current time |
|
126 | - * as parameter. |
|
127 | - * |
|
128 | - * Note: the data in sat will be corrupt (future) and must be refreshed |
|
129 | - * by the caller, if the caller will need it later on (eg. if the caller |
|
130 | - * is GtkSatList). |
|
131 | - * |
|
132 | - * @param Predict_Sat $sat The satellite data. |
|
133 | - * @param Predict_QTH $qth The observer data. |
|
134 | - * @param int $maxdt The maximum number of days to look ahead. |
|
135 | - * |
|
136 | - * @return Predict_Pass Pointer instance or NULL if no pass can be |
|
137 | - * found. |
|
138 | - */ |
|
139 | - public function get_next_pass(Predict_Sat $sat, Predict_QTH $qth, $maxdt) |
|
140 | - { |
|
141 | - /* get the current time and call the get_pass function */ |
|
142 | - $now = Predict_Time::get_current_daynum(); |
|
143 | - |
|
144 | - return $this->get_pass($sat, $qth, $now, $maxdt); |
|
145 | - } |
|
146 | - |
|
147 | - /** Predict first pass after a certain time. |
|
148 | - * |
|
149 | - * @param Predict_Sat $sat The satellite data. |
|
150 | - * @param Predict_QTH $qth The observer's location data. |
|
151 | - * @param float $start Starting time. |
|
152 | - * @param int $maxdt The maximum number of days to look ahead (0 for no limit). |
|
153 | - * |
|
154 | - * @return Predict_Pass or NULL if there was an error. |
|
155 | - * |
|
156 | - * This function will find the first upcoming pass with AOS no earlier than |
|
157 | - * t = start and no later than t = (start+maxdt). |
|
158 | - * |
|
159 | - * note For no time limit use maxdt = 0.0 |
|
160 | - * |
|
161 | - * note the data in sat will be corrupt (future) and must be refreshed |
|
162 | - * by the caller, if the caller will need it later on |
|
163 | - */ |
|
164 | - public function get_pass(Predict_Sat $sat_in, Predict_QTH $qth, $start, $maxdt) |
|
165 | - { |
|
166 | - $aos = 0.0; /* time of AOS */ |
|
167 | - $tca = 0.0; /* time of TCA */ |
|
168 | - $los = 0.0; /* time of LOS */ |
|
169 | - $dt = 0.0; /* time diff */ |
|
170 | - $step = 0.0; /* time step */ |
|
171 | - $t0 = $start; |
|
172 | - $tres = 0.0; /* required time resolution */ |
|
173 | - $max_el = 0.0; /* maximum elevation */ |
|
174 | - $pass = null; |
|
175 | - $detail = null; |
|
176 | - $done = false; |
|
177 | - $iter = 0; /* number of iterations */ |
|
178 | - /* FIXME: watchdog */ |
|
179 | - |
|
180 | - /*copy sat_in to a working structure*/ |
|
181 | - $sat = clone $sat_in; |
|
182 | - $sat_working = clone $sat_in; |
|
183 | - |
|
184 | - /* get time resolution; sat-cfg stores it in seconds */ |
|
185 | - $tres = $this->timeRes / 86400.0; |
|
186 | - |
|
187 | - /* loop until we find a pass with elevation > SAT_CFG_INT_PRED_MIN_EL |
|
55 | + const de2ra = 1.74532925E-2; /* Degrees to Radians */ |
|
56 | + const pi = 3.1415926535898; /* Pi */ |
|
57 | + const pio2 = 1.5707963267949; /* Pi/2 */ |
|
58 | + const x3pio2 = 4.71238898; /* 3*Pi/2 */ |
|
59 | + const twopi = 6.2831853071796; /* 2*Pi */ |
|
60 | + const e6a = 1.0E-6; |
|
61 | + const tothrd = 6.6666667E-1; /* 2/3 */ |
|
62 | + const xj2 = 1.0826158E-3; /* J2 Harmonic */ |
|
63 | + const xj3 = -2.53881E-6; /* J3 Harmonic */ |
|
64 | + const xj4 = -1.65597E-6; /* J4 Harmonic */ |
|
65 | + const xke = 7.43669161E-2; |
|
66 | + const xkmper = 6.378135E3; /* Earth radius km */ |
|
67 | + const xmnpda = 1.44E3; /* Minutes per day */ |
|
68 | + const km2mi = 0.621371; /* Kilometers per Mile */ |
|
69 | + const ae = 1.0; |
|
70 | + const ck2 = 5.413079E-4; |
|
71 | + const ck4 = 6.209887E-7; |
|
72 | + const __f = 3.352779E-3; |
|
73 | + const ge = 3.986008E5; |
|
74 | + const __s__ = 1.012229; |
|
75 | + const qoms2t = 1.880279E-09; |
|
76 | + const secday = 8.6400E4; /* Seconds per day */ |
|
77 | + const omega_E = 1.0027379; |
|
78 | + const omega_ER = 6.3003879; |
|
79 | + const zns = 1.19459E-5; |
|
80 | + const c1ss = 2.9864797E-6; |
|
81 | + const zes = 1.675E-2; |
|
82 | + const znl = 1.5835218E-4; |
|
83 | + const c1l = 4.7968065E-7; |
|
84 | + const zel = 5.490E-2; |
|
85 | + const zcosis = 9.1744867E-1; |
|
86 | + const zsinis = 3.9785416E-1; |
|
87 | + const zsings = -9.8088458E-1; |
|
88 | + const zcosgs = 1.945905E-1; |
|
89 | + const zcoshs = 1; |
|
90 | + const zsinhs = 0; |
|
91 | + const q22 = 1.7891679E-6; |
|
92 | + const q31 = 2.1460748E-6; |
|
93 | + const q33 = 2.2123015E-7; |
|
94 | + const g22 = 5.7686396; |
|
95 | + const g32 = 9.5240898E-1; |
|
96 | + const g44 = 1.8014998; |
|
97 | + const g52 = 1.0508330; |
|
98 | + const g54 = 4.4108898; |
|
99 | + const root22 = 1.7891679E-6; |
|
100 | + const root32 = 3.7393792E-7; |
|
101 | + const root44 = 7.3636953E-9; |
|
102 | + const root52 = 1.1428639E-7; |
|
103 | + const root54 = 2.1765803E-9; |
|
104 | + const thdt = 4.3752691E-3; |
|
105 | + const rho = 1.5696615E-1; |
|
106 | + const mfactor = 7.292115E-5; |
|
107 | + const __sr__ = 6.96000E5; /*Solar radius - kilometers (IAU 76)*/ |
|
108 | + const AU = 1.49597870E8; /*Astronomical unit - kilometers (IAU 76)*/ |
|
109 | + |
|
110 | + /* visibility constants */ |
|
111 | + const SAT_VIS_NONE = 0; |
|
112 | + const SAT_VIS_VISIBLE = 1; |
|
113 | + const SAT_VIS_DAYLIGHT = 2; |
|
114 | + const SAT_VIS_ECLIPSED = 3; |
|
115 | + |
|
116 | + /* preferences */ |
|
117 | + public $minEle = 10; // Minimum elevation |
|
118 | + public $timeRes = 10; // Pass details: time resolution |
|
119 | + public $numEntries = 20; // Pass details: number of entries |
|
120 | + public $threshold = -6; // Twilight threshold |
|
121 | + |
|
122 | + /** |
|
123 | + * Predict the next pass. |
|
124 | + * |
|
125 | + * This function simply wraps the get_pass function using the current time |
|
126 | + * as parameter. |
|
127 | + * |
|
128 | + * Note: the data in sat will be corrupt (future) and must be refreshed |
|
129 | + * by the caller, if the caller will need it later on (eg. if the caller |
|
130 | + * is GtkSatList). |
|
131 | + * |
|
132 | + * @param Predict_Sat $sat The satellite data. |
|
133 | + * @param Predict_QTH $qth The observer data. |
|
134 | + * @param int $maxdt The maximum number of days to look ahead. |
|
135 | + * |
|
136 | + * @return Predict_Pass Pointer instance or NULL if no pass can be |
|
137 | + * found. |
|
138 | + */ |
|
139 | + public function get_next_pass(Predict_Sat $sat, Predict_QTH $qth, $maxdt) |
|
140 | + { |
|
141 | + /* get the current time and call the get_pass function */ |
|
142 | + $now = Predict_Time::get_current_daynum(); |
|
143 | + |
|
144 | + return $this->get_pass($sat, $qth, $now, $maxdt); |
|
145 | + } |
|
146 | + |
|
147 | + /** Predict first pass after a certain time. |
|
148 | + * |
|
149 | + * @param Predict_Sat $sat The satellite data. |
|
150 | + * @param Predict_QTH $qth The observer's location data. |
|
151 | + * @param float $start Starting time. |
|
152 | + * @param int $maxdt The maximum number of days to look ahead (0 for no limit). |
|
153 | + * |
|
154 | + * @return Predict_Pass or NULL if there was an error. |
|
155 | + * |
|
156 | + * This function will find the first upcoming pass with AOS no earlier than |
|
157 | + * t = start and no later than t = (start+maxdt). |
|
158 | + * |
|
159 | + * note For no time limit use maxdt = 0.0 |
|
160 | + * |
|
161 | + * note the data in sat will be corrupt (future) and must be refreshed |
|
162 | + * by the caller, if the caller will need it later on |
|
163 | + */ |
|
164 | + public function get_pass(Predict_Sat $sat_in, Predict_QTH $qth, $start, $maxdt) |
|
165 | + { |
|
166 | + $aos = 0.0; /* time of AOS */ |
|
167 | + $tca = 0.0; /* time of TCA */ |
|
168 | + $los = 0.0; /* time of LOS */ |
|
169 | + $dt = 0.0; /* time diff */ |
|
170 | + $step = 0.0; /* time step */ |
|
171 | + $t0 = $start; |
|
172 | + $tres = 0.0; /* required time resolution */ |
|
173 | + $max_el = 0.0; /* maximum elevation */ |
|
174 | + $pass = null; |
|
175 | + $detail = null; |
|
176 | + $done = false; |
|
177 | + $iter = 0; /* number of iterations */ |
|
178 | + /* FIXME: watchdog */ |
|
179 | + |
|
180 | + /*copy sat_in to a working structure*/ |
|
181 | + $sat = clone $sat_in; |
|
182 | + $sat_working = clone $sat_in; |
|
183 | + |
|
184 | + /* get time resolution; sat-cfg stores it in seconds */ |
|
185 | + $tres = $this->timeRes / 86400.0; |
|
186 | + |
|
187 | + /* loop until we find a pass with elevation > SAT_CFG_INT_PRED_MIN_EL |
|
188 | 188 | or we run out of time |
189 | 189 | FIXME: we should have a safety break |
190 | 190 | */ |
191 | - while (!$done) { |
|
192 | - /* Find los of next pass or of current pass */ |
|
193 | - $los = $this->find_los($sat, $qth, $t0, $maxdt); // See if a pass is ongoing |
|
194 | - $aos = $this->find_aos($sat, $qth, $t0, $maxdt); |
|
195 | - /* sat_log_log(SAT_LOG_LEVEL_MSG, "%s:%s:%d: found aos %f and los %f for t0=%f", */ |
|
196 | - /* __FILE__, */ |
|
197 | - /* __FUNCTION__, */ |
|
198 | - /* __LINE__, */ |
|
199 | - /* aos, */ |
|
200 | - /* los, */ |
|
201 | - /* t0); */ |
|
202 | - if ($aos > $los) { |
|
203 | - // los is from an currently happening pass, find previous aos |
|
204 | - $aos = $this->find_prev_aos($sat, $qth, $t0); |
|
205 | - } |
|
206 | - |
|
207 | - /* aos = 0.0 means no aos */ |
|
208 | - if ($aos == 0.0) { |
|
209 | - $done = true; |
|
210 | - } else if (($maxdt > 0.0) && ($aos > ($start + $maxdt)) ) { |
|
211 | - /* check whether we are within time limits; |
|
191 | + while (!$done) { |
|
192 | + /* Find los of next pass or of current pass */ |
|
193 | + $los = $this->find_los($sat, $qth, $t0, $maxdt); // See if a pass is ongoing |
|
194 | + $aos = $this->find_aos($sat, $qth, $t0, $maxdt); |
|
195 | + /* sat_log_log(SAT_LOG_LEVEL_MSG, "%s:%s:%d: found aos %f and los %f for t0=%f", */ |
|
196 | + /* __FILE__, */ |
|
197 | + /* __FUNCTION__, */ |
|
198 | + /* __LINE__, */ |
|
199 | + /* aos, */ |
|
200 | + /* los, */ |
|
201 | + /* t0); */ |
|
202 | + if ($aos > $los) { |
|
203 | + // los is from an currently happening pass, find previous aos |
|
204 | + $aos = $this->find_prev_aos($sat, $qth, $t0); |
|
205 | + } |
|
206 | + |
|
207 | + /* aos = 0.0 means no aos */ |
|
208 | + if ($aos == 0.0) { |
|
209 | + $done = true; |
|
210 | + } else if (($maxdt > 0.0) && ($aos > ($start + $maxdt)) ) { |
|
211 | + /* check whether we are within time limits; |
|
212 | 212 | maxdt = 0 mean no time limit. |
213 | 213 | */ |
214 | - $done = true; |
|
215 | - } else { |
|
216 | - //los = find_los (sat, qth, aos + 0.001, maxdt); // +1.5 min later |
|
217 | - $dt = $los - $aos; |
|
214 | + $done = true; |
|
215 | + } else { |
|
216 | + //los = find_los (sat, qth, aos + 0.001, maxdt); // +1.5 min later |
|
217 | + $dt = $los - $aos; |
|
218 | 218 | |
219 | - /* get time step, which will give us the max number of entries */ |
|
220 | - $step = $dt / $this->numEntries; |
|
219 | + /* get time step, which will give us the max number of entries */ |
|
220 | + $step = $dt / $this->numEntries; |
|
221 | 221 | |
222 | - /* but if this is smaller than the required resolution |
|
222 | + /* but if this is smaller than the required resolution |
|
223 | 223 | we go with the resolution |
224 | 224 | */ |
225 | - if ($step < $tres) { |
|
226 | - $step = $tres; |
|
227 | - } |
|
228 | - |
|
229 | - /* create a pass_t entry; FIXME: g_try_new in 2.8 */ |
|
230 | - $pass = new Predict_Pass(); |
|
231 | - |
|
232 | - $pass->aos = $aos; |
|
233 | - $pass->los = $los; |
|
234 | - $pass->max_el = 0.0; |
|
235 | - $pass->aos_az = 0.0; |
|
236 | - $pass->los_az = 0.0; |
|
237 | - $pass->maxel_az = 0.0; |
|
238 | - $pass->vis = '---'; |
|
239 | - $pass->satname = $sat->nickname; |
|
240 | - $pass->details = array(); |
|
241 | - |
|
242 | - /* iterate over each time step */ |
|
243 | - for ($t = $pass->aos; $t <= $pass->los; $t += $step) { |
|
244 | - |
|
245 | - /* calculate satellite data */ |
|
246 | - $this->predict_calc($sat, $qth, $t); |
|
247 | - |
|
248 | - /* in the first iter we want to store |
|
225 | + if ($step < $tres) { |
|
226 | + $step = $tres; |
|
227 | + } |
|
228 | + |
|
229 | + /* create a pass_t entry; FIXME: g_try_new in 2.8 */ |
|
230 | + $pass = new Predict_Pass(); |
|
231 | + |
|
232 | + $pass->aos = $aos; |
|
233 | + $pass->los = $los; |
|
234 | + $pass->max_el = 0.0; |
|
235 | + $pass->aos_az = 0.0; |
|
236 | + $pass->los_az = 0.0; |
|
237 | + $pass->maxel_az = 0.0; |
|
238 | + $pass->vis = '---'; |
|
239 | + $pass->satname = $sat->nickname; |
|
240 | + $pass->details = array(); |
|
241 | + |
|
242 | + /* iterate over each time step */ |
|
243 | + for ($t = $pass->aos; $t <= $pass->los; $t += $step) { |
|
244 | + |
|
245 | + /* calculate satellite data */ |
|
246 | + $this->predict_calc($sat, $qth, $t); |
|
247 | + |
|
248 | + /* in the first iter we want to store |
|
249 | 249 | pass->aos_az |
250 | 250 | */ |
251 | - if ($t == $pass->aos) { |
|
252 | - $pass->aos_az = $sat->az; |
|
253 | - $pass->orbit = $sat->orbit; |
|
254 | - } |
|
255 | - |
|
256 | - /* append details to sat->details */ |
|
257 | - $detail = new Predict_PassDetail(); |
|
258 | - $detail->time = $t; |
|
259 | - $detail->pos->x = $sat->pos->x; |
|
260 | - $detail->pos->y = $sat->pos->y; |
|
261 | - $detail->pos->z = $sat->pos->z; |
|
262 | - $detail->pos->w = $sat->pos->w; |
|
263 | - $detail->vel->x = $sat->vel->x; |
|
264 | - $detail->vel->y = $sat->vel->y; |
|
265 | - $detail->vel->z = $sat->vel->z; |
|
266 | - $detail->vel->w = $sat->vel->w; |
|
267 | - $detail->velo = $sat->velo; |
|
268 | - $detail->az = $sat->az; |
|
269 | - $detail->el = $sat->el; |
|
270 | - $detail->range = $sat->range; |
|
271 | - $detail->range_rate = $sat->range_rate; |
|
272 | - $detail->lat = $sat->ssplat; |
|
273 | - $detail->lon = $sat->ssplon; |
|
274 | - $detail->alt = $sat->alt; |
|
275 | - $detail->ma = $sat->ma; |
|
276 | - $detail->phase = $sat->phase; |
|
277 | - $detail->footprint = $sat->footprint; |
|
278 | - $detail->orbit = $sat->orbit; |
|
279 | - $detail->vis = $this->get_sat_vis($sat, $qth, $t); |
|
280 | - |
|
281 | - /* also store visibility "bit" */ |
|
282 | - switch ($detail->vis) { |
|
283 | - case self::SAT_VIS_VISIBLE: |
|
284 | - $pass->vis[0] = 'V'; |
|
285 | - break; |
|
286 | - case self::SAT_VIS_DAYLIGHT: |
|
287 | - $pass->vis[1] = 'D'; |
|
288 | - break; |
|
289 | - case self::SAT_VIS_ECLIPSED: |
|
290 | - $pass->vis[2] = 'E'; |
|
291 | - break; |
|
292 | - default: |
|
293 | - break; |
|
294 | - } |
|
295 | - |
|
296 | - // Using an array, no need to prepend and reverse the list |
|
297 | - // as gpredict does |
|
298 | - $pass->details[] = $detail; |
|
299 | - |
|
300 | - // Look up apparent magnitude if this is a visible pass |
|
301 | - if ($detail->vis === self::SAT_VIS_VISIBLE) { |
|
302 | - $apmag = $sat->calculateApparentMagnitude($t, $qth); |
|
303 | - if ($pass->max_apparent_magnitude === null || $apmag < $pass->max_apparent_magnitude) { |
|
304 | - $pass->max_apparent_magnitude = $apmag; |
|
305 | - } |
|
306 | - } |
|
307 | - |
|
308 | - /* store elevation if greater than the |
|
251 | + if ($t == $pass->aos) { |
|
252 | + $pass->aos_az = $sat->az; |
|
253 | + $pass->orbit = $sat->orbit; |
|
254 | + } |
|
255 | + |
|
256 | + /* append details to sat->details */ |
|
257 | + $detail = new Predict_PassDetail(); |
|
258 | + $detail->time = $t; |
|
259 | + $detail->pos->x = $sat->pos->x; |
|
260 | + $detail->pos->y = $sat->pos->y; |
|
261 | + $detail->pos->z = $sat->pos->z; |
|
262 | + $detail->pos->w = $sat->pos->w; |
|
263 | + $detail->vel->x = $sat->vel->x; |
|
264 | + $detail->vel->y = $sat->vel->y; |
|
265 | + $detail->vel->z = $sat->vel->z; |
|
266 | + $detail->vel->w = $sat->vel->w; |
|
267 | + $detail->velo = $sat->velo; |
|
268 | + $detail->az = $sat->az; |
|
269 | + $detail->el = $sat->el; |
|
270 | + $detail->range = $sat->range; |
|
271 | + $detail->range_rate = $sat->range_rate; |
|
272 | + $detail->lat = $sat->ssplat; |
|
273 | + $detail->lon = $sat->ssplon; |
|
274 | + $detail->alt = $sat->alt; |
|
275 | + $detail->ma = $sat->ma; |
|
276 | + $detail->phase = $sat->phase; |
|
277 | + $detail->footprint = $sat->footprint; |
|
278 | + $detail->orbit = $sat->orbit; |
|
279 | + $detail->vis = $this->get_sat_vis($sat, $qth, $t); |
|
280 | + |
|
281 | + /* also store visibility "bit" */ |
|
282 | + switch ($detail->vis) { |
|
283 | + case self::SAT_VIS_VISIBLE: |
|
284 | + $pass->vis[0] = 'V'; |
|
285 | + break; |
|
286 | + case self::SAT_VIS_DAYLIGHT: |
|
287 | + $pass->vis[1] = 'D'; |
|
288 | + break; |
|
289 | + case self::SAT_VIS_ECLIPSED: |
|
290 | + $pass->vis[2] = 'E'; |
|
291 | + break; |
|
292 | + default: |
|
293 | + break; |
|
294 | + } |
|
295 | + |
|
296 | + // Using an array, no need to prepend and reverse the list |
|
297 | + // as gpredict does |
|
298 | + $pass->details[] = $detail; |
|
299 | + |
|
300 | + // Look up apparent magnitude if this is a visible pass |
|
301 | + if ($detail->vis === self::SAT_VIS_VISIBLE) { |
|
302 | + $apmag = $sat->calculateApparentMagnitude($t, $qth); |
|
303 | + if ($pass->max_apparent_magnitude === null || $apmag < $pass->max_apparent_magnitude) { |
|
304 | + $pass->max_apparent_magnitude = $apmag; |
|
305 | + } |
|
306 | + } |
|
307 | + |
|
308 | + /* store elevation if greater than the |
|
309 | 309 | previously stored one |
310 | 310 | */ |
311 | - if ($sat->el > $max_el) { |
|
312 | - $max_el = $sat->el; |
|
313 | - $tca = $t; |
|
314 | - $pass->maxel_az = $sat->az; |
|
315 | - } |
|
316 | - |
|
317 | - /* g_print ("TIME: %f\tAZ: %f\tEL: %f (MAX: %f)\n", */ |
|
318 | - /* t, sat->az, sat->el, max_el); */ |
|
319 | - } |
|
320 | - |
|
321 | - /* calculate satellite data */ |
|
322 | - $this->predict_calc($sat, $qth, $pass->los); |
|
323 | - /* store los_az, max_el and tca */ |
|
324 | - $pass->los_az = $sat->az; |
|
325 | - $pass->max_el = $max_el; |
|
326 | - $pass->tca = $tca; |
|
327 | - |
|
328 | - /* check whether this pass is good */ |
|
329 | - if ($max_el >= $this->minEle) { |
|
330 | - $done = true; |
|
331 | - } else { |
|
332 | - $done = false; |
|
333 | - $t0 = $los + 0.014; // +20 min |
|
334 | - $pass = null; |
|
335 | - } |
|
336 | - |
|
337 | - $iter++; |
|
338 | - } |
|
339 | - } |
|
340 | - |
|
341 | - return $pass; |
|
342 | - } |
|
343 | - |
|
344 | - /** |
|
345 | - * Calculate satellite visibility. |
|
346 | - * |
|
347 | - * @param Predict_Sat $sat The satellite structure. |
|
348 | - * @param Predict_QTH $qth The QTH |
|
349 | - * @param float $jul_utc The time at which the visibility should be calculated. |
|
350 | - * |
|
351 | - * @return int The visiblity constant, 0, 1, 2, or 3 (see above) |
|
352 | - */ |
|
353 | - public function get_sat_vis(Predict_Sat $sat, Predict_QTH $qth, $jul_utc) |
|
354 | - { |
|
355 | - /* gboolean sat_sun_status; |
|
311 | + if ($sat->el > $max_el) { |
|
312 | + $max_el = $sat->el; |
|
313 | + $tca = $t; |
|
314 | + $pass->maxel_az = $sat->az; |
|
315 | + } |
|
316 | + |
|
317 | + /* g_print ("TIME: %f\tAZ: %f\tEL: %f (MAX: %f)\n", */ |
|
318 | + /* t, sat->az, sat->el, max_el); */ |
|
319 | + } |
|
320 | + |
|
321 | + /* calculate satellite data */ |
|
322 | + $this->predict_calc($sat, $qth, $pass->los); |
|
323 | + /* store los_az, max_el and tca */ |
|
324 | + $pass->los_az = $sat->az; |
|
325 | + $pass->max_el = $max_el; |
|
326 | + $pass->tca = $tca; |
|
327 | + |
|
328 | + /* check whether this pass is good */ |
|
329 | + if ($max_el >= $this->minEle) { |
|
330 | + $done = true; |
|
331 | + } else { |
|
332 | + $done = false; |
|
333 | + $t0 = $los + 0.014; // +20 min |
|
334 | + $pass = null; |
|
335 | + } |
|
336 | + |
|
337 | + $iter++; |
|
338 | + } |
|
339 | + } |
|
340 | + |
|
341 | + return $pass; |
|
342 | + } |
|
343 | + |
|
344 | + /** |
|
345 | + * Calculate satellite visibility. |
|
346 | + * |
|
347 | + * @param Predict_Sat $sat The satellite structure. |
|
348 | + * @param Predict_QTH $qth The QTH |
|
349 | + * @param float $jul_utc The time at which the visibility should be calculated. |
|
350 | + * |
|
351 | + * @return int The visiblity constant, 0, 1, 2, or 3 (see above) |
|
352 | + */ |
|
353 | + public function get_sat_vis(Predict_Sat $sat, Predict_QTH $qth, $jul_utc) |
|
354 | + { |
|
355 | + /* gboolean sat_sun_status; |
|
356 | 356 | gdouble sun_el; |
357 | 357 | gdouble threshold; |
358 | 358 | gdouble eclipse_depth; |
359 | 359 | sat_vis_t vis = SAT_VIS_NONE; */ |
360 | 360 | |
361 | - $eclipse_depth = 0.0; |
|
362 | - $zero_vector = new Predict_Vector(); |
|
363 | - $obs_geodetic = new Predict_Geodetic(); |
|
364 | - |
|
365 | - /* Solar ECI position vector */ |
|
366 | - $solar_vector = new Predict_Vector(); |
|
367 | - |
|
368 | - /* Solar observed az and el vector */ |
|
369 | - $solar_set = new Predict_ObsSet(); |
|
370 | - |
|
371 | - /* FIXME: could be passed as parameter */ |
|
372 | - $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
373 | - $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
374 | - $obs_geodetic->alt = $qth->alt / 1000.0; |
|
375 | - $obs_geodetic->theta = 0; |
|
376 | - |
|
377 | - Predict_Solar::Calculate_Solar_Position($jul_utc, $solar_vector); |
|
378 | - Predict_SGPObs::Calculate_Obs($jul_utc, $solar_vector, $zero_vector, $obs_geodetic, $solar_set); |
|
379 | - |
|
380 | - if (Predict_Solar::Sat_Eclipsed($sat->pos, $solar_vector, $eclipse_depth)) { |
|
381 | - /* satellite is eclipsed */ |
|
382 | - $sat_sun_status = false; |
|
383 | - } else { |
|
384 | - /* satellite in sunlight => may be visible */ |
|
385 | - $sat_sun_status = true; |
|
386 | - } |
|
387 | - |
|
388 | - if ($sat_sun_status) { |
|
389 | - $sun_el = Predict_Math::Degrees($solar_set->el); |
|
390 | - |
|
391 | - if ($sun_el <= $this->threshold && $sat->el >= 0.0) { |
|
392 | - $vis = self::SAT_VIS_VISIBLE; |
|
393 | - } else { |
|
394 | - $vis = self::SAT_VIS_DAYLIGHT; |
|
395 | - } |
|
396 | - } else { |
|
397 | - $vis = self::SAT_VIS_ECLIPSED; |
|
398 | - } |
|
399 | - |
|
400 | - return $vis; |
|
401 | - } |
|
402 | - |
|
403 | - /** Find the AOS time of the next pass. |
|
404 | - * @author Alexandru Csete, OZ9AEC |
|
405 | - * @author John A. Magliacane, KD2BD |
|
406 | - * @param Predict_Sat $sat The satellite data. |
|
407 | - * @param Predict_QTH $qth The observer's location (QTH) data. |
|
408 | - * @param float $start The julian date where calculation should start. |
|
409 | - * @param int $maxdt The upper time limit in days (0.0 = no limit) |
|
410 | - * @return The julain date of the next AOS or 0.0 if the satellite has no AOS. |
|
411 | - * |
|
412 | - * This function finds the time of AOS for the first coming pass taking place |
|
413 | - * no earlier that start. |
|
414 | - * If the satellite is currently within range, the function first calls |
|
415 | - * find_los to get the next LOS time. Then the calculations are done using |
|
416 | - * the new start time. |
|
417 | - * |
|
418 | - */ |
|
419 | - public function find_aos(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt) |
|
420 | - { |
|
421 | - $t = $start; |
|
422 | - $aostime = 0.0; |
|
423 | - |
|
424 | - |
|
425 | - /* make sure current sat values are |
|
361 | + $eclipse_depth = 0.0; |
|
362 | + $zero_vector = new Predict_Vector(); |
|
363 | + $obs_geodetic = new Predict_Geodetic(); |
|
364 | + |
|
365 | + /* Solar ECI position vector */ |
|
366 | + $solar_vector = new Predict_Vector(); |
|
367 | + |
|
368 | + /* Solar observed az and el vector */ |
|
369 | + $solar_set = new Predict_ObsSet(); |
|
370 | + |
|
371 | + /* FIXME: could be passed as parameter */ |
|
372 | + $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
373 | + $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
374 | + $obs_geodetic->alt = $qth->alt / 1000.0; |
|
375 | + $obs_geodetic->theta = 0; |
|
376 | + |
|
377 | + Predict_Solar::Calculate_Solar_Position($jul_utc, $solar_vector); |
|
378 | + Predict_SGPObs::Calculate_Obs($jul_utc, $solar_vector, $zero_vector, $obs_geodetic, $solar_set); |
|
379 | + |
|
380 | + if (Predict_Solar::Sat_Eclipsed($sat->pos, $solar_vector, $eclipse_depth)) { |
|
381 | + /* satellite is eclipsed */ |
|
382 | + $sat_sun_status = false; |
|
383 | + } else { |
|
384 | + /* satellite in sunlight => may be visible */ |
|
385 | + $sat_sun_status = true; |
|
386 | + } |
|
387 | + |
|
388 | + if ($sat_sun_status) { |
|
389 | + $sun_el = Predict_Math::Degrees($solar_set->el); |
|
390 | + |
|
391 | + if ($sun_el <= $this->threshold && $sat->el >= 0.0) { |
|
392 | + $vis = self::SAT_VIS_VISIBLE; |
|
393 | + } else { |
|
394 | + $vis = self::SAT_VIS_DAYLIGHT; |
|
395 | + } |
|
396 | + } else { |
|
397 | + $vis = self::SAT_VIS_ECLIPSED; |
|
398 | + } |
|
399 | + |
|
400 | + return $vis; |
|
401 | + } |
|
402 | + |
|
403 | + /** Find the AOS time of the next pass. |
|
404 | + * @author Alexandru Csete, OZ9AEC |
|
405 | + * @author John A. Magliacane, KD2BD |
|
406 | + * @param Predict_Sat $sat The satellite data. |
|
407 | + * @param Predict_QTH $qth The observer's location (QTH) data. |
|
408 | + * @param float $start The julian date where calculation should start. |
|
409 | + * @param int $maxdt The upper time limit in days (0.0 = no limit) |
|
410 | + * @return The julain date of the next AOS or 0.0 if the satellite has no AOS. |
|
411 | + * |
|
412 | + * This function finds the time of AOS for the first coming pass taking place |
|
413 | + * no earlier that start. |
|
414 | + * If the satellite is currently within range, the function first calls |
|
415 | + * find_los to get the next LOS time. Then the calculations are done using |
|
416 | + * the new start time. |
|
417 | + * |
|
418 | + */ |
|
419 | + public function find_aos(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt) |
|
420 | + { |
|
421 | + $t = $start; |
|
422 | + $aostime = 0.0; |
|
423 | + |
|
424 | + |
|
425 | + /* make sure current sat values are |
|
426 | 426 | in sync with the time |
427 | 427 | */ |
428 | - $this->predict_calc($sat, $qth, $start); |
|
429 | - |
|
430 | - /* check whether satellite has aos */ |
|
431 | - if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
432 | - ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
433 | - !$this->has_aos($sat, $qth)) { |
|
434 | - |
|
435 | - return 0.0; |
|
436 | - } |
|
437 | - |
|
438 | - if ($sat->el > 0.0) { |
|
439 | - $t = $this->find_los($sat, $qth, $start, $maxdt) + 0.014; // +20 min |
|
440 | - } |
|
441 | - |
|
442 | - /* invalid time (potentially returned by find_los) */ |
|
443 | - if ($t < 0.1) { |
|
444 | - return 0.0; |
|
445 | - } |
|
446 | - |
|
447 | - /* update satellite data */ |
|
448 | - $this->predict_calc($sat, $qth, $t); |
|
449 | - |
|
450 | - /* use upper time limit */ |
|
451 | - if ($maxdt > 0.0) { |
|
452 | - |
|
453 | - /* coarse time steps */ |
|
454 | - while (($sat->el < -1.0) && ($t <= ($start + $maxdt))) { |
|
455 | - $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
456 | - $this->predict_calc($sat, $qth, $t); |
|
457 | - } |
|
458 | - |
|
459 | - /* fine steps */ |
|
460 | - while (($aostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
461 | - |
|
462 | - if (abs($sat->el) < 0.005) { |
|
463 | - $aostime = $t; |
|
464 | - } else { |
|
465 | - $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
466 | - $this->predict_calc($sat, $qth, $t); |
|
467 | - } |
|
468 | - } |
|
469 | - } else { |
|
470 | - /* don't use upper time limit */ |
|
471 | - |
|
472 | - /* coarse time steps */ |
|
473 | - while ($sat->el < -1.0) { |
|
474 | - |
|
475 | - $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
476 | - $this->predict_calc($sat, $qth, $t); |
|
477 | - } |
|
478 | - |
|
479 | - /* fine steps */ |
|
480 | - while ($aostime == 0.0) { |
|
481 | - |
|
482 | - if (abs($sat->el) < 0.005) { |
|
483 | - $aostime = $t; |
|
484 | - } else { |
|
485 | - $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
486 | - $this->predict_calc($sat, $qth, $t); |
|
487 | - } |
|
488 | - |
|
489 | - } |
|
490 | - } |
|
491 | - |
|
492 | - return $aostime; |
|
493 | - } |
|
494 | - |
|
495 | - /** SGP4SDP4 driver for doing AOS/LOS calculations. |
|
496 | - * @param Predict_Sat $sat The satellite data. |
|
497 | - * @param Predict_QTH $qth The QTH observer location data. |
|
498 | - * @param float $t The time for calculation (Julian Date) |
|
499 | - * |
|
500 | - */ |
|
501 | - public function predict_calc(Predict_Sat $sat, Predict_QTH $qth, $t) |
|
502 | - { |
|
503 | - $obs_set = new Predict_ObsSet(); |
|
504 | - $sat_geodetic = new Predict_Geodetic(); |
|
505 | - $obs_geodetic = new Predict_Geodetic(); |
|
506 | - |
|
507 | - $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
508 | - $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
509 | - $obs_geodetic->alt = $qth->alt / 1000.0; |
|
510 | - $obs_geodetic->theta = 0; |
|
511 | - |
|
512 | - $sat->jul_utc = $t; |
|
513 | - $sat->tsince = ($sat->jul_utc - $sat->jul_epoch) * self::xmnpda; |
|
514 | - |
|
515 | - /* call the norad routines according to the deep-space flag */ |
|
516 | - $sgpsdp = Predict_SGPSDP::getInstance($sat); |
|
517 | - if ($sat->flags & Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
518 | - $sgpsdp->SDP4($sat, $sat->tsince); |
|
519 | - } else { |
|
520 | - $sgpsdp->SGP4($sat, $sat->tsince); |
|
521 | - } |
|
522 | - |
|
523 | - Predict_Math::Convert_Sat_State($sat->pos, $sat->vel); |
|
524 | - |
|
525 | - /* get the velocity of the satellite */ |
|
526 | - $sat->vel->w = sqrt($sat->vel->x * $sat->vel->x + $sat->vel->y * $sat->vel->y + $sat->vel->z * $sat->vel->z); |
|
527 | - $sat->velo = $sat->vel->w; |
|
528 | - Predict_SGPObs::Calculate_Obs($sat->jul_utc, $sat->pos, $sat->vel, $obs_geodetic, $obs_set); |
|
529 | - Predict_SGPObs::Calculate_LatLonAlt($sat->jul_utc, $sat->pos, $sat_geodetic); |
|
530 | - |
|
531 | - while ($sat_geodetic->lon < -self::pi) { |
|
532 | - $sat_geodetic->lon += self::twopi; |
|
533 | - } |
|
534 | - |
|
535 | - while ($sat_geodetic->lon > (self::pi)) { |
|
536 | - $sat_geodetic->lon -= self::twopi; |
|
537 | - } |
|
538 | - |
|
539 | - $sat->az = Predict_Math::Degrees($obs_set->az); |
|
540 | - $sat->el = Predict_Math::Degrees($obs_set->el); |
|
541 | - $sat->range = $obs_set->range; |
|
542 | - $sat->range_rate = $obs_set->range_rate; |
|
543 | - $sat->ssplat = Predict_Math::Degrees($sat_geodetic->lat); |
|
544 | - $sat->ssplon = Predict_Math::Degrees($sat_geodetic->lon); |
|
545 | - $sat->alt = $sat_geodetic->alt; |
|
546 | - $sat->ma = Predict_Math::Degrees($sat->phase); |
|
547 | - $sat->ma *= 256.0 / 360.0; |
|
548 | - $sat->phase = Predict_Math::Degrees($sat->phase); |
|
549 | - |
|
550 | - /* same formulas, but the one from predict is nicer */ |
|
551 | - //sat->footprint = 2.0 * xkmper * acos (xkmper/sat->pos.w); |
|
552 | - $sat->footprint = 12756.33 * acos(self::xkmper / (self::xkmper + $sat->alt)); |
|
553 | - $age = $sat->jul_utc - $sat->jul_epoch; |
|
554 | - $sat->orbit = floor(($sat->tle->xno * self::xmnpda / self::twopi + |
|
555 | - $age * $sat->tle->bstar * self::ae) * $age + |
|
556 | - $sat->tle->xmo / self::twopi) + $sat->tle->revnum - 1; |
|
557 | - } |
|
558 | - |
|
559 | - /** Find the LOS time of the next pass. |
|
560 | - * @author Alexandru Csete, OZ9AEC |
|
561 | - * @author John A. Magliacane, KD2BD |
|
562 | - * @param Predict_Sat $sat The satellite data. |
|
563 | - * @param Predict_QTH $qth The QTH observer location data. |
|
564 | - * @param float $start The time where calculation should start. (Julian Date) |
|
565 | - * @param int $maxdt The upper time limit in days (0.0 = no limit) |
|
566 | - * @return The time (julian date) of the next LOS or 0.0 if the satellite has no LOS. |
|
567 | - * |
|
568 | - * This function finds the time of LOS for the first coming pass taking place |
|
569 | - * no earlier that start. |
|
570 | - * If the satellite is currently out of range, the function first calls |
|
571 | - * find_aos to get the next AOS time. Then the calculations are done using |
|
572 | - * the new start time. |
|
573 | - * The function has a built-in watchdog to ensure that we don't end up in |
|
574 | - * lengthy loops. |
|
575 | - * |
|
576 | - */ |
|
577 | - public function find_los(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt) |
|
578 | - { |
|
579 | - $t = $start; |
|
580 | - $lostime = 0.0; |
|
581 | - |
|
582 | - |
|
583 | - $this->predict_calc($sat, $qth, $start); |
|
584 | - |
|
585 | - /* check whether satellite has aos */ |
|
586 | - if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
587 | - ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
588 | - !$this->has_aos ($sat, $qth)) { |
|
589 | - |
|
590 | - return 0.0; |
|
591 | - } |
|
592 | - |
|
593 | - if ($sat->el < 0.0) { |
|
594 | - $t = $this->find_aos($sat, $qth, $start, $maxdt) + 0.001; // +1.5 min |
|
595 | - } |
|
596 | - |
|
597 | - /* invalid time (potentially returned by find_aos) */ |
|
598 | - if ($t < 0.01) { |
|
599 | - return 0.0; |
|
600 | - } |
|
601 | - |
|
602 | - /* update satellite data */ |
|
603 | - $this->predict_calc($sat, $qth, $t); |
|
604 | - |
|
605 | - /* use upper time limit */ |
|
606 | - if ($maxdt > 0.0) { |
|
607 | - |
|
608 | - /* coarse steps */ |
|
609 | - while (($sat->el >= 1.0) && ($t <= ($start + $maxdt))) { |
|
610 | - $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
611 | - $this->predict_calc($sat, $qth, $t); |
|
612 | - } |
|
613 | - |
|
614 | - /* fine steps */ |
|
615 | - while (($lostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
616 | - |
|
617 | - $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
618 | - $this->predict_calc($sat, $qth, $t); |
|
619 | - |
|
620 | - if (abs($sat->el) < 0.005) { |
|
621 | - $lostime = $t; |
|
622 | - } |
|
623 | - } |
|
624 | - } else { |
|
625 | - /* don't use upper limit */ |
|
626 | - |
|
627 | - /* coarse steps */ |
|
628 | - while ($sat->el >= 1.0) { |
|
629 | - $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
630 | - $this->predict_calc($sat, $qth, $t); |
|
631 | - } |
|
632 | - |
|
633 | - /* fine steps */ |
|
634 | - while ($lostime == 0.0) { |
|
635 | - |
|
636 | - $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
637 | - $this->predict_calc($sat, $qth, $t); |
|
638 | - |
|
639 | - if (abs($sat->el) < 0.005) |
|
640 | - $lostime = $t; |
|
641 | - } |
|
642 | - } |
|
643 | - |
|
644 | - return $lostime; |
|
645 | - } |
|
646 | - |
|
647 | - /** Find AOS time of current pass. |
|
648 | - * @param Predict_Sat $sat The satellite to find AOS for. |
|
649 | - * @param Predict_QTH $qth The ground station. |
|
650 | - * @param float $start Start time, prefereably now. |
|
651 | - * @return The time of the previous AOS or 0.0 if the satellite has no AOS. |
|
652 | - * |
|
653 | - * This function can be used to find the AOS time in the past of the |
|
654 | - * current pass. |
|
655 | - */ |
|
656 | - public function find_prev_aos(Predict_Sat $sat, Predict_QTH $qth, $start) |
|
657 | - { |
|
658 | - $aostime = $start; |
|
659 | - |
|
660 | - /* make sure current sat values are |
|
428 | + $this->predict_calc($sat, $qth, $start); |
|
429 | + |
|
430 | + /* check whether satellite has aos */ |
|
431 | + if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
432 | + ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
433 | + !$this->has_aos($sat, $qth)) { |
|
434 | + |
|
435 | + return 0.0; |
|
436 | + } |
|
437 | + |
|
438 | + if ($sat->el > 0.0) { |
|
439 | + $t = $this->find_los($sat, $qth, $start, $maxdt) + 0.014; // +20 min |
|
440 | + } |
|
441 | + |
|
442 | + /* invalid time (potentially returned by find_los) */ |
|
443 | + if ($t < 0.1) { |
|
444 | + return 0.0; |
|
445 | + } |
|
446 | + |
|
447 | + /* update satellite data */ |
|
448 | + $this->predict_calc($sat, $qth, $t); |
|
449 | + |
|
450 | + /* use upper time limit */ |
|
451 | + if ($maxdt > 0.0) { |
|
452 | + |
|
453 | + /* coarse time steps */ |
|
454 | + while (($sat->el < -1.0) && ($t <= ($start + $maxdt))) { |
|
455 | + $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
456 | + $this->predict_calc($sat, $qth, $t); |
|
457 | + } |
|
458 | + |
|
459 | + /* fine steps */ |
|
460 | + while (($aostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
461 | + |
|
462 | + if (abs($sat->el) < 0.005) { |
|
463 | + $aostime = $t; |
|
464 | + } else { |
|
465 | + $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
466 | + $this->predict_calc($sat, $qth, $t); |
|
467 | + } |
|
468 | + } |
|
469 | + } else { |
|
470 | + /* don't use upper time limit */ |
|
471 | + |
|
472 | + /* coarse time steps */ |
|
473 | + while ($sat->el < -1.0) { |
|
474 | + |
|
475 | + $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
476 | + $this->predict_calc($sat, $qth, $t); |
|
477 | + } |
|
478 | + |
|
479 | + /* fine steps */ |
|
480 | + while ($aostime == 0.0) { |
|
481 | + |
|
482 | + if (abs($sat->el) < 0.005) { |
|
483 | + $aostime = $t; |
|
484 | + } else { |
|
485 | + $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
486 | + $this->predict_calc($sat, $qth, $t); |
|
487 | + } |
|
488 | + |
|
489 | + } |
|
490 | + } |
|
491 | + |
|
492 | + return $aostime; |
|
493 | + } |
|
494 | + |
|
495 | + /** SGP4SDP4 driver for doing AOS/LOS calculations. |
|
496 | + * @param Predict_Sat $sat The satellite data. |
|
497 | + * @param Predict_QTH $qth The QTH observer location data. |
|
498 | + * @param float $t The time for calculation (Julian Date) |
|
499 | + * |
|
500 | + */ |
|
501 | + public function predict_calc(Predict_Sat $sat, Predict_QTH $qth, $t) |
|
502 | + { |
|
503 | + $obs_set = new Predict_ObsSet(); |
|
504 | + $sat_geodetic = new Predict_Geodetic(); |
|
505 | + $obs_geodetic = new Predict_Geodetic(); |
|
506 | + |
|
507 | + $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
508 | + $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
509 | + $obs_geodetic->alt = $qth->alt / 1000.0; |
|
510 | + $obs_geodetic->theta = 0; |
|
511 | + |
|
512 | + $sat->jul_utc = $t; |
|
513 | + $sat->tsince = ($sat->jul_utc - $sat->jul_epoch) * self::xmnpda; |
|
514 | + |
|
515 | + /* call the norad routines according to the deep-space flag */ |
|
516 | + $sgpsdp = Predict_SGPSDP::getInstance($sat); |
|
517 | + if ($sat->flags & Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
518 | + $sgpsdp->SDP4($sat, $sat->tsince); |
|
519 | + } else { |
|
520 | + $sgpsdp->SGP4($sat, $sat->tsince); |
|
521 | + } |
|
522 | + |
|
523 | + Predict_Math::Convert_Sat_State($sat->pos, $sat->vel); |
|
524 | + |
|
525 | + /* get the velocity of the satellite */ |
|
526 | + $sat->vel->w = sqrt($sat->vel->x * $sat->vel->x + $sat->vel->y * $sat->vel->y + $sat->vel->z * $sat->vel->z); |
|
527 | + $sat->velo = $sat->vel->w; |
|
528 | + Predict_SGPObs::Calculate_Obs($sat->jul_utc, $sat->pos, $sat->vel, $obs_geodetic, $obs_set); |
|
529 | + Predict_SGPObs::Calculate_LatLonAlt($sat->jul_utc, $sat->pos, $sat_geodetic); |
|
530 | + |
|
531 | + while ($sat_geodetic->lon < -self::pi) { |
|
532 | + $sat_geodetic->lon += self::twopi; |
|
533 | + } |
|
534 | + |
|
535 | + while ($sat_geodetic->lon > (self::pi)) { |
|
536 | + $sat_geodetic->lon -= self::twopi; |
|
537 | + } |
|
538 | + |
|
539 | + $sat->az = Predict_Math::Degrees($obs_set->az); |
|
540 | + $sat->el = Predict_Math::Degrees($obs_set->el); |
|
541 | + $sat->range = $obs_set->range; |
|
542 | + $sat->range_rate = $obs_set->range_rate; |
|
543 | + $sat->ssplat = Predict_Math::Degrees($sat_geodetic->lat); |
|
544 | + $sat->ssplon = Predict_Math::Degrees($sat_geodetic->lon); |
|
545 | + $sat->alt = $sat_geodetic->alt; |
|
546 | + $sat->ma = Predict_Math::Degrees($sat->phase); |
|
547 | + $sat->ma *= 256.0 / 360.0; |
|
548 | + $sat->phase = Predict_Math::Degrees($sat->phase); |
|
549 | + |
|
550 | + /* same formulas, but the one from predict is nicer */ |
|
551 | + //sat->footprint = 2.0 * xkmper * acos (xkmper/sat->pos.w); |
|
552 | + $sat->footprint = 12756.33 * acos(self::xkmper / (self::xkmper + $sat->alt)); |
|
553 | + $age = $sat->jul_utc - $sat->jul_epoch; |
|
554 | + $sat->orbit = floor(($sat->tle->xno * self::xmnpda / self::twopi + |
|
555 | + $age * $sat->tle->bstar * self::ae) * $age + |
|
556 | + $sat->tle->xmo / self::twopi) + $sat->tle->revnum - 1; |
|
557 | + } |
|
558 | + |
|
559 | + /** Find the LOS time of the next pass. |
|
560 | + * @author Alexandru Csete, OZ9AEC |
|
561 | + * @author John A. Magliacane, KD2BD |
|
562 | + * @param Predict_Sat $sat The satellite data. |
|
563 | + * @param Predict_QTH $qth The QTH observer location data. |
|
564 | + * @param float $start The time where calculation should start. (Julian Date) |
|
565 | + * @param int $maxdt The upper time limit in days (0.0 = no limit) |
|
566 | + * @return The time (julian date) of the next LOS or 0.0 if the satellite has no LOS. |
|
567 | + * |
|
568 | + * This function finds the time of LOS for the first coming pass taking place |
|
569 | + * no earlier that start. |
|
570 | + * If the satellite is currently out of range, the function first calls |
|
571 | + * find_aos to get the next AOS time. Then the calculations are done using |
|
572 | + * the new start time. |
|
573 | + * The function has a built-in watchdog to ensure that we don't end up in |
|
574 | + * lengthy loops. |
|
575 | + * |
|
576 | + */ |
|
577 | + public function find_los(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt) |
|
578 | + { |
|
579 | + $t = $start; |
|
580 | + $lostime = 0.0; |
|
581 | + |
|
582 | + |
|
583 | + $this->predict_calc($sat, $qth, $start); |
|
584 | + |
|
585 | + /* check whether satellite has aos */ |
|
586 | + if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
587 | + ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
588 | + !$this->has_aos ($sat, $qth)) { |
|
589 | + |
|
590 | + return 0.0; |
|
591 | + } |
|
592 | + |
|
593 | + if ($sat->el < 0.0) { |
|
594 | + $t = $this->find_aos($sat, $qth, $start, $maxdt) + 0.001; // +1.5 min |
|
595 | + } |
|
596 | + |
|
597 | + /* invalid time (potentially returned by find_aos) */ |
|
598 | + if ($t < 0.01) { |
|
599 | + return 0.0; |
|
600 | + } |
|
601 | + |
|
602 | + /* update satellite data */ |
|
603 | + $this->predict_calc($sat, $qth, $t); |
|
604 | + |
|
605 | + /* use upper time limit */ |
|
606 | + if ($maxdt > 0.0) { |
|
607 | + |
|
608 | + /* coarse steps */ |
|
609 | + while (($sat->el >= 1.0) && ($t <= ($start + $maxdt))) { |
|
610 | + $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
611 | + $this->predict_calc($sat, $qth, $t); |
|
612 | + } |
|
613 | + |
|
614 | + /* fine steps */ |
|
615 | + while (($lostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
616 | + |
|
617 | + $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
618 | + $this->predict_calc($sat, $qth, $t); |
|
619 | + |
|
620 | + if (abs($sat->el) < 0.005) { |
|
621 | + $lostime = $t; |
|
622 | + } |
|
623 | + } |
|
624 | + } else { |
|
625 | + /* don't use upper limit */ |
|
626 | + |
|
627 | + /* coarse steps */ |
|
628 | + while ($sat->el >= 1.0) { |
|
629 | + $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
630 | + $this->predict_calc($sat, $qth, $t); |
|
631 | + } |
|
632 | + |
|
633 | + /* fine steps */ |
|
634 | + while ($lostime == 0.0) { |
|
635 | + |
|
636 | + $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
637 | + $this->predict_calc($sat, $qth, $t); |
|
638 | + |
|
639 | + if (abs($sat->el) < 0.005) |
|
640 | + $lostime = $t; |
|
641 | + } |
|
642 | + } |
|
643 | + |
|
644 | + return $lostime; |
|
645 | + } |
|
646 | + |
|
647 | + /** Find AOS time of current pass. |
|
648 | + * @param Predict_Sat $sat The satellite to find AOS for. |
|
649 | + * @param Predict_QTH $qth The ground station. |
|
650 | + * @param float $start Start time, prefereably now. |
|
651 | + * @return The time of the previous AOS or 0.0 if the satellite has no AOS. |
|
652 | + * |
|
653 | + * This function can be used to find the AOS time in the past of the |
|
654 | + * current pass. |
|
655 | + */ |
|
656 | + public function find_prev_aos(Predict_Sat $sat, Predict_QTH $qth, $start) |
|
657 | + { |
|
658 | + $aostime = $start; |
|
659 | + |
|
660 | + /* make sure current sat values are |
|
661 | 661 | in sync with the time |
662 | 662 | */ |
663 | - $this->predict_calc($sat, $qth, $start); |
|
664 | - |
|
665 | - /* check whether satellite has aos */ |
|
666 | - if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
667 | - ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
668 | - !$this->has_aos($sat, $qth)) { |
|
669 | - |
|
670 | - return 0.0; |
|
671 | - } |
|
672 | - |
|
673 | - while ($sat->el >= 0.0) { |
|
674 | - $aostime -= 0.0005; // 0.75 min |
|
675 | - $this->predict_calc($sat, $qth, $aostime); |
|
676 | - } |
|
677 | - |
|
678 | - return $aostime; |
|
679 | - } |
|
680 | - |
|
681 | - /** Determine whether satellite ever reaches AOS. |
|
682 | - * @author John A. Magliacane, KD2BD |
|
683 | - * @author Alexandru Csete, OZ9AEC |
|
684 | - * @param Predict_Sat $sat The satellite data. |
|
685 | - * @param Predict_QTH $qth The observer's location data |
|
686 | - * @return bool true if the satellite will reach AOS, false otherwise. |
|
687 | - * |
|
688 | - */ |
|
689 | - public function has_aos(Predict_Sat $sat, Predict_QTH $qth) |
|
690 | - { |
|
691 | - $retcode = false; |
|
692 | - |
|
693 | - /* FIXME */ |
|
694 | - if ($sat->meanmo == 0.0) { |
|
695 | - $retcode = false; |
|
696 | - } else { |
|
697 | - |
|
698 | - /* xincl is already in RAD by select_ephemeris */ |
|
699 | - $lin = $sat->tle->xincl; |
|
700 | - if ($lin >= self::pio2) { |
|
701 | - $lin = self::pi - $lin; |
|
702 | - } |
|
703 | - |
|
704 | - $sma = 331.25 * exp(log(1440.0 / $sat->meanmo) * (2.0 / 3.0)); |
|
705 | - $apogee = $sma * (1.0 + $sat->tle->eo) - self::xkmper; |
|
706 | - |
|
707 | - if ((acos(self::xkmper / ($apogee + self::xkmper)) + ($lin)) > abs($qth->lat * self::de2ra)) { |
|
708 | - $retcode = true; |
|
709 | - } else { |
|
710 | - $retcode = false; |
|
711 | - } |
|
712 | - } |
|
713 | - |
|
714 | - return $retcode; |
|
715 | - } |
|
716 | - |
|
717 | - /** Predict passes after a certain time. |
|
718 | - * |
|
719 | - * |
|
720 | - * This function calculates num upcoming passes with AOS no earlier |
|
721 | - * than t = start and not later that t = (start+maxdt). The function will |
|
722 | - * repeatedly call get_pass until |
|
723 | - * the number of predicted passes is equal to num, the time has reached |
|
724 | - * limit or the get_pass function returns NULL. |
|
725 | - * |
|
726 | - * note For no time limit use maxdt = 0.0 |
|
727 | - * |
|
728 | - * note the data in sat will be corrupt (future) and must be refreshed |
|
729 | - * by the caller, if the caller will need it later on (eg. if the caller |
|
730 | - * is GtkSatList). |
|
731 | - * |
|
732 | - * note Prepending to a singly linked list is much faster than appending. |
|
733 | - * Therefore, the elements are prepended whereafter the GSList is |
|
734 | - * reversed |
|
735 | - * |
|
736 | - * |
|
737 | - * @param Predict_Sat $sat The satellite data |
|
738 | - * @param Predict_QTH $qth The observer's location data |
|
739 | - * @param float $start The start julian date |
|
740 | - * @param int $maxdt The max # of days to look |
|
741 | - * @param int $num The max # of passes to get |
|
742 | - * @return array of Predict_Pass instances if found, empty array otherwise |
|
743 | - */ |
|
744 | - public function get_passes(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt, $num = 0) |
|
745 | - { |
|
746 | - $passes = array(); |
|
747 | - |
|
748 | - /* if no number has been specified |
|
663 | + $this->predict_calc($sat, $qth, $start); |
|
664 | + |
|
665 | + /* check whether satellite has aos */ |
|
666 | + if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
667 | + ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
668 | + !$this->has_aos($sat, $qth)) { |
|
669 | + |
|
670 | + return 0.0; |
|
671 | + } |
|
672 | + |
|
673 | + while ($sat->el >= 0.0) { |
|
674 | + $aostime -= 0.0005; // 0.75 min |
|
675 | + $this->predict_calc($sat, $qth, $aostime); |
|
676 | + } |
|
677 | + |
|
678 | + return $aostime; |
|
679 | + } |
|
680 | + |
|
681 | + /** Determine whether satellite ever reaches AOS. |
|
682 | + * @author John A. Magliacane, KD2BD |
|
683 | + * @author Alexandru Csete, OZ9AEC |
|
684 | + * @param Predict_Sat $sat The satellite data. |
|
685 | + * @param Predict_QTH $qth The observer's location data |
|
686 | + * @return bool true if the satellite will reach AOS, false otherwise. |
|
687 | + * |
|
688 | + */ |
|
689 | + public function has_aos(Predict_Sat $sat, Predict_QTH $qth) |
|
690 | + { |
|
691 | + $retcode = false; |
|
692 | + |
|
693 | + /* FIXME */ |
|
694 | + if ($sat->meanmo == 0.0) { |
|
695 | + $retcode = false; |
|
696 | + } else { |
|
697 | + |
|
698 | + /* xincl is already in RAD by select_ephemeris */ |
|
699 | + $lin = $sat->tle->xincl; |
|
700 | + if ($lin >= self::pio2) { |
|
701 | + $lin = self::pi - $lin; |
|
702 | + } |
|
703 | + |
|
704 | + $sma = 331.25 * exp(log(1440.0 / $sat->meanmo) * (2.0 / 3.0)); |
|
705 | + $apogee = $sma * (1.0 + $sat->tle->eo) - self::xkmper; |
|
706 | + |
|
707 | + if ((acos(self::xkmper / ($apogee + self::xkmper)) + ($lin)) > abs($qth->lat * self::de2ra)) { |
|
708 | + $retcode = true; |
|
709 | + } else { |
|
710 | + $retcode = false; |
|
711 | + } |
|
712 | + } |
|
713 | + |
|
714 | + return $retcode; |
|
715 | + } |
|
716 | + |
|
717 | + /** Predict passes after a certain time. |
|
718 | + * |
|
719 | + * |
|
720 | + * This function calculates num upcoming passes with AOS no earlier |
|
721 | + * than t = start and not later that t = (start+maxdt). The function will |
|
722 | + * repeatedly call get_pass until |
|
723 | + * the number of predicted passes is equal to num, the time has reached |
|
724 | + * limit or the get_pass function returns NULL. |
|
725 | + * |
|
726 | + * note For no time limit use maxdt = 0.0 |
|
727 | + * |
|
728 | + * note the data in sat will be corrupt (future) and must be refreshed |
|
729 | + * by the caller, if the caller will need it later on (eg. if the caller |
|
730 | + * is GtkSatList). |
|
731 | + * |
|
732 | + * note Prepending to a singly linked list is much faster than appending. |
|
733 | + * Therefore, the elements are prepended whereafter the GSList is |
|
734 | + * reversed |
|
735 | + * |
|
736 | + * |
|
737 | + * @param Predict_Sat $sat The satellite data |
|
738 | + * @param Predict_QTH $qth The observer's location data |
|
739 | + * @param float $start The start julian date |
|
740 | + * @param int $maxdt The max # of days to look |
|
741 | + * @param int $num The max # of passes to get |
|
742 | + * @return array of Predict_Pass instances if found, empty array otherwise |
|
743 | + */ |
|
744 | + public function get_passes(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt, $num = 0) |
|
745 | + { |
|
746 | + $passes = array(); |
|
747 | + |
|
748 | + /* if no number has been specified |
|
749 | 749 | set it to something big */ |
750 | - if ($num == 0) { |
|
751 | - $num = 100; |
|
752 | - } |
|
750 | + if ($num == 0) { |
|
751 | + $num = 100; |
|
752 | + } |
|
753 | 753 | |
754 | - $t = $start; |
|
754 | + $t = $start; |
|
755 | 755 | |
756 | - for ($i = 0; $i < $num; $i++) { |
|
757 | - $pass = $this->get_pass($sat, $qth, $t, $maxdt); |
|
756 | + for ($i = 0; $i < $num; $i++) { |
|
757 | + $pass = $this->get_pass($sat, $qth, $t, $maxdt); |
|
758 | 758 | |
759 | - if ($pass != null) { |
|
760 | - $passes[] = $pass; |
|
761 | - $t = $pass->los + 0.014; // +20 min |
|
759 | + if ($pass != null) { |
|
760 | + $passes[] = $pass; |
|
761 | + $t = $pass->los + 0.014; // +20 min |
|
762 | 762 | |
763 | - /* if maxdt > 0.0 check whether we have reached t = start+maxdt |
|
763 | + /* if maxdt > 0.0 check whether we have reached t = start+maxdt |
|
764 | 764 | if yes finish predictions |
765 | 765 | */ |
766 | - if (($maxdt > 0.0) && ($t >= ($start + $maxdt))) { |
|
767 | - $i = $num; |
|
768 | - } |
|
769 | - } else { |
|
770 | - /* we can't get any more passes */ |
|
771 | - $i = $num; |
|
772 | - } |
|
773 | - } |
|
774 | - |
|
775 | - return $passes; |
|
776 | - } |
|
777 | - |
|
778 | - /** |
|
779 | - * Filters out visible passes and adds the visible aos, tca, los, and |
|
780 | - * corresponding az and ele for each. |
|
781 | - * |
|
782 | - * @param array $passes The passes returned from get_passes() |
|
783 | - * |
|
784 | - * @author Bill Shupp |
|
785 | - * @return array |
|
786 | - */ |
|
787 | - public function filterVisiblePasses(array $passes) |
|
788 | - { |
|
789 | - $filtered = array(); |
|
790 | - |
|
791 | - foreach ($passes as $result) { |
|
792 | - // Dummy check |
|
793 | - if ($result->vis[0] != 'V') { |
|
794 | - continue; |
|
795 | - } |
|
796 | - |
|
797 | - $aos = false; |
|
798 | - $aos_az = false; |
|
799 | - $aos = false; |
|
800 | - $tca = false; |
|
801 | - $los_az = false; |
|
802 | - $max_el = 0; |
|
803 | - |
|
804 | - foreach ($result->details as $detail) { |
|
805 | - if ($detail->vis != Predict::SAT_VIS_VISIBLE) { |
|
806 | - continue; |
|
807 | - } |
|
808 | - if ($detail->el < $this->minEle) { |
|
809 | - continue; |
|
810 | - } |
|
811 | - |
|
812 | - if ($aos == false) { |
|
813 | - $aos = $detail->time; |
|
814 | - $aos_az = $detail->az; |
|
815 | - $aos_el = $detail->el; |
|
816 | - $tca = $detail->time; |
|
817 | - $los = $detail->time; |
|
818 | - $los_az = $detail->az; |
|
819 | - $los_el = $detail->el; |
|
820 | - $max_el = $detail->el; |
|
821 | - $max_el_az = $detail->el; |
|
822 | - continue; |
|
823 | - } |
|
824 | - $los = $detail->time; |
|
825 | - $los_az = $detail->az; |
|
826 | - $los_el = $detail->el; |
|
827 | - |
|
828 | - if ($detail->el > $max_el) { |
|
829 | - $tca = $detail->time; |
|
830 | - $max_el = $detail->el; |
|
831 | - $max_el_az = $detail->az; |
|
832 | - } |
|
833 | - } |
|
834 | - |
|
835 | - if ($aos === false) { |
|
836 | - // Does not reach minimum elevation, skip |
|
837 | - continue; |
|
838 | - } |
|
839 | - |
|
840 | - $result->visible_aos = $aos; |
|
841 | - $result->visible_aos_az = $aos_az; |
|
842 | - $result->visible_aos_el = $aos_el; |
|
843 | - $result->visible_tca = $tca; |
|
844 | - $result->visible_max_el = $max_el; |
|
845 | - $result->visible_max_el_az = $max_el_az; |
|
846 | - $result->visible_los = $los; |
|
847 | - $result->visible_los_az = $los_az; |
|
848 | - $result->visible_los_el = $los_el; |
|
849 | - |
|
850 | - $filtered[] = $result; |
|
851 | - } |
|
852 | - |
|
853 | - return $filtered; |
|
854 | - } |
|
855 | - |
|
856 | - /** |
|
857 | - * Translates aziumuth degrees to compass direction: |
|
858 | - * |
|
859 | - * N (0°), NNE (22.5°), NE (45°), ENE (67.5°), E (90°), ESE (112.5°), |
|
860 | - * SE (135°), SSE (157.5°), S (180°), SSW (202.5°), SW (225°), |
|
861 | - * WSW (247.5°), W (270°), WNW (292.5°), NW (315°), NNW (337.5°) |
|
862 | - * |
|
863 | - * @param int $az The azimuth in degrees, defaults to 0 |
|
864 | - * |
|
865 | - * @return string |
|
866 | - */ |
|
867 | - public function azDegreesToDirection($az = 0) |
|
868 | - { |
|
869 | - $i = floor($az / 22.5); |
|
870 | - $m = (22.5 * (2 * $i + 1)) / 2; |
|
871 | - $i = ($az >= $m) ? $i + 1 : $i; |
|
872 | - |
|
873 | - return trim(substr('N NNENE ENEE ESESE SSES SSWSW WSWW WNWNW NNWN ', $i * 3, 3)); |
|
874 | - } |
|
766 | + if (($maxdt > 0.0) && ($t >= ($start + $maxdt))) { |
|
767 | + $i = $num; |
|
768 | + } |
|
769 | + } else { |
|
770 | + /* we can't get any more passes */ |
|
771 | + $i = $num; |
|
772 | + } |
|
773 | + } |
|
774 | + |
|
775 | + return $passes; |
|
776 | + } |
|
777 | + |
|
778 | + /** |
|
779 | + * Filters out visible passes and adds the visible aos, tca, los, and |
|
780 | + * corresponding az and ele for each. |
|
781 | + * |
|
782 | + * @param array $passes The passes returned from get_passes() |
|
783 | + * |
|
784 | + * @author Bill Shupp |
|
785 | + * @return array |
|
786 | + */ |
|
787 | + public function filterVisiblePasses(array $passes) |
|
788 | + { |
|
789 | + $filtered = array(); |
|
790 | + |
|
791 | + foreach ($passes as $result) { |
|
792 | + // Dummy check |
|
793 | + if ($result->vis[0] != 'V') { |
|
794 | + continue; |
|
795 | + } |
|
796 | + |
|
797 | + $aos = false; |
|
798 | + $aos_az = false; |
|
799 | + $aos = false; |
|
800 | + $tca = false; |
|
801 | + $los_az = false; |
|
802 | + $max_el = 0; |
|
803 | + |
|
804 | + foreach ($result->details as $detail) { |
|
805 | + if ($detail->vis != Predict::SAT_VIS_VISIBLE) { |
|
806 | + continue; |
|
807 | + } |
|
808 | + if ($detail->el < $this->minEle) { |
|
809 | + continue; |
|
810 | + } |
|
811 | + |
|
812 | + if ($aos == false) { |
|
813 | + $aos = $detail->time; |
|
814 | + $aos_az = $detail->az; |
|
815 | + $aos_el = $detail->el; |
|
816 | + $tca = $detail->time; |
|
817 | + $los = $detail->time; |
|
818 | + $los_az = $detail->az; |
|
819 | + $los_el = $detail->el; |
|
820 | + $max_el = $detail->el; |
|
821 | + $max_el_az = $detail->el; |
|
822 | + continue; |
|
823 | + } |
|
824 | + $los = $detail->time; |
|
825 | + $los_az = $detail->az; |
|
826 | + $los_el = $detail->el; |
|
827 | + |
|
828 | + if ($detail->el > $max_el) { |
|
829 | + $tca = $detail->time; |
|
830 | + $max_el = $detail->el; |
|
831 | + $max_el_az = $detail->az; |
|
832 | + } |
|
833 | + } |
|
834 | + |
|
835 | + if ($aos === false) { |
|
836 | + // Does not reach minimum elevation, skip |
|
837 | + continue; |
|
838 | + } |
|
839 | + |
|
840 | + $result->visible_aos = $aos; |
|
841 | + $result->visible_aos_az = $aos_az; |
|
842 | + $result->visible_aos_el = $aos_el; |
|
843 | + $result->visible_tca = $tca; |
|
844 | + $result->visible_max_el = $max_el; |
|
845 | + $result->visible_max_el_az = $max_el_az; |
|
846 | + $result->visible_los = $los; |
|
847 | + $result->visible_los_az = $los_az; |
|
848 | + $result->visible_los_el = $los_el; |
|
849 | + |
|
850 | + $filtered[] = $result; |
|
851 | + } |
|
852 | + |
|
853 | + return $filtered; |
|
854 | + } |
|
855 | + |
|
856 | + /** |
|
857 | + * Translates aziumuth degrees to compass direction: |
|
858 | + * |
|
859 | + * N (0°), NNE (22.5°), NE (45°), ENE (67.5°), E (90°), ESE (112.5°), |
|
860 | + * SE (135°), SSE (157.5°), S (180°), SSW (202.5°), SW (225°), |
|
861 | + * WSW (247.5°), W (270°), WNW (292.5°), NW (315°), NNW (337.5°) |
|
862 | + * |
|
863 | + * @param int $az The azimuth in degrees, defaults to 0 |
|
864 | + * |
|
865 | + * @return string |
|
866 | + */ |
|
867 | + public function azDegreesToDirection($az = 0) |
|
868 | + { |
|
869 | + $i = floor($az / 22.5); |
|
870 | + $m = (22.5 * (2 * $i + 1)) / 2; |
|
871 | + $i = ($az >= $m) ? $i + 1 : $i; |
|
872 | + |
|
873 | + return trim(substr('N NNENE ENEE ESESE SSES SSWSW WSWW WNWNW NNWN ', $i * 3, 3)); |
|
874 | + } |
|
875 | 875 | } |
@@ -52,60 +52,60 @@ discard block |
||
52 | 52 | */ |
53 | 53 | class Predict |
54 | 54 | { |
55 | - const de2ra = 1.74532925E-2; /* Degrees to Radians */ |
|
56 | - const pi = 3.1415926535898; /* Pi */ |
|
57 | - const pio2 = 1.5707963267949; /* Pi/2 */ |
|
58 | - const x3pio2 = 4.71238898; /* 3*Pi/2 */ |
|
59 | - const twopi = 6.2831853071796; /* 2*Pi */ |
|
60 | - const e6a = 1.0E-6; |
|
61 | - const tothrd = 6.6666667E-1; /* 2/3 */ |
|
62 | - const xj2 = 1.0826158E-3; /* J2 Harmonic */ |
|
63 | - const xj3 = -2.53881E-6; /* J3 Harmonic */ |
|
64 | - const xj4 = -1.65597E-6; /* J4 Harmonic */ |
|
65 | - const xke = 7.43669161E-2; |
|
66 | - const xkmper = 6.378135E3; /* Earth radius km */ |
|
67 | - const xmnpda = 1.44E3; /* Minutes per day */ |
|
68 | - const km2mi = 0.621371; /* Kilometers per Mile */ |
|
69 | - const ae = 1.0; |
|
70 | - const ck2 = 5.413079E-4; |
|
71 | - const ck4 = 6.209887E-7; |
|
72 | - const __f = 3.352779E-3; |
|
73 | - const ge = 3.986008E5; |
|
74 | - const __s__ = 1.012229; |
|
75 | - const qoms2t = 1.880279E-09; |
|
76 | - const secday = 8.6400E4; /* Seconds per day */ |
|
77 | - const omega_E = 1.0027379; |
|
78 | - const omega_ER = 6.3003879; |
|
79 | - const zns = 1.19459E-5; |
|
80 | - const c1ss = 2.9864797E-6; |
|
81 | - const zes = 1.675E-2; |
|
82 | - const znl = 1.5835218E-4; |
|
83 | - const c1l = 4.7968065E-7; |
|
84 | - const zel = 5.490E-2; |
|
85 | - const zcosis = 9.1744867E-1; |
|
86 | - const zsinis = 3.9785416E-1; |
|
55 | + const de2ra = 1.74532925E-2; /* Degrees to Radians */ |
|
56 | + const pi = 3.1415926535898; /* Pi */ |
|
57 | + const pio2 = 1.5707963267949; /* Pi/2 */ |
|
58 | + const x3pio2 = 4.71238898; /* 3*Pi/2 */ |
|
59 | + const twopi = 6.2831853071796; /* 2*Pi */ |
|
60 | + const e6a = 1.0E-6; |
|
61 | + const tothrd = 6.6666667E-1; /* 2/3 */ |
|
62 | + const xj2 = 1.0826158E-3; /* J2 Harmonic */ |
|
63 | + const xj3 = -2.53881E-6; /* J3 Harmonic */ |
|
64 | + const xj4 = -1.65597E-6; /* J4 Harmonic */ |
|
65 | + const xke = 7.43669161E-2; |
|
66 | + const xkmper = 6.378135E3; /* Earth radius km */ |
|
67 | + const xmnpda = 1.44E3; /* Minutes per day */ |
|
68 | + const km2mi = 0.621371; /* Kilometers per Mile */ |
|
69 | + const ae = 1.0; |
|
70 | + const ck2 = 5.413079E-4; |
|
71 | + const ck4 = 6.209887E-7; |
|
72 | + const __f = 3.352779E-3; |
|
73 | + const ge = 3.986008E5; |
|
74 | + const __s__ = 1.012229; |
|
75 | + const qoms2t = 1.880279E-09; |
|
76 | + const secday = 8.6400E4; /* Seconds per day */ |
|
77 | + const omega_E = 1.0027379; |
|
78 | + const omega_ER = 6.3003879; |
|
79 | + const zns = 1.19459E-5; |
|
80 | + const c1ss = 2.9864797E-6; |
|
81 | + const zes = 1.675E-2; |
|
82 | + const znl = 1.5835218E-4; |
|
83 | + const c1l = 4.7968065E-7; |
|
84 | + const zel = 5.490E-2; |
|
85 | + const zcosis = 9.1744867E-1; |
|
86 | + const zsinis = 3.9785416E-1; |
|
87 | 87 | const zsings = -9.8088458E-1; |
88 | - const zcosgs = 1.945905E-1; |
|
89 | - const zcoshs = 1; |
|
90 | - const zsinhs = 0; |
|
91 | - const q22 = 1.7891679E-6; |
|
92 | - const q31 = 2.1460748E-6; |
|
93 | - const q33 = 2.2123015E-7; |
|
94 | - const g22 = 5.7686396; |
|
95 | - const g32 = 9.5240898E-1; |
|
96 | - const g44 = 1.8014998; |
|
97 | - const g52 = 1.0508330; |
|
98 | - const g54 = 4.4108898; |
|
99 | - const root22 = 1.7891679E-6; |
|
100 | - const root32 = 3.7393792E-7; |
|
101 | - const root44 = 7.3636953E-9; |
|
102 | - const root52 = 1.1428639E-7; |
|
103 | - const root54 = 2.1765803E-9; |
|
104 | - const thdt = 4.3752691E-3; |
|
105 | - const rho = 1.5696615E-1; |
|
106 | - const mfactor = 7.292115E-5; |
|
107 | - const __sr__ = 6.96000E5; /*Solar radius - kilometers (IAU 76)*/ |
|
108 | - const AU = 1.49597870E8; /*Astronomical unit - kilometers (IAU 76)*/ |
|
88 | + const zcosgs = 1.945905E-1; |
|
89 | + const zcoshs = 1; |
|
90 | + const zsinhs = 0; |
|
91 | + const q22 = 1.7891679E-6; |
|
92 | + const q31 = 2.1460748E-6; |
|
93 | + const q33 = 2.2123015E-7; |
|
94 | + const g22 = 5.7686396; |
|
95 | + const g32 = 9.5240898E-1; |
|
96 | + const g44 = 1.8014998; |
|
97 | + const g52 = 1.0508330; |
|
98 | + const g54 = 4.4108898; |
|
99 | + const root22 = 1.7891679E-6; |
|
100 | + const root32 = 3.7393792E-7; |
|
101 | + const root44 = 7.3636953E-9; |
|
102 | + const root52 = 1.1428639E-7; |
|
103 | + const root54 = 2.1765803E-9; |
|
104 | + const thdt = 4.3752691E-3; |
|
105 | + const rho = 1.5696615E-1; |
|
106 | + const mfactor = 7.292115E-5; |
|
107 | + const __sr__ = 6.96000E5; /*Solar radius - kilometers (IAU 76)*/ |
|
108 | + const AU = 1.49597870E8; /*Astronomical unit - kilometers (IAU 76)*/ |
|
109 | 109 | |
110 | 110 | /* visibility constants */ |
111 | 111 | const SAT_VIS_NONE = 0; |
@@ -163,18 +163,18 @@ discard block |
||
163 | 163 | */ |
164 | 164 | public function get_pass(Predict_Sat $sat_in, Predict_QTH $qth, $start, $maxdt) |
165 | 165 | { |
166 | - $aos = 0.0; /* time of AOS */ |
|
167 | - $tca = 0.0; /* time of TCA */ |
|
168 | - $los = 0.0; /* time of LOS */ |
|
169 | - $dt = 0.0; /* time diff */ |
|
170 | - $step = 0.0; /* time step */ |
|
166 | + $aos = 0.0; /* time of AOS */ |
|
167 | + $tca = 0.0; /* time of TCA */ |
|
168 | + $los = 0.0; /* time of LOS */ |
|
169 | + $dt = 0.0; /* time diff */ |
|
170 | + $step = 0.0; /* time step */ |
|
171 | 171 | $t0 = $start; |
172 | - $tres = 0.0; /* required time resolution */ |
|
172 | + $tres = 0.0; /* required time resolution */ |
|
173 | 173 | $max_el = 0.0; /* maximum elevation */ |
174 | 174 | $pass = null; |
175 | 175 | $detail = null; |
176 | 176 | $done = false; |
177 | - $iter = 0; /* number of iterations */ |
|
177 | + $iter = 0; /* number of iterations */ |
|
178 | 178 | /* FIXME: watchdog */ |
179 | 179 | |
180 | 180 | /*copy sat_in to a working structure*/ |
@@ -182,7 +182,7 @@ discard block |
||
182 | 182 | $sat_working = clone $sat_in; |
183 | 183 | |
184 | 184 | /* get time resolution; sat-cfg stores it in seconds */ |
185 | - $tres = $this->timeRes / 86400.0; |
|
185 | + $tres = $this->timeRes/86400.0; |
|
186 | 186 | |
187 | 187 | /* loop until we find a pass with elevation > SAT_CFG_INT_PRED_MIN_EL |
188 | 188 | or we run out of time |
@@ -207,7 +207,7 @@ discard block |
||
207 | 207 | /* aos = 0.0 means no aos */ |
208 | 208 | if ($aos == 0.0) { |
209 | 209 | $done = true; |
210 | - } else if (($maxdt > 0.0) && ($aos > ($start + $maxdt)) ) { |
|
210 | + } else if (($maxdt > 0.0) && ($aos > ($start + $maxdt))) { |
|
211 | 211 | /* check whether we are within time limits; |
212 | 212 | maxdt = 0 mean no time limit. |
213 | 213 | */ |
@@ -217,7 +217,7 @@ discard block |
||
217 | 217 | $dt = $los - $aos; |
218 | 218 | |
219 | 219 | /* get time step, which will give us the max number of entries */ |
220 | - $step = $dt / $this->numEntries; |
|
220 | + $step = $dt/$this->numEntries; |
|
221 | 221 | |
222 | 222 | /* but if this is smaller than the required resolution |
223 | 223 | we go with the resolution |
@@ -369,9 +369,9 @@ discard block |
||
369 | 369 | $solar_set = new Predict_ObsSet(); |
370 | 370 | |
371 | 371 | /* FIXME: could be passed as parameter */ |
372 | - $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
373 | - $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
374 | - $obs_geodetic->alt = $qth->alt / 1000.0; |
|
372 | + $obs_geodetic->lon = $qth->lon*self::de2ra; |
|
373 | + $obs_geodetic->lat = $qth->lat*self::de2ra; |
|
374 | + $obs_geodetic->alt = $qth->alt/1000.0; |
|
375 | 375 | $obs_geodetic->theta = 0; |
376 | 376 | |
377 | 377 | Predict_Solar::Calculate_Solar_Position($jul_utc, $solar_vector); |
@@ -452,7 +452,7 @@ discard block |
||
452 | 452 | |
453 | 453 | /* coarse time steps */ |
454 | 454 | while (($sat->el < -1.0) && ($t <= ($start + $maxdt))) { |
455 | - $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
455 | + $t -= 0.00035*($sat->el*(($sat->alt/8400.0) + 0.46) - 2.0); |
|
456 | 456 | $this->predict_calc($sat, $qth, $t); |
457 | 457 | } |
458 | 458 | |
@@ -462,7 +462,7 @@ discard block |
||
462 | 462 | if (abs($sat->el) < 0.005) { |
463 | 463 | $aostime = $t; |
464 | 464 | } else { |
465 | - $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
465 | + $t -= $sat->el*sqrt($sat->alt)/530000.0; |
|
466 | 466 | $this->predict_calc($sat, $qth, $t); |
467 | 467 | } |
468 | 468 | } |
@@ -472,7 +472,7 @@ discard block |
||
472 | 472 | /* coarse time steps */ |
473 | 473 | while ($sat->el < -1.0) { |
474 | 474 | |
475 | - $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
475 | + $t -= 0.00035*($sat->el*(($sat->alt/8400.0) + 0.46) - 2.0); |
|
476 | 476 | $this->predict_calc($sat, $qth, $t); |
477 | 477 | } |
478 | 478 | |
@@ -482,7 +482,7 @@ discard block |
||
482 | 482 | if (abs($sat->el) < 0.005) { |
483 | 483 | $aostime = $t; |
484 | 484 | } else { |
485 | - $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
485 | + $t -= $sat->el*sqrt($sat->alt)/530000.0; |
|
486 | 486 | $this->predict_calc($sat, $qth, $t); |
487 | 487 | } |
488 | 488 | |
@@ -504,17 +504,17 @@ discard block |
||
504 | 504 | $sat_geodetic = new Predict_Geodetic(); |
505 | 505 | $obs_geodetic = new Predict_Geodetic(); |
506 | 506 | |
507 | - $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
508 | - $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
509 | - $obs_geodetic->alt = $qth->alt / 1000.0; |
|
507 | + $obs_geodetic->lon = $qth->lon*self::de2ra; |
|
508 | + $obs_geodetic->lat = $qth->lat*self::de2ra; |
|
509 | + $obs_geodetic->alt = $qth->alt/1000.0; |
|
510 | 510 | $obs_geodetic->theta = 0; |
511 | 511 | |
512 | 512 | $sat->jul_utc = $t; |
513 | - $sat->tsince = ($sat->jul_utc - $sat->jul_epoch) * self::xmnpda; |
|
513 | + $sat->tsince = ($sat->jul_utc - $sat->jul_epoch)*self::xmnpda; |
|
514 | 514 | |
515 | 515 | /* call the norad routines according to the deep-space flag */ |
516 | 516 | $sgpsdp = Predict_SGPSDP::getInstance($sat); |
517 | - if ($sat->flags & Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
517 | + if ($sat->flags&Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
518 | 518 | $sgpsdp->SDP4($sat, $sat->tsince); |
519 | 519 | } else { |
520 | 520 | $sgpsdp->SGP4($sat, $sat->tsince); |
@@ -523,7 +523,7 @@ discard block |
||
523 | 523 | Predict_Math::Convert_Sat_State($sat->pos, $sat->vel); |
524 | 524 | |
525 | 525 | /* get the velocity of the satellite */ |
526 | - $sat->vel->w = sqrt($sat->vel->x * $sat->vel->x + $sat->vel->y * $sat->vel->y + $sat->vel->z * $sat->vel->z); |
|
526 | + $sat->vel->w = sqrt($sat->vel->x*$sat->vel->x + $sat->vel->y*$sat->vel->y + $sat->vel->z*$sat->vel->z); |
|
527 | 527 | $sat->velo = $sat->vel->w; |
528 | 528 | Predict_SGPObs::Calculate_Obs($sat->jul_utc, $sat->pos, $sat->vel, $obs_geodetic, $obs_set); |
529 | 529 | Predict_SGPObs::Calculate_LatLonAlt($sat->jul_utc, $sat->pos, $sat_geodetic); |
@@ -544,16 +544,16 @@ discard block |
||
544 | 544 | $sat->ssplon = Predict_Math::Degrees($sat_geodetic->lon); |
545 | 545 | $sat->alt = $sat_geodetic->alt; |
546 | 546 | $sat->ma = Predict_Math::Degrees($sat->phase); |
547 | - $sat->ma *= 256.0 / 360.0; |
|
547 | + $sat->ma *= 256.0/360.0; |
|
548 | 548 | $sat->phase = Predict_Math::Degrees($sat->phase); |
549 | 549 | |
550 | 550 | /* same formulas, but the one from predict is nicer */ |
551 | 551 | //sat->footprint = 2.0 * xkmper * acos (xkmper/sat->pos.w); |
552 | - $sat->footprint = 12756.33 * acos(self::xkmper / (self::xkmper + $sat->alt)); |
|
552 | + $sat->footprint = 12756.33*acos(self::xkmper/(self::xkmper + $sat->alt)); |
|
553 | 553 | $age = $sat->jul_utc - $sat->jul_epoch; |
554 | - $sat->orbit = floor(($sat->tle->xno * self::xmnpda / self::twopi + |
|
555 | - $age * $sat->tle->bstar * self::ae) * $age + |
|
556 | - $sat->tle->xmo / self::twopi) + $sat->tle->revnum - 1; |
|
554 | + $sat->orbit = floor(($sat->tle->xno*self::xmnpda/self::twopi + |
|
555 | + $age*$sat->tle->bstar*self::ae)*$age + |
|
556 | + $sat->tle->xmo/self::twopi) + $sat->tle->revnum - 1; |
|
557 | 557 | } |
558 | 558 | |
559 | 559 | /** Find the LOS time of the next pass. |
@@ -585,7 +585,7 @@ discard block |
||
585 | 585 | /* check whether satellite has aos */ |
586 | 586 | if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
587 | 587 | ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
588 | - !$this->has_aos ($sat, $qth)) { |
|
588 | + !$this->has_aos($sat, $qth)) { |
|
589 | 589 | |
590 | 590 | return 0.0; |
591 | 591 | } |
@@ -607,14 +607,14 @@ discard block |
||
607 | 607 | |
608 | 608 | /* coarse steps */ |
609 | 609 | while (($sat->el >= 1.0) && ($t <= ($start + $maxdt))) { |
610 | - $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
610 | + $t += cos(($sat->el - 1.0)*self::de2ra)*sqrt($sat->alt)/25000.0; |
|
611 | 611 | $this->predict_calc($sat, $qth, $t); |
612 | 612 | } |
613 | 613 | |
614 | 614 | /* fine steps */ |
615 | - while (($lostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
615 | + while (($lostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
616 | 616 | |
617 | - $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
617 | + $t += $sat->el*sqrt($sat->alt)/502500.0; |
|
618 | 618 | $this->predict_calc($sat, $qth, $t); |
619 | 619 | |
620 | 620 | if (abs($sat->el) < 0.005) { |
@@ -626,14 +626,14 @@ discard block |
||
626 | 626 | |
627 | 627 | /* coarse steps */ |
628 | 628 | while ($sat->el >= 1.0) { |
629 | - $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
629 | + $t += cos(($sat->el - 1.0)*self::de2ra)*sqrt($sat->alt)/25000.0; |
|
630 | 630 | $this->predict_calc($sat, $qth, $t); |
631 | 631 | } |
632 | 632 | |
633 | 633 | /* fine steps */ |
634 | 634 | while ($lostime == 0.0) { |
635 | 635 | |
636 | - $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
636 | + $t += $sat->el*sqrt($sat->alt)/502500.0; |
|
637 | 637 | $this->predict_calc($sat, $qth, $t); |
638 | 638 | |
639 | 639 | if (abs($sat->el) < 0.005) |
@@ -701,10 +701,10 @@ discard block |
||
701 | 701 | $lin = self::pi - $lin; |
702 | 702 | } |
703 | 703 | |
704 | - $sma = 331.25 * exp(log(1440.0 / $sat->meanmo) * (2.0 / 3.0)); |
|
705 | - $apogee = $sma * (1.0 + $sat->tle->eo) - self::xkmper; |
|
704 | + $sma = 331.25*exp(log(1440.0/$sat->meanmo)*(2.0/3.0)); |
|
705 | + $apogee = $sma*(1.0 + $sat->tle->eo) - self::xkmper; |
|
706 | 706 | |
707 | - if ((acos(self::xkmper / ($apogee + self::xkmper)) + ($lin)) > abs($qth->lat * self::de2ra)) { |
|
707 | + if ((acos(self::xkmper/($apogee + self::xkmper)) + ($lin)) > abs($qth->lat*self::de2ra)) { |
|
708 | 708 | $retcode = true; |
709 | 709 | } else { |
710 | 710 | $retcode = false; |
@@ -866,10 +866,10 @@ discard block |
||
866 | 866 | */ |
867 | 867 | public function azDegreesToDirection($az = 0) |
868 | 868 | { |
869 | - $i = floor($az / 22.5); |
|
870 | - $m = (22.5 * (2 * $i + 1)) / 2; |
|
869 | + $i = floor($az/22.5); |
|
870 | + $m = (22.5*(2*$i + 1))/2; |
|
871 | 871 | $i = ($az >= $m) ? $i + 1 : $i; |
872 | 872 | |
873 | - return trim(substr('N NNENE ENEE ESESE SSES SSWSW WSWW WNWNW NNWN ', $i * 3, 3)); |
|
873 | + return trim(substr('N NNENE ENEE ESESE SSES SSWSW WSWW WNWNW NNWN ', $i*3, 3)); |
|
874 | 874 | } |
875 | 875 | } |
@@ -636,8 +636,9 @@ |
||
636 | 636 | $t += $sat->el * sqrt($sat->alt) / 502500.0; |
637 | 637 | $this->predict_calc($sat, $qth, $t); |
638 | 638 | |
639 | - if (abs($sat->el) < 0.005) |
|
640 | - $lostime = $t; |
|
639 | + if (abs($sat->el) < 0.005) { |
|
640 | + $lostime = $t; |
|
641 | + } |
|
641 | 642 | } |
642 | 643 | } |
643 | 644 |
@@ -42,6 +42,10 @@ discard block |
||
42 | 42 | } |
43 | 43 | |
44 | 44 | /* Returns arccosine of rgument */ |
45 | + |
|
46 | + /** |
|
47 | + * @param double $arg |
|
48 | + */ |
|
45 | 49 | public static function ArcCos($arg) |
46 | 50 | { |
47 | 51 | return Predict::pio2 - self::ArcSin($arg); |
@@ -68,6 +72,10 @@ discard block |
||
68 | 72 | } |
69 | 73 | |
70 | 74 | /* Multiplies the vector v1 by the scalar k to produce the vector v2 */ |
75 | + |
|
76 | + /** |
|
77 | + * @param integer $k |
|
78 | + */ |
|
71 | 79 | public static function Scalar_Multiply($k, Predict_Vector $v1, Predict_Vector $v2) |
72 | 80 | { |
73 | 81 | $v2->x = $k * $v1->x; |
@@ -155,6 +163,10 @@ discard block |
||
155 | 163 | } |
156 | 164 | |
157 | 165 | /* Returns arg1 mod arg2 */ |
166 | + |
|
167 | + /** |
|
168 | + * @param double $arg1 |
|
169 | + */ |
|
158 | 170 | public static function Modulus($arg1, $arg2) |
159 | 171 | { |
160 | 172 | $ret_val = $arg1; |
@@ -169,6 +181,10 @@ discard block |
||
169 | 181 | } |
170 | 182 | |
171 | 183 | /* Returns fractional part of double argument */ |
184 | + |
|
185 | + /** |
|
186 | + * @param double $arg |
|
187 | + */ |
|
172 | 188 | public static function Frac($arg) |
173 | 189 | { |
174 | 190 | return $arg - floor($arg); |
@@ -19,178 +19,178 @@ |
||
19 | 19 | */ |
20 | 20 | class Predict_Math |
21 | 21 | { |
22 | - /* Returns sign of a float */ |
|
23 | - public static function Sign($arg) |
|
24 | - { |
|
25 | - if ($arg > 0 ) { |
|
26 | - return 1; |
|
27 | - } else if ($arg < 0 ) { |
|
28 | - return -1; |
|
29 | - } else { |
|
30 | - return 0; |
|
31 | - } |
|
32 | - } |
|
33 | - |
|
34 | - /* Returns the arcsine of the argument */ |
|
35 | - public static function ArcSin($arg) |
|
36 | - { |
|
37 | - if (abs($arg) >= 1 ) { |
|
38 | - return (self::Sign($arg) * Predict::pio2); |
|
39 | - } else { |
|
40 | - return(atan($arg / sqrt(1 - $arg * $arg))); |
|
41 | - } |
|
42 | - } |
|
43 | - |
|
44 | - /* Returns arccosine of rgument */ |
|
45 | - public static function ArcCos($arg) |
|
46 | - { |
|
47 | - return Predict::pio2 - self::ArcSin($arg); |
|
48 | - } |
|
49 | - |
|
50 | - /* Adds vectors v1 and v2 together to produce v3 */ |
|
51 | - public static function Vec_Add(Predict_Vector $v1, Predict_Vector $v2, Predict_Vector $v3) |
|
52 | - { |
|
53 | - $v3->x = $v1->x + $v2->x; |
|
54 | - $v3->y = $v1->y + $v2->y; |
|
55 | - $v3->z = $v1->z + $v2->z; |
|
56 | - |
|
57 | - $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
58 | - } |
|
59 | - |
|
60 | - /* Subtracts vector v2 from v1 to produce v3 */ |
|
61 | - public static function Vec_Sub(Predict_Vector $v1, Predict_Vector $v2, Predict_Vector $v3) |
|
62 | - { |
|
63 | - $v3->x = $v1->x - $v2->x; |
|
64 | - $v3->y = $v1->y - $v2->y; |
|
65 | - $v3->z = $v1->z - $v2->z; |
|
66 | - |
|
67 | - $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
68 | - } |
|
69 | - |
|
70 | - /* Multiplies the vector v1 by the scalar k to produce the vector v2 */ |
|
71 | - public static function Scalar_Multiply($k, Predict_Vector $v1, Predict_Vector $v2) |
|
72 | - { |
|
73 | - $v2->x = $k * $v1->x; |
|
74 | - $v2->y = $k * $v1->y; |
|
75 | - $v2->z = $k * $v1->z; |
|
76 | - $v2->w = abs($k) * $v1->w; |
|
77 | - } |
|
78 | - |
|
79 | - /* Multiplies the vector v1 by the scalar k */ |
|
80 | - public static function Scale_Vector($k, Predict_Vector $v) |
|
81 | - { |
|
82 | - $v->x *= $k; |
|
83 | - $v->y *= $k; |
|
84 | - $v->z *= $k; |
|
85 | - |
|
86 | - $v->w = sqrt($v->x * $v->x + $v->y * $v->y + $v->z * $v->z); |
|
87 | - } |
|
88 | - |
|
89 | - /* Returns the dot product of two vectors */ |
|
90 | - public static function Dot(Predict_Vector $v1, Predict_Vector $v2) |
|
91 | - { |
|
92 | - return ($v1->x * $v2->x + $v1->y * $v2->y + $v1->z * $v2->z); |
|
93 | - } |
|
94 | - |
|
95 | - /* Calculates the angle between vectors v1 and v2 */ |
|
96 | - public static function Angle(Predict_Vector $v1, Predict_Vector $v2) |
|
97 | - { |
|
98 | - $v1->w = sqrt($v1->x * $v1->x + $v1->y * $v1->y + $v1->z * $v1->z); |
|
99 | - $v2->w = sqrt($v2->x * $v2->x + $v2->y * $v2->y + $v2->z * $v2->z); |
|
100 | - return (self::ArcCos(self::Dot($v1, $v2) / ($v1->w * $v2->w))); |
|
101 | - } |
|
102 | - |
|
103 | - /* Produces cross product of v1 and v2, and returns in v3 */ |
|
104 | - public static function Cross(Predict_Vector $v1, Predict_Vector $v2 ,Predict_Vector $v3) |
|
105 | - { |
|
106 | - $v3->x = $v1->y * $v2->z - $v1->z * $v2->y; |
|
107 | - $v3->y = $v1->z * $v2->x - $v1->x * $v2->z; |
|
108 | - $v3->z = $v1->x * $v2->y - $v1->y * $v2->x; |
|
109 | - |
|
110 | - $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
111 | - } |
|
112 | - |
|
113 | - /* Normalizes a vector */ |
|
114 | - public static function Normalize(Predict_Vector $v ) |
|
115 | - { |
|
116 | - $v->x /= $v->w; |
|
117 | - $v->y /= $v->w; |
|
118 | - $v->z /= $v->w; |
|
119 | - } |
|
120 | - |
|
121 | - /* Four-quadrant arctan function */ |
|
122 | - public static function AcTan($sinx, $cosx) |
|
123 | - { |
|
124 | - if ($cosx == 0) { |
|
125 | - if ($sinx > 0) { |
|
126 | - return Predict::pio2; |
|
127 | - } else { |
|
128 | - return Predict::x3pio2; |
|
129 | - } |
|
130 | - } else { |
|
131 | - if ($cosx > 0) { |
|
132 | - if ($sinx > 0) { |
|
133 | - return atan($sinx / $cosx); |
|
134 | - } else { |
|
135 | - return Predict::twopi + atan($sinx / $cosx); |
|
136 | - } |
|
137 | - } else { |
|
138 | - return Predict::pi + atan($sinx / $cosx); |
|
139 | - } |
|
140 | - } |
|
141 | - } |
|
142 | - |
|
143 | - /* Returns mod 2pi of argument */ |
|
144 | - public static function FMod2p($x) |
|
145 | - { |
|
146 | - $ret_val = $x; |
|
147 | - $i = (int) ($ret_val / Predict::twopi); |
|
148 | - $ret_val -= $i * Predict::twopi; |
|
149 | - |
|
150 | - if ($ret_val < 0) { |
|
151 | - $ret_val += Predict::twopi; |
|
152 | - } |
|
153 | - |
|
154 | - return $ret_val; |
|
155 | - } |
|
156 | - |
|
157 | - /* Returns arg1 mod arg2 */ |
|
158 | - public static function Modulus($arg1, $arg2) |
|
159 | - { |
|
160 | - $ret_val = $arg1; |
|
161 | - $i = (int) ($ret_val / $arg2); |
|
162 | - $ret_val -= $i * $arg2; |
|
163 | - |
|
164 | - if ($ret_val < 0) { |
|
165 | - $ret_val += $arg2; |
|
166 | - } |
|
167 | - |
|
168 | - return $ret_val; |
|
169 | - } |
|
170 | - |
|
171 | - /* Returns fractional part of double argument */ |
|
172 | - public static function Frac($arg) |
|
173 | - { |
|
174 | - return $arg - floor($arg); |
|
175 | - } |
|
176 | - |
|
177 | - /* Converts the satellite's position and velocity */ |
|
178 | - /* vectors from normalised values to km and km/sec */ |
|
179 | - public static function Convert_Sat_State(Predict_Vector $pos, Predict_Vector $vel) |
|
180 | - { |
|
181 | - self::Scale_Vector(Predict::xkmper, $pos); |
|
182 | - self::Scale_Vector(Predict::xkmper * Predict::xmnpda / Predict::secday, $vel); |
|
183 | - } |
|
184 | - |
|
185 | - /* Returns angle in radians from arg in degrees */ |
|
186 | - public static function Radians($arg) |
|
187 | - { |
|
188 | - return $arg * Predict::de2ra; |
|
189 | - } |
|
190 | - |
|
191 | - /* Returns angle in degrees from arg in rads */ |
|
192 | - public static function Degrees($arg) |
|
193 | - { |
|
194 | - return $arg / Predict::de2ra; |
|
195 | - } |
|
22 | + /* Returns sign of a float */ |
|
23 | + public static function Sign($arg) |
|
24 | + { |
|
25 | + if ($arg > 0 ) { |
|
26 | + return 1; |
|
27 | + } else if ($arg < 0 ) { |
|
28 | + return -1; |
|
29 | + } else { |
|
30 | + return 0; |
|
31 | + } |
|
32 | + } |
|
33 | + |
|
34 | + /* Returns the arcsine of the argument */ |
|
35 | + public static function ArcSin($arg) |
|
36 | + { |
|
37 | + if (abs($arg) >= 1 ) { |
|
38 | + return (self::Sign($arg) * Predict::pio2); |
|
39 | + } else { |
|
40 | + return(atan($arg / sqrt(1 - $arg * $arg))); |
|
41 | + } |
|
42 | + } |
|
43 | + |
|
44 | + /* Returns arccosine of rgument */ |
|
45 | + public static function ArcCos($arg) |
|
46 | + { |
|
47 | + return Predict::pio2 - self::ArcSin($arg); |
|
48 | + } |
|
49 | + |
|
50 | + /* Adds vectors v1 and v2 together to produce v3 */ |
|
51 | + public static function Vec_Add(Predict_Vector $v1, Predict_Vector $v2, Predict_Vector $v3) |
|
52 | + { |
|
53 | + $v3->x = $v1->x + $v2->x; |
|
54 | + $v3->y = $v1->y + $v2->y; |
|
55 | + $v3->z = $v1->z + $v2->z; |
|
56 | + |
|
57 | + $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
58 | + } |
|
59 | + |
|
60 | + /* Subtracts vector v2 from v1 to produce v3 */ |
|
61 | + public static function Vec_Sub(Predict_Vector $v1, Predict_Vector $v2, Predict_Vector $v3) |
|
62 | + { |
|
63 | + $v3->x = $v1->x - $v2->x; |
|
64 | + $v3->y = $v1->y - $v2->y; |
|
65 | + $v3->z = $v1->z - $v2->z; |
|
66 | + |
|
67 | + $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
68 | + } |
|
69 | + |
|
70 | + /* Multiplies the vector v1 by the scalar k to produce the vector v2 */ |
|
71 | + public static function Scalar_Multiply($k, Predict_Vector $v1, Predict_Vector $v2) |
|
72 | + { |
|
73 | + $v2->x = $k * $v1->x; |
|
74 | + $v2->y = $k * $v1->y; |
|
75 | + $v2->z = $k * $v1->z; |
|
76 | + $v2->w = abs($k) * $v1->w; |
|
77 | + } |
|
78 | + |
|
79 | + /* Multiplies the vector v1 by the scalar k */ |
|
80 | + public static function Scale_Vector($k, Predict_Vector $v) |
|
81 | + { |
|
82 | + $v->x *= $k; |
|
83 | + $v->y *= $k; |
|
84 | + $v->z *= $k; |
|
85 | + |
|
86 | + $v->w = sqrt($v->x * $v->x + $v->y * $v->y + $v->z * $v->z); |
|
87 | + } |
|
88 | + |
|
89 | + /* Returns the dot product of two vectors */ |
|
90 | + public static function Dot(Predict_Vector $v1, Predict_Vector $v2) |
|
91 | + { |
|
92 | + return ($v1->x * $v2->x + $v1->y * $v2->y + $v1->z * $v2->z); |
|
93 | + } |
|
94 | + |
|
95 | + /* Calculates the angle between vectors v1 and v2 */ |
|
96 | + public static function Angle(Predict_Vector $v1, Predict_Vector $v2) |
|
97 | + { |
|
98 | + $v1->w = sqrt($v1->x * $v1->x + $v1->y * $v1->y + $v1->z * $v1->z); |
|
99 | + $v2->w = sqrt($v2->x * $v2->x + $v2->y * $v2->y + $v2->z * $v2->z); |
|
100 | + return (self::ArcCos(self::Dot($v1, $v2) / ($v1->w * $v2->w))); |
|
101 | + } |
|
102 | + |
|
103 | + /* Produces cross product of v1 and v2, and returns in v3 */ |
|
104 | + public static function Cross(Predict_Vector $v1, Predict_Vector $v2 ,Predict_Vector $v3) |
|
105 | + { |
|
106 | + $v3->x = $v1->y * $v2->z - $v1->z * $v2->y; |
|
107 | + $v3->y = $v1->z * $v2->x - $v1->x * $v2->z; |
|
108 | + $v3->z = $v1->x * $v2->y - $v1->y * $v2->x; |
|
109 | + |
|
110 | + $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
111 | + } |
|
112 | + |
|
113 | + /* Normalizes a vector */ |
|
114 | + public static function Normalize(Predict_Vector $v ) |
|
115 | + { |
|
116 | + $v->x /= $v->w; |
|
117 | + $v->y /= $v->w; |
|
118 | + $v->z /= $v->w; |
|
119 | + } |
|
120 | + |
|
121 | + /* Four-quadrant arctan function */ |
|
122 | + public static function AcTan($sinx, $cosx) |
|
123 | + { |
|
124 | + if ($cosx == 0) { |
|
125 | + if ($sinx > 0) { |
|
126 | + return Predict::pio2; |
|
127 | + } else { |
|
128 | + return Predict::x3pio2; |
|
129 | + } |
|
130 | + } else { |
|
131 | + if ($cosx > 0) { |
|
132 | + if ($sinx > 0) { |
|
133 | + return atan($sinx / $cosx); |
|
134 | + } else { |
|
135 | + return Predict::twopi + atan($sinx / $cosx); |
|
136 | + } |
|
137 | + } else { |
|
138 | + return Predict::pi + atan($sinx / $cosx); |
|
139 | + } |
|
140 | + } |
|
141 | + } |
|
142 | + |
|
143 | + /* Returns mod 2pi of argument */ |
|
144 | + public static function FMod2p($x) |
|
145 | + { |
|
146 | + $ret_val = $x; |
|
147 | + $i = (int) ($ret_val / Predict::twopi); |
|
148 | + $ret_val -= $i * Predict::twopi; |
|
149 | + |
|
150 | + if ($ret_val < 0) { |
|
151 | + $ret_val += Predict::twopi; |
|
152 | + } |
|
153 | + |
|
154 | + return $ret_val; |
|
155 | + } |
|
156 | + |
|
157 | + /* Returns arg1 mod arg2 */ |
|
158 | + public static function Modulus($arg1, $arg2) |
|
159 | + { |
|
160 | + $ret_val = $arg1; |
|
161 | + $i = (int) ($ret_val / $arg2); |
|
162 | + $ret_val -= $i * $arg2; |
|
163 | + |
|
164 | + if ($ret_val < 0) { |
|
165 | + $ret_val += $arg2; |
|
166 | + } |
|
167 | + |
|
168 | + return $ret_val; |
|
169 | + } |
|
170 | + |
|
171 | + /* Returns fractional part of double argument */ |
|
172 | + public static function Frac($arg) |
|
173 | + { |
|
174 | + return $arg - floor($arg); |
|
175 | + } |
|
176 | + |
|
177 | + /* Converts the satellite's position and velocity */ |
|
178 | + /* vectors from normalised values to km and km/sec */ |
|
179 | + public static function Convert_Sat_State(Predict_Vector $pos, Predict_Vector $vel) |
|
180 | + { |
|
181 | + self::Scale_Vector(Predict::xkmper, $pos); |
|
182 | + self::Scale_Vector(Predict::xkmper * Predict::xmnpda / Predict::secday, $vel); |
|
183 | + } |
|
184 | + |
|
185 | + /* Returns angle in radians from arg in degrees */ |
|
186 | + public static function Radians($arg) |
|
187 | + { |
|
188 | + return $arg * Predict::de2ra; |
|
189 | + } |
|
190 | + |
|
191 | + /* Returns angle in degrees from arg in rads */ |
|
192 | + public static function Degrees($arg) |
|
193 | + { |
|
194 | + return $arg / Predict::de2ra; |
|
195 | + } |
|
196 | 196 | } |
@@ -22,9 +22,9 @@ discard block |
||
22 | 22 | /* Returns sign of a float */ |
23 | 23 | public static function Sign($arg) |
24 | 24 | { |
25 | - if ($arg > 0 ) { |
|
25 | + if ($arg > 0) { |
|
26 | 26 | return 1; |
27 | - } else if ($arg < 0 ) { |
|
27 | + } else if ($arg < 0) { |
|
28 | 28 | return -1; |
29 | 29 | } else { |
30 | 30 | return 0; |
@@ -34,10 +34,10 @@ discard block |
||
34 | 34 | /* Returns the arcsine of the argument */ |
35 | 35 | public static function ArcSin($arg) |
36 | 36 | { |
37 | - if (abs($arg) >= 1 ) { |
|
38 | - return (self::Sign($arg) * Predict::pio2); |
|
37 | + if (abs($arg) >= 1) { |
|
38 | + return (self::Sign($arg)*Predict::pio2); |
|
39 | 39 | } else { |
40 | - return(atan($arg / sqrt(1 - $arg * $arg))); |
|
40 | + return(atan($arg/sqrt(1 - $arg*$arg))); |
|
41 | 41 | } |
42 | 42 | } |
43 | 43 | |
@@ -54,7 +54,7 @@ discard block |
||
54 | 54 | $v3->y = $v1->y + $v2->y; |
55 | 55 | $v3->z = $v1->z + $v2->z; |
56 | 56 | |
57 | - $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
57 | + $v3->w = sqrt($v3->x*$v3->x + $v3->y*$v3->y + $v3->z*$v3->z); |
|
58 | 58 | } |
59 | 59 | |
60 | 60 | /* Subtracts vector v2 from v1 to produce v3 */ |
@@ -64,16 +64,16 @@ discard block |
||
64 | 64 | $v3->y = $v1->y - $v2->y; |
65 | 65 | $v3->z = $v1->z - $v2->z; |
66 | 66 | |
67 | - $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
67 | + $v3->w = sqrt($v3->x*$v3->x + $v3->y*$v3->y + $v3->z*$v3->z); |
|
68 | 68 | } |
69 | 69 | |
70 | 70 | /* Multiplies the vector v1 by the scalar k to produce the vector v2 */ |
71 | 71 | public static function Scalar_Multiply($k, Predict_Vector $v1, Predict_Vector $v2) |
72 | 72 | { |
73 | - $v2->x = $k * $v1->x; |
|
74 | - $v2->y = $k * $v1->y; |
|
75 | - $v2->z = $k * $v1->z; |
|
76 | - $v2->w = abs($k) * $v1->w; |
|
73 | + $v2->x = $k*$v1->x; |
|
74 | + $v2->y = $k*$v1->y; |
|
75 | + $v2->z = $k*$v1->z; |
|
76 | + $v2->w = abs($k)*$v1->w; |
|
77 | 77 | } |
78 | 78 | |
79 | 79 | /* Multiplies the vector v1 by the scalar k */ |
@@ -83,35 +83,35 @@ discard block |
||
83 | 83 | $v->y *= $k; |
84 | 84 | $v->z *= $k; |
85 | 85 | |
86 | - $v->w = sqrt($v->x * $v->x + $v->y * $v->y + $v->z * $v->z); |
|
86 | + $v->w = sqrt($v->x*$v->x + $v->y*$v->y + $v->z*$v->z); |
|
87 | 87 | } |
88 | 88 | |
89 | 89 | /* Returns the dot product of two vectors */ |
90 | 90 | public static function Dot(Predict_Vector $v1, Predict_Vector $v2) |
91 | 91 | { |
92 | - return ($v1->x * $v2->x + $v1->y * $v2->y + $v1->z * $v2->z); |
|
92 | + return ($v1->x*$v2->x + $v1->y*$v2->y + $v1->z*$v2->z); |
|
93 | 93 | } |
94 | 94 | |
95 | 95 | /* Calculates the angle between vectors v1 and v2 */ |
96 | 96 | public static function Angle(Predict_Vector $v1, Predict_Vector $v2) |
97 | 97 | { |
98 | - $v1->w = sqrt($v1->x * $v1->x + $v1->y * $v1->y + $v1->z * $v1->z); |
|
99 | - $v2->w = sqrt($v2->x * $v2->x + $v2->y * $v2->y + $v2->z * $v2->z); |
|
100 | - return (self::ArcCos(self::Dot($v1, $v2) / ($v1->w * $v2->w))); |
|
98 | + $v1->w = sqrt($v1->x*$v1->x + $v1->y*$v1->y + $v1->z*$v1->z); |
|
99 | + $v2->w = sqrt($v2->x*$v2->x + $v2->y*$v2->y + $v2->z*$v2->z); |
|
100 | + return (self::ArcCos(self::Dot($v1, $v2)/($v1->w*$v2->w))); |
|
101 | 101 | } |
102 | 102 | |
103 | 103 | /* Produces cross product of v1 and v2, and returns in v3 */ |
104 | - public static function Cross(Predict_Vector $v1, Predict_Vector $v2 ,Predict_Vector $v3) |
|
104 | + public static function Cross(Predict_Vector $v1, Predict_Vector $v2, Predict_Vector $v3) |
|
105 | 105 | { |
106 | - $v3->x = $v1->y * $v2->z - $v1->z * $v2->y; |
|
107 | - $v3->y = $v1->z * $v2->x - $v1->x * $v2->z; |
|
108 | - $v3->z = $v1->x * $v2->y - $v1->y * $v2->x; |
|
106 | + $v3->x = $v1->y*$v2->z - $v1->z*$v2->y; |
|
107 | + $v3->y = $v1->z*$v2->x - $v1->x*$v2->z; |
|
108 | + $v3->z = $v1->x*$v2->y - $v1->y*$v2->x; |
|
109 | 109 | |
110 | - $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
110 | + $v3->w = sqrt($v3->x*$v3->x + $v3->y*$v3->y + $v3->z*$v3->z); |
|
111 | 111 | } |
112 | 112 | |
113 | 113 | /* Normalizes a vector */ |
114 | - public static function Normalize(Predict_Vector $v ) |
|
114 | + public static function Normalize(Predict_Vector $v) |
|
115 | 115 | { |
116 | 116 | $v->x /= $v->w; |
117 | 117 | $v->y /= $v->w; |
@@ -130,12 +130,12 @@ discard block |
||
130 | 130 | } else { |
131 | 131 | if ($cosx > 0) { |
132 | 132 | if ($sinx > 0) { |
133 | - return atan($sinx / $cosx); |
|
133 | + return atan($sinx/$cosx); |
|
134 | 134 | } else { |
135 | - return Predict::twopi + atan($sinx / $cosx); |
|
135 | + return Predict::twopi + atan($sinx/$cosx); |
|
136 | 136 | } |
137 | 137 | } else { |
138 | - return Predict::pi + atan($sinx / $cosx); |
|
138 | + return Predict::pi + atan($sinx/$cosx); |
|
139 | 139 | } |
140 | 140 | } |
141 | 141 | } |
@@ -144,8 +144,8 @@ discard block |
||
144 | 144 | public static function FMod2p($x) |
145 | 145 | { |
146 | 146 | $ret_val = $x; |
147 | - $i = (int) ($ret_val / Predict::twopi); |
|
148 | - $ret_val -= $i * Predict::twopi; |
|
147 | + $i = (int) ($ret_val/Predict::twopi); |
|
148 | + $ret_val -= $i*Predict::twopi; |
|
149 | 149 | |
150 | 150 | if ($ret_val < 0) { |
151 | 151 | $ret_val += Predict::twopi; |
@@ -158,8 +158,8 @@ discard block |
||
158 | 158 | public static function Modulus($arg1, $arg2) |
159 | 159 | { |
160 | 160 | $ret_val = $arg1; |
161 | - $i = (int) ($ret_val / $arg2); |
|
162 | - $ret_val -= $i * $arg2; |
|
161 | + $i = (int) ($ret_val/$arg2); |
|
162 | + $ret_val -= $i*$arg2; |
|
163 | 163 | |
164 | 164 | if ($ret_val < 0) { |
165 | 165 | $ret_val += $arg2; |
@@ -179,18 +179,18 @@ discard block |
||
179 | 179 | public static function Convert_Sat_State(Predict_Vector $pos, Predict_Vector $vel) |
180 | 180 | { |
181 | 181 | self::Scale_Vector(Predict::xkmper, $pos); |
182 | - self::Scale_Vector(Predict::xkmper * Predict::xmnpda / Predict::secday, $vel); |
|
182 | + self::Scale_Vector(Predict::xkmper*Predict::xmnpda/Predict::secday, $vel); |
|
183 | 183 | } |
184 | 184 | |
185 | 185 | /* Returns angle in radians from arg in degrees */ |
186 | 186 | public static function Radians($arg) |
187 | 187 | { |
188 | - return $arg * Predict::de2ra; |
|
188 | + return $arg*Predict::de2ra; |
|
189 | 189 | } |
190 | 190 | |
191 | 191 | /* Returns angle in degrees from arg in rads */ |
192 | 192 | public static function Degrees($arg) |
193 | 193 | { |
194 | - return $arg / Predict::de2ra; |
|
194 | + return $arg/Predict::de2ra; |
|
195 | 195 | } |
196 | 196 | } |
@@ -124,8 +124,8 @@ discard block |
||
124 | 124 | } |
125 | 125 | |
126 | 126 | /** Initialise satellite data. |
127 | - * @param sat The satellite to initialise. |
|
128 | - * @param qth Optional QTH info, use (0,0) if NULL. |
|
127 | + * @param sat Predict_Sat satellite to initialise. |
|
128 | + * @param qth Predict_QTH QTH info, use (0,0) if NULL. |
|
129 | 129 | * |
130 | 130 | * This function calculates the satellite data at t = 0, ie. epoch time |
131 | 131 | * The function is called automatically by gtk_sat_data_read_sat. |
@@ -216,8 +216,8 @@ discard block |
||
216 | 216 | |
217 | 217 | /** Determinte whether satellite is in geostationary orbit. |
218 | 218 | * @author John A. Magliacane, KD2BD |
219 | - * @param sat Pointer to satellite data. |
|
220 | - * @return TRUE if the satellite appears to be in geostationary orbit, |
|
219 | + * @param sat Predict_Sat to satellite data. |
|
220 | + * @return boolean if the satellite appears to be in geostationary orbit, |
|
221 | 221 | * FALSE otherwise. |
222 | 222 | * |
223 | 223 | * A satellite is in geostationary orbit if |
@@ -239,8 +239,8 @@ discard block |
||
239 | 239 | /** Determine whether satellite has decayed. |
240 | 240 | * @author John A. Magliacane, KD2BD |
241 | 241 | * @author Alexandru Csete, OZ9AEC |
242 | - * @param sat Pointer to satellite data. |
|
243 | - * @return TRUE if the satellite appears to have decayed, FALSE otherwise. |
|
242 | + * @param sat Predict_Sat to satellite data. |
|
243 | + * @return boolean if the satellite appears to have decayed, FALSE otherwise. |
|
244 | 244 | * @bug Modified version of the predict code but it is not tested. |
245 | 245 | * |
246 | 246 | * A satellite is decayed if |
@@ -273,7 +273,7 @@ discard block |
||
273 | 273 | * @param float $time The daynum the satellite is calculated for |
274 | 274 | * @param Predict_QTH $qth The observer location |
275 | 275 | * |
276 | - * @return null on failure, float otherwise |
|
276 | + * @return null|double on failure, float otherwise |
|
277 | 277 | */ |
278 | 278 | public function calculateApparentMagnitude($time, Predict_QTH $qth) |
279 | 279 | { |
@@ -22,304 +22,304 @@ |
||
22 | 22 | */ |
23 | 23 | class Predict_Sat |
24 | 24 | { |
25 | - // Fifth root of a hundred, used for magnitude calculation |
|
26 | - const POGSONS_RATIO = 2.5118864315096; |
|
27 | - |
|
28 | - public $name = null; |
|
29 | - public $nickname = null; |
|
30 | - public $website = null; |
|
31 | - |
|
32 | - public $tle = null; /*!< Keplerian elements */ |
|
33 | - public $flags = 0; /*!< Flags for algo ctrl */ |
|
34 | - public $sgps = null; |
|
35 | - public $dps = null; |
|
36 | - public $deep_arg = null; |
|
37 | - public $pos = null; /*!< Raw position and range */ |
|
38 | - public $vel = null; /*!< Raw velocity */ |
|
39 | - |
|
40 | - /*** FIXME: REMOVE */ |
|
41 | - public $bearing = null; /*!< Az, El, range and vel */ |
|
42 | - public $astro = null; /*!< Ra and Decl */ |
|
43 | - /*** END */ |
|
44 | - |
|
45 | - /* time keeping fields */ |
|
46 | - public $jul_epoch = null; |
|
47 | - public $jul_utc = null; |
|
48 | - public $tsince = null; |
|
49 | - public $aos = null; /*!< Next AOS. */ |
|
50 | - public $los = null; /*!< Next LOS */ |
|
51 | - |
|
52 | - public $az = null; /*!< Azimuth [deg] */ |
|
53 | - public $el = null; /*!< Elevation [deg] */ |
|
54 | - public $range = null; /*!< Range [km] */ |
|
55 | - public $range_rate = null; /*!< Range Rate [km/sec] */ |
|
56 | - public $ra = null; /*!< Right Ascension [deg] */ |
|
57 | - public $dec = null; /*!< Declination [deg] */ |
|
58 | - public $ssplat = null; /*!< SSP latitude [deg] */ |
|
59 | - public $ssplon = null; /*!< SSP longitude [deg] */ |
|
60 | - public $alt = null; /*!< altitude [km] */ |
|
61 | - public $velo = null; /*!< velocity [km/s] */ |
|
62 | - public $ma = null; /*!< mean anomaly */ |
|
63 | - public $footprint = null; /*!< footprint */ |
|
64 | - public $phase = null; /*!< orbit phase */ |
|
65 | - public $meanmo = null; /*!< mean motion kept in rev/day */ |
|
66 | - public $orbit = null; /*!< orbit number */ |
|
67 | - public $otype = null; /*!< orbit type. */ |
|
68 | - |
|
69 | - public function __construct(Predict_TLE $tle) |
|
70 | - { |
|
71 | - $headerParts = explode(' ', $tle->header); |
|
72 | - $this->name = $headerParts[0]; |
|
73 | - $this->nickname = $this->name; |
|
74 | - $this->tle = $tle; |
|
75 | - $this->pos = new Predict_Vector(); |
|
76 | - $this->vel = new Predict_Vector(); |
|
77 | - $this->sgps = new Predict_SGSDPStatic(); |
|
78 | - $this->deep_arg = new Predict_DeepArg(); |
|
79 | - $this->dps = new Predict_DeepStatic(); |
|
80 | - |
|
81 | - $this->select_ephemeris(); |
|
82 | - $this->sat_data_init_sat($this); |
|
83 | - } |
|
84 | - |
|
85 | - /* Selects the apropriate ephemeris type to be used */ |
|
86 | - /* for predictions according to the data in the TLE */ |
|
87 | - /* It also processes values in the tle set so that */ |
|
88 | - /* they are apropriate for the sgp4/sdp4 routines */ |
|
89 | - public function select_ephemeris() |
|
90 | - { |
|
91 | - /* Preprocess tle set */ |
|
92 | - $this->tle->xnodeo *= Predict::de2ra; |
|
93 | - $this->tle->omegao *= Predict::de2ra; |
|
94 | - $this->tle->xmo *= Predict::de2ra; |
|
95 | - $this->tle->xincl *= Predict::de2ra; |
|
96 | - $temp = Predict::twopi / Predict::xmnpda / Predict::xmnpda; |
|
97 | - |
|
98 | - /* store mean motion before conversion */ |
|
99 | - $this->meanmo = $this->tle->xno; |
|
100 | - $this->tle->xno = $this->tle->xno * $temp * Predict::xmnpda; |
|
101 | - $this->tle->xndt2o *= $temp; |
|
102 | - $this->tle->xndd6o = $this->tle->xndd6o * $temp / Predict::xmnpda; |
|
103 | - $this->tle->bstar /= Predict::ae; |
|
104 | - |
|
105 | - /* Period > 225 minutes is deep space */ |
|
106 | - $dd1 = Predict::xke / $this->tle->xno; |
|
107 | - $dd2 = Predict::tothrd; |
|
108 | - $a1 = pow($dd1, $dd2); |
|
109 | - $r1 = cos($this->tle->xincl); |
|
110 | - $dd1 = 1.0 - $this->tle->eo * $this->tle->eo; |
|
111 | - $temp = Predict::ck2 * 1.5 * ($r1 * $r1 * 3.0 - 1.0) / pow($dd1, 1.5); |
|
112 | - $del1 = $temp / ($a1 * $a1); |
|
113 | - $ao = $a1 * (1.0 - $del1 * (Predict::tothrd * 0.5 + $del1 * |
|
114 | - ($del1 * 1.654320987654321 + 1.0))); |
|
115 | - $delo = $temp / ($ao * $ao); |
|
116 | - $xnodp = $this->tle->xno / ($delo + 1.0); |
|
117 | - |
|
118 | - /* Select a deep-space/near-earth ephemeris */ |
|
119 | - if (Predict::twopi / $xnodp / Predict::xmnpda >= .15625) { |
|
120 | - $this->flags |= Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG; |
|
121 | - } else { |
|
122 | - $this->flags &= ~Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG; |
|
123 | - } |
|
124 | - } |
|
125 | - |
|
126 | - /** Initialise satellite data. |
|
127 | - * @param sat The satellite to initialise. |
|
128 | - * @param qth Optional QTH info, use (0,0) if NULL. |
|
129 | - * |
|
130 | - * This function calculates the satellite data at t = 0, ie. epoch time |
|
131 | - * The function is called automatically by gtk_sat_data_read_sat. |
|
132 | - */ |
|
133 | - public function sat_data_init_sat(Predict_Sat $sat, Predict_QTH $qth = null) |
|
134 | - { |
|
135 | - $obs_geodetic = new Predict_Geodetic(); |
|
136 | - $obs_set = new Predict_ObsSet(); |
|
137 | - $sat_geodetic = new Predict_Geodetic(); |
|
138 | - /* double jul_utc, age; */ |
|
139 | - |
|
140 | - $jul_utc = Predict_Time::Julian_Date_of_Epoch($sat->tle->epoch); // => tsince = 0.0 |
|
141 | - $sat->jul_epoch = $jul_utc; |
|
142 | - |
|
143 | - /* initialise observer location */ |
|
144 | - if ($qth != null) { |
|
145 | - $obs_geodetic->lon = $qth->lon * Predict::de2ra; |
|
146 | - $obs_geodetic->lat = $qth->lat * Predict::de2ra; |
|
147 | - $obs_geodetic->alt = $qth->alt / 1000.0; |
|
148 | - $obs_geodetic->theta = 0; |
|
149 | - } |
|
150 | - else { |
|
151 | - $obs_geodetic->lon = 0.0; |
|
152 | - $obs_geodetic->lat = 0.0; |
|
153 | - $obs_geodetic->alt = 0.0; |
|
154 | - $obs_geodetic->theta = 0; |
|
155 | - } |
|
156 | - |
|
157 | - /* execute computations */ |
|
158 | - $sdpsgp = Predict_SGPSDP::getInstance($sat); |
|
159 | - if ($sat->flags & Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
160 | - $sdpsgp->SDP4($sat, 0.0); |
|
161 | - } else { |
|
162 | - $sdpsgp->SGP4($sat, 0.0); |
|
163 | - } |
|
164 | - |
|
165 | - /* scale position and velocity to km and km/sec */ |
|
166 | - Predict_Math::Convert_Sat_State($sat->pos, $sat->vel); |
|
167 | - |
|
168 | - /* get the velocity of the satellite */ |
|
169 | - $sat->vel->w = sqrt($sat->vel->x * $sat->vel->x + $sat->vel->y * $sat->vel->y + $sat->vel->z * $sat->vel->z); |
|
170 | - $sat->velo = $sat->vel->w; |
|
171 | - Predict_SGPObs::Calculate_Obs($jul_utc, $sat->pos, $sat->vel, $obs_geodetic, $obs_set); |
|
172 | - Predict_SGPObs::Calculate_LatLonAlt($jul_utc, $sat->pos, $sat_geodetic); |
|
173 | - |
|
174 | - while ($sat_geodetic->lon < -Predict::pi) { |
|
175 | - $sat_geodetic->lon += Predict::twopi; |
|
176 | - } |
|
177 | - |
|
178 | - while ($sat_geodetic->lon > Predict::pi) { |
|
179 | - $sat_geodetic->lon -= Predict::twopi; |
|
180 | - } |
|
181 | - |
|
182 | - $sat->az = Predict_Math::Degrees($obs_set->az); |
|
183 | - $sat->el = Predict_Math::Degrees($obs_set->el); |
|
184 | - $sat->range = $obs_set->range; |
|
185 | - $sat->range_rate = $obs_set->range_rate; |
|
186 | - $sat->ssplat = Predict_Math::Degrees($sat_geodetic->lat); |
|
187 | - $sat->ssplon = Predict_Math::Degrees($sat_geodetic->lon); |
|
188 | - $sat->alt = $sat_geodetic->alt; |
|
189 | - $sat->ma = Predict_Math::Degrees($sat->phase); |
|
190 | - $sat->ma *= 256.0 / 360.0; |
|
191 | - $sat->footprint = 2.0 * Predict::xkmper * acos (Predict::xkmper/$sat->pos->w); |
|
192 | - $age = 0.0; |
|
193 | - $sat->orbit = floor(($sat->tle->xno * Predict::xmnpda / Predict::twopi + |
|
194 | - $age * $sat->tle->bstar * Predict::ae) * $age + |
|
195 | - $sat->tle->xmo / Predict::twopi) + $sat->tle->revnum - 1; |
|
196 | - |
|
197 | - /* orbit type */ |
|
198 | - $sat->otype = $sat->get_orbit_type($sat); |
|
199 | - } |
|
200 | - |
|
201 | - public function get_orbit_type(Predict_Sat $sat) |
|
202 | - { |
|
203 | - $orbit = Predict_SGPSDP::ORBIT_TYPE_UNKNOWN; |
|
204 | - |
|
205 | - if ($this->geostationary($sat)) { |
|
206 | - $orbit = Predict_SGPSDP::ORBIT_TYPE_GEO; |
|
207 | - } else if ($this->decayed($sat)) { |
|
208 | - $orbit = Predict_SGPSDP::ORBIT_TYPE_DECAYED; |
|
209 | - } else { |
|
210 | - $orbit = Predict_SGPSDP::ORBIT_TYPE_UNKNOWN; |
|
211 | - } |
|
212 | - |
|
213 | - return $orbit; |
|
214 | - } |
|
215 | - |
|
216 | - |
|
217 | - /** Determinte whether satellite is in geostationary orbit. |
|
218 | - * @author John A. Magliacane, KD2BD |
|
219 | - * @param sat Pointer to satellite data. |
|
220 | - * @return TRUE if the satellite appears to be in geostationary orbit, |
|
221 | - * FALSE otherwise. |
|
222 | - * |
|
223 | - * A satellite is in geostationary orbit if |
|
224 | - * |
|
225 | - * fabs (sat.meanmotion - 1.0027) < 0.0002 |
|
226 | - * |
|
227 | - * Note: Appearantly, the mean motion can deviate much more from 1.0027 than 0.0002 |
|
228 | - */ |
|
229 | - public function geostationary(Predict_Sat $sat) |
|
230 | - { |
|
231 | - if (abs($sat->meanmo - 1.0027) < 0.0002) { |
|
232 | - return true; |
|
233 | - } else { |
|
234 | - return false; |
|
235 | - } |
|
236 | - } |
|
237 | - |
|
238 | - |
|
239 | - /** Determine whether satellite has decayed. |
|
240 | - * @author John A. Magliacane, KD2BD |
|
241 | - * @author Alexandru Csete, OZ9AEC |
|
242 | - * @param sat Pointer to satellite data. |
|
243 | - * @return TRUE if the satellite appears to have decayed, FALSE otherwise. |
|
244 | - * @bug Modified version of the predict code but it is not tested. |
|
245 | - * |
|
246 | - * A satellite is decayed if |
|
247 | - * |
|
248 | - * satepoch + ((16.666666 - sat.meanmo) / (10.0*fabs(sat.drag))) < "now" |
|
249 | - * |
|
250 | - */ |
|
251 | - public function decayed(Predict_Sat $sat) |
|
252 | - { |
|
253 | - /* tle.xndt2o/(twopi/xmnpda/xmnpda) is the value before converted the |
|
25 | + // Fifth root of a hundred, used for magnitude calculation |
|
26 | + const POGSONS_RATIO = 2.5118864315096; |
|
27 | + |
|
28 | + public $name = null; |
|
29 | + public $nickname = null; |
|
30 | + public $website = null; |
|
31 | + |
|
32 | + public $tle = null; /*!< Keplerian elements */ |
|
33 | + public $flags = 0; /*!< Flags for algo ctrl */ |
|
34 | + public $sgps = null; |
|
35 | + public $dps = null; |
|
36 | + public $deep_arg = null; |
|
37 | + public $pos = null; /*!< Raw position and range */ |
|
38 | + public $vel = null; /*!< Raw velocity */ |
|
39 | + |
|
40 | + /*** FIXME: REMOVE */ |
|
41 | + public $bearing = null; /*!< Az, El, range and vel */ |
|
42 | + public $astro = null; /*!< Ra and Decl */ |
|
43 | + /*** END */ |
|
44 | + |
|
45 | + /* time keeping fields */ |
|
46 | + public $jul_epoch = null; |
|
47 | + public $jul_utc = null; |
|
48 | + public $tsince = null; |
|
49 | + public $aos = null; /*!< Next AOS. */ |
|
50 | + public $los = null; /*!< Next LOS */ |
|
51 | + |
|
52 | + public $az = null; /*!< Azimuth [deg] */ |
|
53 | + public $el = null; /*!< Elevation [deg] */ |
|
54 | + public $range = null; /*!< Range [km] */ |
|
55 | + public $range_rate = null; /*!< Range Rate [km/sec] */ |
|
56 | + public $ra = null; /*!< Right Ascension [deg] */ |
|
57 | + public $dec = null; /*!< Declination [deg] */ |
|
58 | + public $ssplat = null; /*!< SSP latitude [deg] */ |
|
59 | + public $ssplon = null; /*!< SSP longitude [deg] */ |
|
60 | + public $alt = null; /*!< altitude [km] */ |
|
61 | + public $velo = null; /*!< velocity [km/s] */ |
|
62 | + public $ma = null; /*!< mean anomaly */ |
|
63 | + public $footprint = null; /*!< footprint */ |
|
64 | + public $phase = null; /*!< orbit phase */ |
|
65 | + public $meanmo = null; /*!< mean motion kept in rev/day */ |
|
66 | + public $orbit = null; /*!< orbit number */ |
|
67 | + public $otype = null; /*!< orbit type. */ |
|
68 | + |
|
69 | + public function __construct(Predict_TLE $tle) |
|
70 | + { |
|
71 | + $headerParts = explode(' ', $tle->header); |
|
72 | + $this->name = $headerParts[0]; |
|
73 | + $this->nickname = $this->name; |
|
74 | + $this->tle = $tle; |
|
75 | + $this->pos = new Predict_Vector(); |
|
76 | + $this->vel = new Predict_Vector(); |
|
77 | + $this->sgps = new Predict_SGSDPStatic(); |
|
78 | + $this->deep_arg = new Predict_DeepArg(); |
|
79 | + $this->dps = new Predict_DeepStatic(); |
|
80 | + |
|
81 | + $this->select_ephemeris(); |
|
82 | + $this->sat_data_init_sat($this); |
|
83 | + } |
|
84 | + |
|
85 | + /* Selects the apropriate ephemeris type to be used */ |
|
86 | + /* for predictions according to the data in the TLE */ |
|
87 | + /* It also processes values in the tle set so that */ |
|
88 | + /* they are apropriate for the sgp4/sdp4 routines */ |
|
89 | + public function select_ephemeris() |
|
90 | + { |
|
91 | + /* Preprocess tle set */ |
|
92 | + $this->tle->xnodeo *= Predict::de2ra; |
|
93 | + $this->tle->omegao *= Predict::de2ra; |
|
94 | + $this->tle->xmo *= Predict::de2ra; |
|
95 | + $this->tle->xincl *= Predict::de2ra; |
|
96 | + $temp = Predict::twopi / Predict::xmnpda / Predict::xmnpda; |
|
97 | + |
|
98 | + /* store mean motion before conversion */ |
|
99 | + $this->meanmo = $this->tle->xno; |
|
100 | + $this->tle->xno = $this->tle->xno * $temp * Predict::xmnpda; |
|
101 | + $this->tle->xndt2o *= $temp; |
|
102 | + $this->tle->xndd6o = $this->tle->xndd6o * $temp / Predict::xmnpda; |
|
103 | + $this->tle->bstar /= Predict::ae; |
|
104 | + |
|
105 | + /* Period > 225 minutes is deep space */ |
|
106 | + $dd1 = Predict::xke / $this->tle->xno; |
|
107 | + $dd2 = Predict::tothrd; |
|
108 | + $a1 = pow($dd1, $dd2); |
|
109 | + $r1 = cos($this->tle->xincl); |
|
110 | + $dd1 = 1.0 - $this->tle->eo * $this->tle->eo; |
|
111 | + $temp = Predict::ck2 * 1.5 * ($r1 * $r1 * 3.0 - 1.0) / pow($dd1, 1.5); |
|
112 | + $del1 = $temp / ($a1 * $a1); |
|
113 | + $ao = $a1 * (1.0 - $del1 * (Predict::tothrd * 0.5 + $del1 * |
|
114 | + ($del1 * 1.654320987654321 + 1.0))); |
|
115 | + $delo = $temp / ($ao * $ao); |
|
116 | + $xnodp = $this->tle->xno / ($delo + 1.0); |
|
117 | + |
|
118 | + /* Select a deep-space/near-earth ephemeris */ |
|
119 | + if (Predict::twopi / $xnodp / Predict::xmnpda >= .15625) { |
|
120 | + $this->flags |= Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG; |
|
121 | + } else { |
|
122 | + $this->flags &= ~Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG; |
|
123 | + } |
|
124 | + } |
|
125 | + |
|
126 | + /** Initialise satellite data. |
|
127 | + * @param sat The satellite to initialise. |
|
128 | + * @param qth Optional QTH info, use (0,0) if NULL. |
|
129 | + * |
|
130 | + * This function calculates the satellite data at t = 0, ie. epoch time |
|
131 | + * The function is called automatically by gtk_sat_data_read_sat. |
|
132 | + */ |
|
133 | + public function sat_data_init_sat(Predict_Sat $sat, Predict_QTH $qth = null) |
|
134 | + { |
|
135 | + $obs_geodetic = new Predict_Geodetic(); |
|
136 | + $obs_set = new Predict_ObsSet(); |
|
137 | + $sat_geodetic = new Predict_Geodetic(); |
|
138 | + /* double jul_utc, age; */ |
|
139 | + |
|
140 | + $jul_utc = Predict_Time::Julian_Date_of_Epoch($sat->tle->epoch); // => tsince = 0.0 |
|
141 | + $sat->jul_epoch = $jul_utc; |
|
142 | + |
|
143 | + /* initialise observer location */ |
|
144 | + if ($qth != null) { |
|
145 | + $obs_geodetic->lon = $qth->lon * Predict::de2ra; |
|
146 | + $obs_geodetic->lat = $qth->lat * Predict::de2ra; |
|
147 | + $obs_geodetic->alt = $qth->alt / 1000.0; |
|
148 | + $obs_geodetic->theta = 0; |
|
149 | + } |
|
150 | + else { |
|
151 | + $obs_geodetic->lon = 0.0; |
|
152 | + $obs_geodetic->lat = 0.0; |
|
153 | + $obs_geodetic->alt = 0.0; |
|
154 | + $obs_geodetic->theta = 0; |
|
155 | + } |
|
156 | + |
|
157 | + /* execute computations */ |
|
158 | + $sdpsgp = Predict_SGPSDP::getInstance($sat); |
|
159 | + if ($sat->flags & Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
160 | + $sdpsgp->SDP4($sat, 0.0); |
|
161 | + } else { |
|
162 | + $sdpsgp->SGP4($sat, 0.0); |
|
163 | + } |
|
164 | + |
|
165 | + /* scale position and velocity to km and km/sec */ |
|
166 | + Predict_Math::Convert_Sat_State($sat->pos, $sat->vel); |
|
167 | + |
|
168 | + /* get the velocity of the satellite */ |
|
169 | + $sat->vel->w = sqrt($sat->vel->x * $sat->vel->x + $sat->vel->y * $sat->vel->y + $sat->vel->z * $sat->vel->z); |
|
170 | + $sat->velo = $sat->vel->w; |
|
171 | + Predict_SGPObs::Calculate_Obs($jul_utc, $sat->pos, $sat->vel, $obs_geodetic, $obs_set); |
|
172 | + Predict_SGPObs::Calculate_LatLonAlt($jul_utc, $sat->pos, $sat_geodetic); |
|
173 | + |
|
174 | + while ($sat_geodetic->lon < -Predict::pi) { |
|
175 | + $sat_geodetic->lon += Predict::twopi; |
|
176 | + } |
|
177 | + |
|
178 | + while ($sat_geodetic->lon > Predict::pi) { |
|
179 | + $sat_geodetic->lon -= Predict::twopi; |
|
180 | + } |
|
181 | + |
|
182 | + $sat->az = Predict_Math::Degrees($obs_set->az); |
|
183 | + $sat->el = Predict_Math::Degrees($obs_set->el); |
|
184 | + $sat->range = $obs_set->range; |
|
185 | + $sat->range_rate = $obs_set->range_rate; |
|
186 | + $sat->ssplat = Predict_Math::Degrees($sat_geodetic->lat); |
|
187 | + $sat->ssplon = Predict_Math::Degrees($sat_geodetic->lon); |
|
188 | + $sat->alt = $sat_geodetic->alt; |
|
189 | + $sat->ma = Predict_Math::Degrees($sat->phase); |
|
190 | + $sat->ma *= 256.0 / 360.0; |
|
191 | + $sat->footprint = 2.0 * Predict::xkmper * acos (Predict::xkmper/$sat->pos->w); |
|
192 | + $age = 0.0; |
|
193 | + $sat->orbit = floor(($sat->tle->xno * Predict::xmnpda / Predict::twopi + |
|
194 | + $age * $sat->tle->bstar * Predict::ae) * $age + |
|
195 | + $sat->tle->xmo / Predict::twopi) + $sat->tle->revnum - 1; |
|
196 | + |
|
197 | + /* orbit type */ |
|
198 | + $sat->otype = $sat->get_orbit_type($sat); |
|
199 | + } |
|
200 | + |
|
201 | + public function get_orbit_type(Predict_Sat $sat) |
|
202 | + { |
|
203 | + $orbit = Predict_SGPSDP::ORBIT_TYPE_UNKNOWN; |
|
204 | + |
|
205 | + if ($this->geostationary($sat)) { |
|
206 | + $orbit = Predict_SGPSDP::ORBIT_TYPE_GEO; |
|
207 | + } else if ($this->decayed($sat)) { |
|
208 | + $orbit = Predict_SGPSDP::ORBIT_TYPE_DECAYED; |
|
209 | + } else { |
|
210 | + $orbit = Predict_SGPSDP::ORBIT_TYPE_UNKNOWN; |
|
211 | + } |
|
212 | + |
|
213 | + return $orbit; |
|
214 | + } |
|
215 | + |
|
216 | + |
|
217 | + /** Determinte whether satellite is in geostationary orbit. |
|
218 | + * @author John A. Magliacane, KD2BD |
|
219 | + * @param sat Pointer to satellite data. |
|
220 | + * @return TRUE if the satellite appears to be in geostationary orbit, |
|
221 | + * FALSE otherwise. |
|
222 | + * |
|
223 | + * A satellite is in geostationary orbit if |
|
224 | + * |
|
225 | + * fabs (sat.meanmotion - 1.0027) < 0.0002 |
|
226 | + * |
|
227 | + * Note: Appearantly, the mean motion can deviate much more from 1.0027 than 0.0002 |
|
228 | + */ |
|
229 | + public function geostationary(Predict_Sat $sat) |
|
230 | + { |
|
231 | + if (abs($sat->meanmo - 1.0027) < 0.0002) { |
|
232 | + return true; |
|
233 | + } else { |
|
234 | + return false; |
|
235 | + } |
|
236 | + } |
|
237 | + |
|
238 | + |
|
239 | + /** Determine whether satellite has decayed. |
|
240 | + * @author John A. Magliacane, KD2BD |
|
241 | + * @author Alexandru Csete, OZ9AEC |
|
242 | + * @param sat Pointer to satellite data. |
|
243 | + * @return TRUE if the satellite appears to have decayed, FALSE otherwise. |
|
244 | + * @bug Modified version of the predict code but it is not tested. |
|
245 | + * |
|
246 | + * A satellite is decayed if |
|
247 | + * |
|
248 | + * satepoch + ((16.666666 - sat.meanmo) / (10.0*fabs(sat.drag))) < "now" |
|
249 | + * |
|
250 | + */ |
|
251 | + public function decayed(Predict_Sat $sat) |
|
252 | + { |
|
253 | + /* tle.xndt2o/(twopi/xmnpda/xmnpda) is the value before converted the |
|
254 | 254 | value matches up with the value in predict 2.2.3 */ |
255 | - /*** FIXME decayed is treated as a static quantity. |
|
255 | + /*** FIXME decayed is treated as a static quantity. |
|
256 | 256 | It is time dependent. Also sat->jul_utc is often zero |
257 | 257 | when this function is called |
258 | 258 | ***/ |
259 | - if ((10.0 * abs($sat->tle->xndt2o / (Predict::twopi / Predict::xmnpda / Predict::xmnpda))) == 0) { |
|
260 | - return true; |
|
261 | - } elseif ($sat->jul_epoch + ((16.666666 - $sat->meanmo) / |
|
262 | - (10.0 * abs($sat->tle->xndt2o / (Predict::twopi / Predict::xmnpda / Predict::xmnpda)))) < $sat->jul_utc) { |
|
263 | - return true; |
|
264 | - } else { |
|
265 | - return false; |
|
266 | - } |
|
267 | - } |
|
268 | - |
|
269 | - /** |
|
270 | - * Experimental attempt at calculating apparent magnitude. Known intrinsic |
|
271 | - * magnitudes are listed inside the function for now. |
|
272 | - * |
|
273 | - * @param float $time The daynum the satellite is calculated for |
|
274 | - * @param Predict_QTH $qth The observer location |
|
275 | - * |
|
276 | - * @return null on failure, float otherwise |
|
277 | - */ |
|
278 | - public function calculateApparentMagnitude($time, Predict_QTH $qth) |
|
279 | - { |
|
280 | - // Recorded intrinsic magnitudes and their respective |
|
281 | - // illumination and distance from heavens-above.com |
|
282 | - static $intrinsicMagnitudes = array( |
|
283 | - '25544' => array( |
|
284 | - 'mag' => -1.3, |
|
285 | - 'illum' => .5, |
|
286 | - 'distance' => 1000, |
|
287 | - ) |
|
288 | - ); |
|
289 | - |
|
290 | - // Return null if we don't have a record of the intrinsic mag |
|
291 | - if (!isset($intrinsicMagnitudes[$this->tle->catnr])) { |
|
292 | - return null; |
|
293 | - } |
|
294 | - $imag = $intrinsicMagnitudes[$this->tle->catnr]; |
|
295 | - |
|
296 | - // Convert the observer's geodetic info to radians and km so |
|
297 | - // we can compare vectors |
|
298 | - $observerGeo = new Predict_Geodetic(); |
|
299 | - $observerGeo->lat = Predict_Math::Radians($qth->lat); |
|
300 | - $observerGeo->lon = Predict_Math::Radians($qth->lon); |
|
301 | - $observerGeo->alt = $qth->alt * 1000; |
|
302 | - |
|
303 | - // Now determine the sun and observer positions |
|
304 | - $observerPos = new Predict_Vector(); |
|
305 | - $observerVel = new Predict_Vector(); |
|
306 | - $solarVector = new Predict_Vector(); |
|
307 | - Predict_Solar::Calculate_Solar_Position($time, $solarVector); |
|
308 | - Predict_SGPObs::Calculate_User_PosVel($time, $observerGeo, $observerPos, $observerVel); |
|
309 | - |
|
310 | - // Determine the solar phase and and thus the percent illumination |
|
311 | - $observerSatPos = new Predict_Vector(); |
|
312 | - Predict_Math::Vec_Sub($this->pos, $observerPos, $observerSatPos); |
|
313 | - $phaseAngle = Predict_Math::Degrees(Predict_Math::Angle($solarVector, $observerSatPos)); |
|
314 | - $illum = $phaseAngle / 180; |
|
315 | - |
|
316 | - $illuminationChange = $illum / $imag['illum']; |
|
317 | - $inverseSquareOfDistanceChange = pow(($imag['distance'] / $this->range), 2); |
|
318 | - $changeInMagnitude = log( |
|
319 | - $illuminationChange * $inverseSquareOfDistanceChange, |
|
320 | - self::POGSONS_RATIO |
|
321 | - ); |
|
322 | - |
|
323 | - return $imag['mag'] - $changeInMagnitude; |
|
324 | - } |
|
259 | + if ((10.0 * abs($sat->tle->xndt2o / (Predict::twopi / Predict::xmnpda / Predict::xmnpda))) == 0) { |
|
260 | + return true; |
|
261 | + } elseif ($sat->jul_epoch + ((16.666666 - $sat->meanmo) / |
|
262 | + (10.0 * abs($sat->tle->xndt2o / (Predict::twopi / Predict::xmnpda / Predict::xmnpda)))) < $sat->jul_utc) { |
|
263 | + return true; |
|
264 | + } else { |
|
265 | + return false; |
|
266 | + } |
|
267 | + } |
|
268 | + |
|
269 | + /** |
|
270 | + * Experimental attempt at calculating apparent magnitude. Known intrinsic |
|
271 | + * magnitudes are listed inside the function for now. |
|
272 | + * |
|
273 | + * @param float $time The daynum the satellite is calculated for |
|
274 | + * @param Predict_QTH $qth The observer location |
|
275 | + * |
|
276 | + * @return null on failure, float otherwise |
|
277 | + */ |
|
278 | + public function calculateApparentMagnitude($time, Predict_QTH $qth) |
|
279 | + { |
|
280 | + // Recorded intrinsic magnitudes and their respective |
|
281 | + // illumination and distance from heavens-above.com |
|
282 | + static $intrinsicMagnitudes = array( |
|
283 | + '25544' => array( |
|
284 | + 'mag' => -1.3, |
|
285 | + 'illum' => .5, |
|
286 | + 'distance' => 1000, |
|
287 | + ) |
|
288 | + ); |
|
289 | + |
|
290 | + // Return null if we don't have a record of the intrinsic mag |
|
291 | + if (!isset($intrinsicMagnitudes[$this->tle->catnr])) { |
|
292 | + return null; |
|
293 | + } |
|
294 | + $imag = $intrinsicMagnitudes[$this->tle->catnr]; |
|
295 | + |
|
296 | + // Convert the observer's geodetic info to radians and km so |
|
297 | + // we can compare vectors |
|
298 | + $observerGeo = new Predict_Geodetic(); |
|
299 | + $observerGeo->lat = Predict_Math::Radians($qth->lat); |
|
300 | + $observerGeo->lon = Predict_Math::Radians($qth->lon); |
|
301 | + $observerGeo->alt = $qth->alt * 1000; |
|
302 | + |
|
303 | + // Now determine the sun and observer positions |
|
304 | + $observerPos = new Predict_Vector(); |
|
305 | + $observerVel = new Predict_Vector(); |
|
306 | + $solarVector = new Predict_Vector(); |
|
307 | + Predict_Solar::Calculate_Solar_Position($time, $solarVector); |
|
308 | + Predict_SGPObs::Calculate_User_PosVel($time, $observerGeo, $observerPos, $observerVel); |
|
309 | + |
|
310 | + // Determine the solar phase and and thus the percent illumination |
|
311 | + $observerSatPos = new Predict_Vector(); |
|
312 | + Predict_Math::Vec_Sub($this->pos, $observerPos, $observerSatPos); |
|
313 | + $phaseAngle = Predict_Math::Degrees(Predict_Math::Angle($solarVector, $observerSatPos)); |
|
314 | + $illum = $phaseAngle / 180; |
|
315 | + |
|
316 | + $illuminationChange = $illum / $imag['illum']; |
|
317 | + $inverseSquareOfDistanceChange = pow(($imag['distance'] / $this->range), 2); |
|
318 | + $changeInMagnitude = log( |
|
319 | + $illuminationChange * $inverseSquareOfDistanceChange, |
|
320 | + self::POGSONS_RATIO |
|
321 | + ); |
|
322 | + |
|
323 | + return $imag['mag'] - $changeInMagnitude; |
|
324 | + } |
|
325 | 325 | } |
@@ -29,42 +29,42 @@ discard block |
||
29 | 29 | public $nickname = null; |
30 | 30 | public $website = null; |
31 | 31 | |
32 | - public $tle = null; /*!< Keplerian elements */ |
|
33 | - public $flags = 0; /*!< Flags for algo ctrl */ |
|
32 | + public $tle = null; /*!< Keplerian elements */ |
|
33 | + public $flags = 0; /*!< Flags for algo ctrl */ |
|
34 | 34 | public $sgps = null; |
35 | 35 | public $dps = null; |
36 | 36 | public $deep_arg = null; |
37 | - public $pos = null; /*!< Raw position and range */ |
|
38 | - public $vel = null; /*!< Raw velocity */ |
|
37 | + public $pos = null; /*!< Raw position and range */ |
|
38 | + public $vel = null; /*!< Raw velocity */ |
|
39 | 39 | |
40 | 40 | /*** FIXME: REMOVE */ |
41 | - public $bearing = null; /*!< Az, El, range and vel */ |
|
42 | - public $astro = null; /*!< Ra and Decl */ |
|
41 | + public $bearing = null; /*!< Az, El, range and vel */ |
|
42 | + public $astro = null; /*!< Ra and Decl */ |
|
43 | 43 | /*** END */ |
44 | 44 | |
45 | 45 | /* time keeping fields */ |
46 | 46 | public $jul_epoch = null; |
47 | 47 | public $jul_utc = null; |
48 | 48 | public $tsince = null; |
49 | - public $aos = null; /*!< Next AOS. */ |
|
50 | - public $los = null; /*!< Next LOS */ |
|
51 | - |
|
52 | - public $az = null; /*!< Azimuth [deg] */ |
|
53 | - public $el = null; /*!< Elevation [deg] */ |
|
54 | - public $range = null; /*!< Range [km] */ |
|
55 | - public $range_rate = null; /*!< Range Rate [km/sec] */ |
|
56 | - public $ra = null; /*!< Right Ascension [deg] */ |
|
57 | - public $dec = null; /*!< Declination [deg] */ |
|
58 | - public $ssplat = null; /*!< SSP latitude [deg] */ |
|
59 | - public $ssplon = null; /*!< SSP longitude [deg] */ |
|
60 | - public $alt = null; /*!< altitude [km] */ |
|
61 | - public $velo = null; /*!< velocity [km/s] */ |
|
62 | - public $ma = null; /*!< mean anomaly */ |
|
63 | - public $footprint = null; /*!< footprint */ |
|
64 | - public $phase = null; /*!< orbit phase */ |
|
65 | - public $meanmo = null; /*!< mean motion kept in rev/day */ |
|
66 | - public $orbit = null; /*!< orbit number */ |
|
67 | - public $otype = null; /*!< orbit type. */ |
|
49 | + public $aos = null; /*!< Next AOS. */ |
|
50 | + public $los = null; /*!< Next LOS */ |
|
51 | + |
|
52 | + public $az = null; /*!< Azimuth [deg] */ |
|
53 | + public $el = null; /*!< Elevation [deg] */ |
|
54 | + public $range = null; /*!< Range [km] */ |
|
55 | + public $range_rate = null; /*!< Range Rate [km/sec] */ |
|
56 | + public $ra = null; /*!< Right Ascension [deg] */ |
|
57 | + public $dec = null; /*!< Declination [deg] */ |
|
58 | + public $ssplat = null; /*!< SSP latitude [deg] */ |
|
59 | + public $ssplon = null; /*!< SSP longitude [deg] */ |
|
60 | + public $alt = null; /*!< altitude [km] */ |
|
61 | + public $velo = null; /*!< velocity [km/s] */ |
|
62 | + public $ma = null; /*!< mean anomaly */ |
|
63 | + public $footprint = null; /*!< footprint */ |
|
64 | + public $phase = null; /*!< orbit phase */ |
|
65 | + public $meanmo = null; /*!< mean motion kept in rev/day */ |
|
66 | + public $orbit = null; /*!< orbit number */ |
|
67 | + public $otype = null; /*!< orbit type. */ |
|
68 | 68 | |
69 | 69 | public function __construct(Predict_TLE $tle) |
70 | 70 | { |
@@ -93,30 +93,30 @@ discard block |
||
93 | 93 | $this->tle->omegao *= Predict::de2ra; |
94 | 94 | $this->tle->xmo *= Predict::de2ra; |
95 | 95 | $this->tle->xincl *= Predict::de2ra; |
96 | - $temp = Predict::twopi / Predict::xmnpda / Predict::xmnpda; |
|
96 | + $temp = Predict::twopi/Predict::xmnpda/Predict::xmnpda; |
|
97 | 97 | |
98 | 98 | /* store mean motion before conversion */ |
99 | 99 | $this->meanmo = $this->tle->xno; |
100 | - $this->tle->xno = $this->tle->xno * $temp * Predict::xmnpda; |
|
100 | + $this->tle->xno = $this->tle->xno*$temp*Predict::xmnpda; |
|
101 | 101 | $this->tle->xndt2o *= $temp; |
102 | - $this->tle->xndd6o = $this->tle->xndd6o * $temp / Predict::xmnpda; |
|
102 | + $this->tle->xndd6o = $this->tle->xndd6o*$temp/Predict::xmnpda; |
|
103 | 103 | $this->tle->bstar /= Predict::ae; |
104 | 104 | |
105 | 105 | /* Period > 225 minutes is deep space */ |
106 | - $dd1 = Predict::xke / $this->tle->xno; |
|
106 | + $dd1 = Predict::xke/$this->tle->xno; |
|
107 | 107 | $dd2 = Predict::tothrd; |
108 | 108 | $a1 = pow($dd1, $dd2); |
109 | 109 | $r1 = cos($this->tle->xincl); |
110 | - $dd1 = 1.0 - $this->tle->eo * $this->tle->eo; |
|
111 | - $temp = Predict::ck2 * 1.5 * ($r1 * $r1 * 3.0 - 1.0) / pow($dd1, 1.5); |
|
112 | - $del1 = $temp / ($a1 * $a1); |
|
113 | - $ao = $a1 * (1.0 - $del1 * (Predict::tothrd * 0.5 + $del1 * |
|
114 | - ($del1 * 1.654320987654321 + 1.0))); |
|
115 | - $delo = $temp / ($ao * $ao); |
|
116 | - $xnodp = $this->tle->xno / ($delo + 1.0); |
|
110 | + $dd1 = 1.0 - $this->tle->eo*$this->tle->eo; |
|
111 | + $temp = Predict::ck2*1.5*($r1*$r1*3.0 - 1.0)/pow($dd1, 1.5); |
|
112 | + $del1 = $temp/($a1*$a1); |
|
113 | + $ao = $a1*(1.0 - $del1*(Predict::tothrd*0.5 + $del1* |
|
114 | + ($del1*1.654320987654321 + 1.0))); |
|
115 | + $delo = $temp/($ao*$ao); |
|
116 | + $xnodp = $this->tle->xno/($delo + 1.0); |
|
117 | 117 | |
118 | 118 | /* Select a deep-space/near-earth ephemeris */ |
119 | - if (Predict::twopi / $xnodp / Predict::xmnpda >= .15625) { |
|
119 | + if (Predict::twopi/$xnodp/Predict::xmnpda >= .15625) { |
|
120 | 120 | $this->flags |= Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG; |
121 | 121 | } else { |
122 | 122 | $this->flags &= ~Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG; |
@@ -142,9 +142,9 @@ discard block |
||
142 | 142 | |
143 | 143 | /* initialise observer location */ |
144 | 144 | if ($qth != null) { |
145 | - $obs_geodetic->lon = $qth->lon * Predict::de2ra; |
|
146 | - $obs_geodetic->lat = $qth->lat * Predict::de2ra; |
|
147 | - $obs_geodetic->alt = $qth->alt / 1000.0; |
|
145 | + $obs_geodetic->lon = $qth->lon*Predict::de2ra; |
|
146 | + $obs_geodetic->lat = $qth->lat*Predict::de2ra; |
|
147 | + $obs_geodetic->alt = $qth->alt/1000.0; |
|
148 | 148 | $obs_geodetic->theta = 0; |
149 | 149 | } |
150 | 150 | else { |
@@ -156,7 +156,7 @@ discard block |
||
156 | 156 | |
157 | 157 | /* execute computations */ |
158 | 158 | $sdpsgp = Predict_SGPSDP::getInstance($sat); |
159 | - if ($sat->flags & Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
159 | + if ($sat->flags&Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
160 | 160 | $sdpsgp->SDP4($sat, 0.0); |
161 | 161 | } else { |
162 | 162 | $sdpsgp->SGP4($sat, 0.0); |
@@ -166,7 +166,7 @@ discard block |
||
166 | 166 | Predict_Math::Convert_Sat_State($sat->pos, $sat->vel); |
167 | 167 | |
168 | 168 | /* get the velocity of the satellite */ |
169 | - $sat->vel->w = sqrt($sat->vel->x * $sat->vel->x + $sat->vel->y * $sat->vel->y + $sat->vel->z * $sat->vel->z); |
|
169 | + $sat->vel->w = sqrt($sat->vel->x*$sat->vel->x + $sat->vel->y*$sat->vel->y + $sat->vel->z*$sat->vel->z); |
|
170 | 170 | $sat->velo = $sat->vel->w; |
171 | 171 | Predict_SGPObs::Calculate_Obs($jul_utc, $sat->pos, $sat->vel, $obs_geodetic, $obs_set); |
172 | 172 | Predict_SGPObs::Calculate_LatLonAlt($jul_utc, $sat->pos, $sat_geodetic); |
@@ -187,12 +187,12 @@ discard block |
||
187 | 187 | $sat->ssplon = Predict_Math::Degrees($sat_geodetic->lon); |
188 | 188 | $sat->alt = $sat_geodetic->alt; |
189 | 189 | $sat->ma = Predict_Math::Degrees($sat->phase); |
190 | - $sat->ma *= 256.0 / 360.0; |
|
191 | - $sat->footprint = 2.0 * Predict::xkmper * acos (Predict::xkmper/$sat->pos->w); |
|
190 | + $sat->ma *= 256.0/360.0; |
|
191 | + $sat->footprint = 2.0*Predict::xkmper*acos(Predict::xkmper/$sat->pos->w); |
|
192 | 192 | $age = 0.0; |
193 | - $sat->orbit = floor(($sat->tle->xno * Predict::xmnpda / Predict::twopi + |
|
194 | - $age * $sat->tle->bstar * Predict::ae) * $age + |
|
195 | - $sat->tle->xmo / Predict::twopi) + $sat->tle->revnum - 1; |
|
193 | + $sat->orbit = floor(($sat->tle->xno*Predict::xmnpda/Predict::twopi + |
|
194 | + $age*$sat->tle->bstar*Predict::ae)*$age + |
|
195 | + $sat->tle->xmo/Predict::twopi) + $sat->tle->revnum - 1; |
|
196 | 196 | |
197 | 197 | /* orbit type */ |
198 | 198 | $sat->otype = $sat->get_orbit_type($sat); |
@@ -256,10 +256,10 @@ discard block |
||
256 | 256 | It is time dependent. Also sat->jul_utc is often zero |
257 | 257 | when this function is called |
258 | 258 | ***/ |
259 | - if ((10.0 * abs($sat->tle->xndt2o / (Predict::twopi / Predict::xmnpda / Predict::xmnpda))) == 0) { |
|
259 | + if ((10.0*abs($sat->tle->xndt2o/(Predict::twopi/Predict::xmnpda/Predict::xmnpda))) == 0) { |
|
260 | 260 | return true; |
261 | - } elseif ($sat->jul_epoch + ((16.666666 - $sat->meanmo) / |
|
262 | - (10.0 * abs($sat->tle->xndt2o / (Predict::twopi / Predict::xmnpda / Predict::xmnpda)))) < $sat->jul_utc) { |
|
261 | + } elseif ($sat->jul_epoch + ((16.666666 - $sat->meanmo)/ |
|
262 | + (10.0*abs($sat->tle->xndt2o/(Predict::twopi/Predict::xmnpda/Predict::xmnpda)))) < $sat->jul_utc) { |
|
263 | 263 | return true; |
264 | 264 | } else { |
265 | 265 | return false; |
@@ -298,7 +298,7 @@ discard block |
||
298 | 298 | $observerGeo = new Predict_Geodetic(); |
299 | 299 | $observerGeo->lat = Predict_Math::Radians($qth->lat); |
300 | 300 | $observerGeo->lon = Predict_Math::Radians($qth->lon); |
301 | - $observerGeo->alt = $qth->alt * 1000; |
|
301 | + $observerGeo->alt = $qth->alt*1000; |
|
302 | 302 | |
303 | 303 | // Now determine the sun and observer positions |
304 | 304 | $observerPos = new Predict_Vector(); |
@@ -311,12 +311,12 @@ discard block |
||
311 | 311 | $observerSatPos = new Predict_Vector(); |
312 | 312 | Predict_Math::Vec_Sub($this->pos, $observerPos, $observerSatPos); |
313 | 313 | $phaseAngle = Predict_Math::Degrees(Predict_Math::Angle($solarVector, $observerSatPos)); |
314 | - $illum = $phaseAngle / 180; |
|
314 | + $illum = $phaseAngle/180; |
|
315 | 315 | |
316 | - $illuminationChange = $illum / $imag['illum']; |
|
317 | - $inverseSquareOfDistanceChange = pow(($imag['distance'] / $this->range), 2); |
|
316 | + $illuminationChange = $illum/$imag['illum']; |
|
317 | + $inverseSquareOfDistanceChange = pow(($imag['distance']/$this->range), 2); |
|
318 | 318 | $changeInMagnitude = log( |
319 | - $illuminationChange * $inverseSquareOfDistanceChange, |
|
319 | + $illuminationChange*$inverseSquareOfDistanceChange, |
|
320 | 320 | self::POGSONS_RATIO |
321 | 321 | ); |
322 | 322 |
@@ -146,8 +146,7 @@ |
||
146 | 146 | $obs_geodetic->lat = $qth->lat * Predict::de2ra; |
147 | 147 | $obs_geodetic->alt = $qth->alt / 1000.0; |
148 | 148 | $obs_geodetic->theta = 0; |
149 | - } |
|
150 | - else { |
|
149 | + } else { |
|
151 | 150 | $obs_geodetic->lon = 0.0; |
152 | 151 | $obs_geodetic->lat = 0.0; |
153 | 152 | $obs_geodetic->alt = 0.0; |
@@ -56,6 +56,10 @@ |
||
56 | 56 | /* It is intended to be used to determine the ground track of */ |
57 | 57 | /* a satellite. The calculations assume the earth to be an */ |
58 | 58 | /* oblate spheroid as defined in WGS '72. */ |
59 | + |
|
60 | + /** |
|
61 | + * @param double $_time |
|
62 | + */ |
|
59 | 63 | public static function Calculate_LatLonAlt($_time, Predict_Vector $pos, Predict_Geodetic $geodetic) |
60 | 64 | { |
61 | 65 | /* Reference: The 1992 Astronomical Almanac, page K12. */ |
@@ -25,131 +25,131 @@ |
||
25 | 25 | */ |
26 | 26 | class Predict_SGPObs |
27 | 27 | { |
28 | - /* Procedure Calculate_User_PosVel passes the user's geodetic position */ |
|
29 | - /* and the time of interest and returns the ECI position and velocity */ |
|
30 | - /* of the observer. The velocity calculation assumes the geodetic */ |
|
31 | - /* position is stationary relative to the earth's surface. */ |
|
32 | - public static function Calculate_User_PosVel( |
|
33 | - $_time, Predict_Geodetic $geodetic, Predict_Vector $obs_pos, Predict_Vector $obs_vel |
|
34 | - ) |
|
35 | - { |
|
36 | - /* Reference: The 1992 Astronomical Almanac, page K11. */ |
|
37 | - |
|
38 | - $sinGeodeticLat = sin($geodetic->lat); /* Only run sin($geodetic->lat) once */ |
|
39 | - |
|
40 | - $geodetic->theta = Predict_Math::FMod2p(Predict_Time::ThetaG_JD($_time) + $geodetic->lon);/*LMST*/ |
|
41 | - $c = 1 / sqrt(1 + Predict::__f * (Predict::__f - 2) * $sinGeodeticLat * $sinGeodeticLat); |
|
42 | - $sq = (1 - Predict::__f) * (1 - Predict::__f) * $c; |
|
43 | - $achcp = (Predict::xkmper * $c + $geodetic->alt) * cos($geodetic->lat); |
|
44 | - $obs_pos->x = $achcp * cos($geodetic->theta); /*kilometers*/ |
|
45 | - $obs_pos->y = $achcp * sin($geodetic->theta); |
|
46 | - $obs_pos->z = (Predict::xkmper * $sq + $geodetic->alt) * $sinGeodeticLat; |
|
47 | - $obs_vel->x = -Predict::mfactor * $obs_pos->y; /*kilometers/second*/ |
|
48 | - $obs_vel->y = Predict::mfactor * $obs_pos->x; |
|
49 | - $obs_vel->z = 0; |
|
50 | - $obs_pos->w = sqrt($obs_pos->x * $obs_pos->x + $obs_pos->y * $obs_pos->y + $obs_pos->z * $obs_pos->z); |
|
51 | - $obs_vel->w = sqrt($obs_vel->x * $obs_vel->x + $obs_vel->y * $obs_vel->y + $obs_vel->z * $obs_vel->z); |
|
52 | - } |
|
53 | - |
|
54 | - /* Procedure Calculate_LatLonAlt will calculate the geodetic */ |
|
55 | - /* position of an object given its ECI position pos and time. */ |
|
56 | - /* It is intended to be used to determine the ground track of */ |
|
57 | - /* a satellite. The calculations assume the earth to be an */ |
|
58 | - /* oblate spheroid as defined in WGS '72. */ |
|
59 | - public static function Calculate_LatLonAlt($_time, Predict_Vector $pos, Predict_Geodetic $geodetic) |
|
60 | - { |
|
61 | - /* Reference: The 1992 Astronomical Almanac, page K12. */ |
|
62 | - |
|
63 | - /* double r,e2,phi,c; */ |
|
64 | - |
|
65 | - $geodetic->theta = Predict_Math::AcTan($pos->y, $pos->x); /*radians*/ |
|
66 | - $geodetic->lon = Predict_Math::FMod2p($geodetic->theta - Predict_Time::ThetaG_JD($_time)); /*radians*/ |
|
67 | - $r = sqrt(($pos->x * $pos->x) + ($pos->y * $pos->y)); |
|
68 | - $e2 = Predict::__f * (2 - Predict::__f); |
|
69 | - $geodetic->lat = Predict_Math::AcTan($pos->z, $r); /*radians*/ |
|
70 | - |
|
71 | - do { |
|
72 | - $phi = $geodetic->lat; |
|
73 | - $sinPhi = sin($phi); |
|
74 | - $c = 1 / sqrt(1 - $e2 * ($sinPhi * $sinPhi)); |
|
75 | - $geodetic->lat = Predict_Math::AcTan($pos->z + Predict::xkmper * $c * $e2 * $sinPhi, $r); |
|
76 | - } while (abs($geodetic->lat - $phi) >= 1E-10); |
|
77 | - |
|
78 | - $geodetic->alt = $r / cos($geodetic->lat) - Predict::xkmper * $c;/*kilometers*/ |
|
79 | - |
|
80 | - if ($geodetic->lat > Predict::pio2) { |
|
81 | - $geodetic->lat -= Predict::twopi; |
|
82 | - } |
|
83 | - } |
|
84 | - |
|
85 | - /* The procedures Calculate_Obs and Calculate_RADec calculate */ |
|
86 | - /* the *topocentric* coordinates of the object with ECI position, */ |
|
87 | - /* {pos}, and velocity, {vel}, from location {geodetic} at {time}. */ |
|
88 | - /* The {obs_set} returned for Calculate_Obs consists of azimuth, */ |
|
89 | - /* elevation, range, and range rate (in that order) with units of */ |
|
90 | - /* radians, radians, kilometers, and kilometers/second, respectively. */ |
|
91 | - /* The WGS '72 geoid is used and the effect of atmospheric refraction */ |
|
92 | - /* (under standard temperature and pressure) is incorporated into the */ |
|
93 | - /* elevation calculation; the effect of atmospheric refraction on */ |
|
94 | - /* range and range rate has not yet been quantified. */ |
|
95 | - |
|
96 | - /* The {obs_set} for Calculate_RADec consists of right ascension and */ |
|
97 | - /* declination (in that order) in radians. Again, calculations are */ |
|
98 | - /* based on *topocentric* position using the WGS '72 geoid and */ |
|
99 | - /* incorporating atmospheric refraction. */ |
|
100 | - public static function Calculate_Obs($_time, Predict_Vector $pos, Predict_Vector $vel, Predict_Geodetic $geodetic, Predict_ObsSet $obs_set) |
|
101 | - { |
|
102 | - $obs_pos = new Predict_Vector(); |
|
103 | - $obs_vel = new Predict_Vector(); |
|
104 | - $range = new Predict_Vector(); |
|
105 | - $rgvel = new Predict_Vector(); |
|
106 | - |
|
107 | - self::Calculate_User_PosVel($_time, $geodetic, $obs_pos, $obs_vel); |
|
108 | - |
|
109 | - $range->x = $pos->x - $obs_pos->x; |
|
110 | - $range->y = $pos->y - $obs_pos->y; |
|
111 | - $range->z = $pos->z - $obs_pos->z; |
|
112 | - |
|
113 | - $rgvel->x = $vel->x - $obs_vel->x; |
|
114 | - $rgvel->y = $vel->y - $obs_vel->y; |
|
115 | - $rgvel->z = $vel->z - $obs_vel->z; |
|
116 | - |
|
117 | - $range->w = sqrt($range->x * $range->x + $range->y * $range->y + $range->z * $range->z); |
|
118 | - |
|
119 | - $sin_lat = sin($geodetic->lat); |
|
120 | - $cos_lat = cos($geodetic->lat); |
|
121 | - $sin_theta = sin($geodetic->theta); |
|
122 | - $cos_theta = cos($geodetic->theta); |
|
123 | - $top_s = $sin_lat * $cos_theta * $range->x |
|
124 | - + $sin_lat * $sin_theta * $range->y |
|
125 | - - $cos_lat * $range->z; |
|
126 | - $top_e = -$sin_theta * $range->x |
|
127 | - + $cos_theta * $range->y; |
|
128 | - $top_z = $cos_lat * $cos_theta * $range->x |
|
129 | - + $cos_lat * $sin_theta * $range->y |
|
130 | - + $sin_lat * $range->z; |
|
131 | - $azim = atan(-$top_e / $top_s); /*Azimuth*/ |
|
132 | - if ($top_s > 0) { |
|
133 | - $azim = $azim + Predict::pi; |
|
134 | - } |
|
135 | - if ($azim < 0 ) { |
|
136 | - $azim = $azim + Predict::twopi; |
|
137 | - } |
|
138 | - $el = Predict_Math::ArcSin($top_z / $range->w); |
|
139 | - $obs_set->az = $azim; /* Azimuth (radians) */ |
|
140 | - $obs_set->el = $el; /* Elevation (radians)*/ |
|
141 | - $obs_set->range = $range->w; /* Range (kilometers) */ |
|
142 | - |
|
143 | - /* Range Rate (kilometers/second)*/ |
|
144 | - $obs_set->range_rate = Predict_Math::Dot($range, $rgvel) / $range->w; |
|
145 | - |
|
146 | - /* Corrections for atmospheric refraction */ |
|
147 | - /* Reference: Astronomical Algorithms by Jean Meeus, pp. 101-104 */ |
|
148 | - /* Correction is meaningless when apparent elevation is below horizon */ |
|
149 | - // obs_set->el = obs_set->el + Radians((1.02/tan(Radians(Degrees(el)+ |
|
150 | - // 10.3/(Degrees(el)+5.11))))/60); |
|
151 | - if ($obs_set->el < 0) { |
|
152 | - $obs_set->el = $el; /*Reset to true elevation*/ |
|
153 | - } |
|
154 | - } |
|
28 | + /* Procedure Calculate_User_PosVel passes the user's geodetic position */ |
|
29 | + /* and the time of interest and returns the ECI position and velocity */ |
|
30 | + /* of the observer. The velocity calculation assumes the geodetic */ |
|
31 | + /* position is stationary relative to the earth's surface. */ |
|
32 | + public static function Calculate_User_PosVel( |
|
33 | + $_time, Predict_Geodetic $geodetic, Predict_Vector $obs_pos, Predict_Vector $obs_vel |
|
34 | + ) |
|
35 | + { |
|
36 | + /* Reference: The 1992 Astronomical Almanac, page K11. */ |
|
37 | + |
|
38 | + $sinGeodeticLat = sin($geodetic->lat); /* Only run sin($geodetic->lat) once */ |
|
39 | + |
|
40 | + $geodetic->theta = Predict_Math::FMod2p(Predict_Time::ThetaG_JD($_time) + $geodetic->lon);/*LMST*/ |
|
41 | + $c = 1 / sqrt(1 + Predict::__f * (Predict::__f - 2) * $sinGeodeticLat * $sinGeodeticLat); |
|
42 | + $sq = (1 - Predict::__f) * (1 - Predict::__f) * $c; |
|
43 | + $achcp = (Predict::xkmper * $c + $geodetic->alt) * cos($geodetic->lat); |
|
44 | + $obs_pos->x = $achcp * cos($geodetic->theta); /*kilometers*/ |
|
45 | + $obs_pos->y = $achcp * sin($geodetic->theta); |
|
46 | + $obs_pos->z = (Predict::xkmper * $sq + $geodetic->alt) * $sinGeodeticLat; |
|
47 | + $obs_vel->x = -Predict::mfactor * $obs_pos->y; /*kilometers/second*/ |
|
48 | + $obs_vel->y = Predict::mfactor * $obs_pos->x; |
|
49 | + $obs_vel->z = 0; |
|
50 | + $obs_pos->w = sqrt($obs_pos->x * $obs_pos->x + $obs_pos->y * $obs_pos->y + $obs_pos->z * $obs_pos->z); |
|
51 | + $obs_vel->w = sqrt($obs_vel->x * $obs_vel->x + $obs_vel->y * $obs_vel->y + $obs_vel->z * $obs_vel->z); |
|
52 | + } |
|
53 | + |
|
54 | + /* Procedure Calculate_LatLonAlt will calculate the geodetic */ |
|
55 | + /* position of an object given its ECI position pos and time. */ |
|
56 | + /* It is intended to be used to determine the ground track of */ |
|
57 | + /* a satellite. The calculations assume the earth to be an */ |
|
58 | + /* oblate spheroid as defined in WGS '72. */ |
|
59 | + public static function Calculate_LatLonAlt($_time, Predict_Vector $pos, Predict_Geodetic $geodetic) |
|
60 | + { |
|
61 | + /* Reference: The 1992 Astronomical Almanac, page K12. */ |
|
62 | + |
|
63 | + /* double r,e2,phi,c; */ |
|
64 | + |
|
65 | + $geodetic->theta = Predict_Math::AcTan($pos->y, $pos->x); /*radians*/ |
|
66 | + $geodetic->lon = Predict_Math::FMod2p($geodetic->theta - Predict_Time::ThetaG_JD($_time)); /*radians*/ |
|
67 | + $r = sqrt(($pos->x * $pos->x) + ($pos->y * $pos->y)); |
|
68 | + $e2 = Predict::__f * (2 - Predict::__f); |
|
69 | + $geodetic->lat = Predict_Math::AcTan($pos->z, $r); /*radians*/ |
|
70 | + |
|
71 | + do { |
|
72 | + $phi = $geodetic->lat; |
|
73 | + $sinPhi = sin($phi); |
|
74 | + $c = 1 / sqrt(1 - $e2 * ($sinPhi * $sinPhi)); |
|
75 | + $geodetic->lat = Predict_Math::AcTan($pos->z + Predict::xkmper * $c * $e2 * $sinPhi, $r); |
|
76 | + } while (abs($geodetic->lat - $phi) >= 1E-10); |
|
77 | + |
|
78 | + $geodetic->alt = $r / cos($geodetic->lat) - Predict::xkmper * $c;/*kilometers*/ |
|
79 | + |
|
80 | + if ($geodetic->lat > Predict::pio2) { |
|
81 | + $geodetic->lat -= Predict::twopi; |
|
82 | + } |
|
83 | + } |
|
84 | + |
|
85 | + /* The procedures Calculate_Obs and Calculate_RADec calculate */ |
|
86 | + /* the *topocentric* coordinates of the object with ECI position, */ |
|
87 | + /* {pos}, and velocity, {vel}, from location {geodetic} at {time}. */ |
|
88 | + /* The {obs_set} returned for Calculate_Obs consists of azimuth, */ |
|
89 | + /* elevation, range, and range rate (in that order) with units of */ |
|
90 | + /* radians, radians, kilometers, and kilometers/second, respectively. */ |
|
91 | + /* The WGS '72 geoid is used and the effect of atmospheric refraction */ |
|
92 | + /* (under standard temperature and pressure) is incorporated into the */ |
|
93 | + /* elevation calculation; the effect of atmospheric refraction on */ |
|
94 | + /* range and range rate has not yet been quantified. */ |
|
95 | + |
|
96 | + /* The {obs_set} for Calculate_RADec consists of right ascension and */ |
|
97 | + /* declination (in that order) in radians. Again, calculations are */ |
|
98 | + /* based on *topocentric* position using the WGS '72 geoid and */ |
|
99 | + /* incorporating atmospheric refraction. */ |
|
100 | + public static function Calculate_Obs($_time, Predict_Vector $pos, Predict_Vector $vel, Predict_Geodetic $geodetic, Predict_ObsSet $obs_set) |
|
101 | + { |
|
102 | + $obs_pos = new Predict_Vector(); |
|
103 | + $obs_vel = new Predict_Vector(); |
|
104 | + $range = new Predict_Vector(); |
|
105 | + $rgvel = new Predict_Vector(); |
|
106 | + |
|
107 | + self::Calculate_User_PosVel($_time, $geodetic, $obs_pos, $obs_vel); |
|
108 | + |
|
109 | + $range->x = $pos->x - $obs_pos->x; |
|
110 | + $range->y = $pos->y - $obs_pos->y; |
|
111 | + $range->z = $pos->z - $obs_pos->z; |
|
112 | + |
|
113 | + $rgvel->x = $vel->x - $obs_vel->x; |
|
114 | + $rgvel->y = $vel->y - $obs_vel->y; |
|
115 | + $rgvel->z = $vel->z - $obs_vel->z; |
|
116 | + |
|
117 | + $range->w = sqrt($range->x * $range->x + $range->y * $range->y + $range->z * $range->z); |
|
118 | + |
|
119 | + $sin_lat = sin($geodetic->lat); |
|
120 | + $cos_lat = cos($geodetic->lat); |
|
121 | + $sin_theta = sin($geodetic->theta); |
|
122 | + $cos_theta = cos($geodetic->theta); |
|
123 | + $top_s = $sin_lat * $cos_theta * $range->x |
|
124 | + + $sin_lat * $sin_theta * $range->y |
|
125 | + - $cos_lat * $range->z; |
|
126 | + $top_e = -$sin_theta * $range->x |
|
127 | + + $cos_theta * $range->y; |
|
128 | + $top_z = $cos_lat * $cos_theta * $range->x |
|
129 | + + $cos_lat * $sin_theta * $range->y |
|
130 | + + $sin_lat * $range->z; |
|
131 | + $azim = atan(-$top_e / $top_s); /*Azimuth*/ |
|
132 | + if ($top_s > 0) { |
|
133 | + $azim = $azim + Predict::pi; |
|
134 | + } |
|
135 | + if ($azim < 0 ) { |
|
136 | + $azim = $azim + Predict::twopi; |
|
137 | + } |
|
138 | + $el = Predict_Math::ArcSin($top_z / $range->w); |
|
139 | + $obs_set->az = $azim; /* Azimuth (radians) */ |
|
140 | + $obs_set->el = $el; /* Elevation (radians)*/ |
|
141 | + $obs_set->range = $range->w; /* Range (kilometers) */ |
|
142 | + |
|
143 | + /* Range Rate (kilometers/second)*/ |
|
144 | + $obs_set->range_rate = Predict_Math::Dot($range, $rgvel) / $range->w; |
|
145 | + |
|
146 | + /* Corrections for atmospheric refraction */ |
|
147 | + /* Reference: Astronomical Algorithms by Jean Meeus, pp. 101-104 */ |
|
148 | + /* Correction is meaningless when apparent elevation is below horizon */ |
|
149 | + // obs_set->el = obs_set->el + Radians((1.02/tan(Radians(Degrees(el)+ |
|
150 | + // 10.3/(Degrees(el)+5.11))))/60); |
|
151 | + if ($obs_set->el < 0) { |
|
152 | + $obs_set->el = $el; /*Reset to true elevation*/ |
|
153 | + } |
|
154 | + } |
|
155 | 155 | } |
@@ -37,18 +37,18 @@ discard block |
||
37 | 37 | |
38 | 38 | $sinGeodeticLat = sin($geodetic->lat); /* Only run sin($geodetic->lat) once */ |
39 | 39 | |
40 | - $geodetic->theta = Predict_Math::FMod2p(Predict_Time::ThetaG_JD($_time) + $geodetic->lon);/*LMST*/ |
|
41 | - $c = 1 / sqrt(1 + Predict::__f * (Predict::__f - 2) * $sinGeodeticLat * $sinGeodeticLat); |
|
42 | - $sq = (1 - Predict::__f) * (1 - Predict::__f) * $c; |
|
43 | - $achcp = (Predict::xkmper * $c + $geodetic->alt) * cos($geodetic->lat); |
|
44 | - $obs_pos->x = $achcp * cos($geodetic->theta); /*kilometers*/ |
|
45 | - $obs_pos->y = $achcp * sin($geodetic->theta); |
|
46 | - $obs_pos->z = (Predict::xkmper * $sq + $geodetic->alt) * $sinGeodeticLat; |
|
47 | - $obs_vel->x = -Predict::mfactor * $obs_pos->y; /*kilometers/second*/ |
|
48 | - $obs_vel->y = Predict::mfactor * $obs_pos->x; |
|
49 | - $obs_vel->z = 0; |
|
50 | - $obs_pos->w = sqrt($obs_pos->x * $obs_pos->x + $obs_pos->y * $obs_pos->y + $obs_pos->z * $obs_pos->z); |
|
51 | - $obs_vel->w = sqrt($obs_vel->x * $obs_vel->x + $obs_vel->y * $obs_vel->y + $obs_vel->z * $obs_vel->z); |
|
40 | + $geodetic->theta = Predict_Math::FMod2p(Predict_Time::ThetaG_JD($_time) + $geodetic->lon); /*LMST*/ |
|
41 | + $c = 1/sqrt(1 + Predict::__f*(Predict::__f - 2)*$sinGeodeticLat*$sinGeodeticLat); |
|
42 | + $sq = (1 - Predict::__f)*(1 - Predict::__f)*$c; |
|
43 | + $achcp = (Predict::xkmper*$c + $geodetic->alt)*cos($geodetic->lat); |
|
44 | + $obs_pos->x = $achcp*cos($geodetic->theta); /*kilometers*/ |
|
45 | + $obs_pos->y = $achcp*sin($geodetic->theta); |
|
46 | + $obs_pos->z = (Predict::xkmper*$sq + $geodetic->alt)*$sinGeodeticLat; |
|
47 | + $obs_vel->x = -Predict::mfactor*$obs_pos->y; /*kilometers/second*/ |
|
48 | + $obs_vel->y = Predict::mfactor*$obs_pos->x; |
|
49 | + $obs_vel->z = 0; |
|
50 | + $obs_pos->w = sqrt($obs_pos->x*$obs_pos->x + $obs_pos->y*$obs_pos->y + $obs_pos->z*$obs_pos->z); |
|
51 | + $obs_vel->w = sqrt($obs_vel->x*$obs_vel->x + $obs_vel->y*$obs_vel->y + $obs_vel->z*$obs_vel->z); |
|
52 | 52 | } |
53 | 53 | |
54 | 54 | /* Procedure Calculate_LatLonAlt will calculate the geodetic */ |
@@ -56,7 +56,7 @@ discard block |
||
56 | 56 | /* It is intended to be used to determine the ground track of */ |
57 | 57 | /* a satellite. The calculations assume the earth to be an */ |
58 | 58 | /* oblate spheroid as defined in WGS '72. */ |
59 | - public static function Calculate_LatLonAlt($_time, Predict_Vector $pos, Predict_Geodetic $geodetic) |
|
59 | + public static function Calculate_LatLonAlt($_time, Predict_Vector $pos, Predict_Geodetic $geodetic) |
|
60 | 60 | { |
61 | 61 | /* Reference: The 1992 Astronomical Almanac, page K12. */ |
62 | 62 | |
@@ -64,18 +64,18 @@ discard block |
||
64 | 64 | |
65 | 65 | $geodetic->theta = Predict_Math::AcTan($pos->y, $pos->x); /*radians*/ |
66 | 66 | $geodetic->lon = Predict_Math::FMod2p($geodetic->theta - Predict_Time::ThetaG_JD($_time)); /*radians*/ |
67 | - $r = sqrt(($pos->x * $pos->x) + ($pos->y * $pos->y)); |
|
68 | - $e2 = Predict::__f * (2 - Predict::__f); |
|
67 | + $r = sqrt(($pos->x*$pos->x) + ($pos->y*$pos->y)); |
|
68 | + $e2 = Predict::__f*(2 - Predict::__f); |
|
69 | 69 | $geodetic->lat = Predict_Math::AcTan($pos->z, $r); /*radians*/ |
70 | 70 | |
71 | 71 | do { |
72 | 72 | $phi = $geodetic->lat; |
73 | 73 | $sinPhi = sin($phi); |
74 | - $c = 1 / sqrt(1 - $e2 * ($sinPhi * $sinPhi)); |
|
75 | - $geodetic->lat = Predict_Math::AcTan($pos->z + Predict::xkmper * $c * $e2 * $sinPhi, $r); |
|
74 | + $c = 1/sqrt(1 - $e2*($sinPhi*$sinPhi)); |
|
75 | + $geodetic->lat = Predict_Math::AcTan($pos->z + Predict::xkmper*$c*$e2*$sinPhi, $r); |
|
76 | 76 | } while (abs($geodetic->lat - $phi) >= 1E-10); |
77 | 77 | |
78 | - $geodetic->alt = $r / cos($geodetic->lat) - Predict::xkmper * $c;/*kilometers*/ |
|
78 | + $geodetic->alt = $r/cos($geodetic->lat) - Predict::xkmper*$c; /*kilometers*/ |
|
79 | 79 | |
80 | 80 | if ($geodetic->lat > Predict::pio2) { |
81 | 81 | $geodetic->lat -= Predict::twopi; |
@@ -114,34 +114,34 @@ discard block |
||
114 | 114 | $rgvel->y = $vel->y - $obs_vel->y; |
115 | 115 | $rgvel->z = $vel->z - $obs_vel->z; |
116 | 116 | |
117 | - $range->w = sqrt($range->x * $range->x + $range->y * $range->y + $range->z * $range->z); |
|
117 | + $range->w = sqrt($range->x*$range->x + $range->y*$range->y + $range->z*$range->z); |
|
118 | 118 | |
119 | 119 | $sin_lat = sin($geodetic->lat); |
120 | 120 | $cos_lat = cos($geodetic->lat); |
121 | 121 | $sin_theta = sin($geodetic->theta); |
122 | 122 | $cos_theta = cos($geodetic->theta); |
123 | - $top_s = $sin_lat * $cos_theta * $range->x |
|
124 | - + $sin_lat * $sin_theta * $range->y |
|
125 | - - $cos_lat * $range->z; |
|
126 | - $top_e = -$sin_theta * $range->x |
|
127 | - + $cos_theta * $range->y; |
|
128 | - $top_z = $cos_lat * $cos_theta * $range->x |
|
129 | - + $cos_lat * $sin_theta * $range->y |
|
130 | - + $sin_lat * $range->z; |
|
131 | - $azim = atan(-$top_e / $top_s); /*Azimuth*/ |
|
123 | + $top_s = $sin_lat*$cos_theta*$range->x |
|
124 | + + $sin_lat*$sin_theta*$range->y |
|
125 | + - $cos_lat*$range->z; |
|
126 | + $top_e = -$sin_theta*$range->x |
|
127 | + + $cos_theta*$range->y; |
|
128 | + $top_z = $cos_lat*$cos_theta*$range->x |
|
129 | + + $cos_lat*$sin_theta*$range->y |
|
130 | + + $sin_lat*$range->z; |
|
131 | + $azim = atan(-$top_e/$top_s); /*Azimuth*/ |
|
132 | 132 | if ($top_s > 0) { |
133 | 133 | $azim = $azim + Predict::pi; |
134 | 134 | } |
135 | - if ($azim < 0 ) { |
|
135 | + if ($azim < 0) { |
|
136 | 136 | $azim = $azim + Predict::twopi; |
137 | 137 | } |
138 | - $el = Predict_Math::ArcSin($top_z / $range->w); |
|
139 | - $obs_set->az = $azim; /* Azimuth (radians) */ |
|
140 | - $obs_set->el = $el; /* Elevation (radians)*/ |
|
138 | + $el = Predict_Math::ArcSin($top_z/$range->w); |
|
139 | + $obs_set->az = $azim; /* Azimuth (radians) */ |
|
140 | + $obs_set->el = $el; /* Elevation (radians)*/ |
|
141 | 141 | $obs_set->range = $range->w; /* Range (kilometers) */ |
142 | 142 | |
143 | 143 | /* Range Rate (kilometers/second)*/ |
144 | - $obs_set->range_rate = Predict_Math::Dot($range, $rgvel) / $range->w; |
|
144 | + $obs_set->range_rate = Predict_Math::Dot($range, $rgvel)/$range->w; |
|
145 | 145 | |
146 | 146 | /* Corrections for atmospheric refraction */ |
147 | 147 | /* Reference: Astronomical Algorithms by Jean Meeus, pp. 101-104 */ |
@@ -149,7 +149,7 @@ discard block |
||
149 | 149 | // obs_set->el = obs_set->el + Radians((1.02/tan(Radians(Degrees(el)+ |
150 | 150 | // 10.3/(Degrees(el)+5.11))))/60); |
151 | 151 | if ($obs_set->el < 0) { |
152 | - $obs_set->el = $el; /*Reset to true elevation*/ |
|
152 | + $obs_set->el = $el; /*Reset to true elevation*/ |
|
153 | 153 | } |
154 | 154 | } |
155 | 155 | } |