@@ -35,110 +35,110 @@ discard block |
||
35 | 35 | { |
36 | 36 | |
37 | 37 | static function version() { |
38 | - return '1.1'; |
|
38 | + return '1.1'; |
|
39 | 39 | } |
40 | 40 | |
41 | 41 | // geoPHP::load($data, $type, $other_args); |
42 | 42 | // if $data is an array, all passed in values will be combined into a single geometry |
43 | 43 | static function load() { |
44 | - $args = func_get_args(); |
|
44 | + $args = func_get_args(); |
|
45 | 45 | |
46 | - $data = array_shift($args); |
|
47 | - $type = array_shift($args); |
|
46 | + $data = array_shift($args); |
|
47 | + $type = array_shift($args); |
|
48 | 48 | |
49 | - $type_map = geoPHP::getAdapterMap(); |
|
49 | + $type_map = geoPHP::getAdapterMap(); |
|
50 | 50 | |
51 | - // Auto-detect type if needed |
|
52 | - if (!$type) { |
|
53 | - // If the user is trying to load a Geometry from a Geometry... Just pass it back |
|
54 | - if (is_object($data)) { |
|
55 | - if ($data instanceOf Geometry) return $data; |
|
56 | - } |
|
51 | + // Auto-detect type if needed |
|
52 | + if (!$type) { |
|
53 | + // If the user is trying to load a Geometry from a Geometry... Just pass it back |
|
54 | + if (is_object($data)) { |
|
55 | + if ($data instanceOf Geometry) return $data; |
|
56 | + } |
|
57 | 57 | |
58 | - $detected = geoPHP::detectFormat($data); |
|
59 | - if (!$detected) { |
|
60 | - return FALSE; |
|
61 | - } |
|
58 | + $detected = geoPHP::detectFormat($data); |
|
59 | + if (!$detected) { |
|
60 | + return FALSE; |
|
61 | + } |
|
62 | 62 | |
63 | - $format = explode(':', $detected); |
|
64 | - $type = array_shift($format); |
|
65 | - $args = $format; |
|
66 | - } |
|
67 | - |
|
68 | - $processor_type = $type_map[$type]; |
|
69 | - |
|
70 | - if (!$processor_type) { |
|
71 | - throw new exception('geoPHP could not find an adapter of type '.htmlentities($type)); |
|
72 | - exit; |
|
73 | - } |
|
74 | - |
|
75 | - $processor = new $processor_type(); |
|
76 | - |
|
77 | - // Data is not an array, just pass it normally |
|
78 | - if (!is_array($data)) { |
|
79 | - $result = call_user_func_array(array($processor, "read"), array_merge(array($data), $args)); |
|
80 | - } |
|
81 | - // Data is an array, combine all passed in items into a single geomtetry |
|
82 | - else { |
|
83 | - $geoms = array(); |
|
84 | - foreach ($data as $item) { |
|
85 | - $geoms[] = call_user_func_array(array($processor, "read"), array_merge(array($item), $args)); |
|
86 | - } |
|
87 | - $result = geoPHP::geometryReduce($geoms); |
|
88 | - } |
|
89 | - |
|
90 | - return $result; |
|
63 | + $format = explode(':', $detected); |
|
64 | + $type = array_shift($format); |
|
65 | + $args = $format; |
|
66 | + } |
|
67 | + |
|
68 | + $processor_type = $type_map[$type]; |
|
69 | + |
|
70 | + if (!$processor_type) { |
|
71 | + throw new exception('geoPHP could not find an adapter of type '.htmlentities($type)); |
|
72 | + exit; |
|
73 | + } |
|
74 | + |
|
75 | + $processor = new $processor_type(); |
|
76 | + |
|
77 | + // Data is not an array, just pass it normally |
|
78 | + if (!is_array($data)) { |
|
79 | + $result = call_user_func_array(array($processor, "read"), array_merge(array($data), $args)); |
|
80 | + } |
|
81 | + // Data is an array, combine all passed in items into a single geomtetry |
|
82 | + else { |
|
83 | + $geoms = array(); |
|
84 | + foreach ($data as $item) { |
|
85 | + $geoms[] = call_user_func_array(array($processor, "read"), array_merge(array($item), $args)); |
|
86 | + } |
|
87 | + $result = geoPHP::geometryReduce($geoms); |
|
88 | + } |
|
89 | + |
|
90 | + return $result; |
|
91 | 91 | } |
92 | 92 | |
93 | 93 | static function getAdapterMap() { |
94 | - return array ( |
|
95 | - 'wkt' => 'WKT', |
|
96 | - 'ewkt' => 'EWKT', |
|
97 | - 'wkb' => 'WKB', |
|
98 | - 'ewkb' => 'EWKB', |
|
99 | - 'json' => 'GeoJSON', |
|
100 | - 'geojson' => 'GeoJSON', |
|
101 | - 'kml' => 'KML', |
|
102 | - 'gpx' => 'GPX', |
|
103 | - 'georss' => 'GeoRSS', |
|
104 | - 'google_geocode' => 'GoogleGeocode', |
|
105 | - 'geohash' => 'GeoHash', |
|
106 | - ); |
|
94 | + return array ( |
|
95 | + 'wkt' => 'WKT', |
|
96 | + 'ewkt' => 'EWKT', |
|
97 | + 'wkb' => 'WKB', |
|
98 | + 'ewkb' => 'EWKB', |
|
99 | + 'json' => 'GeoJSON', |
|
100 | + 'geojson' => 'GeoJSON', |
|
101 | + 'kml' => 'KML', |
|
102 | + 'gpx' => 'GPX', |
|
103 | + 'georss' => 'GeoRSS', |
|
104 | + 'google_geocode' => 'GoogleGeocode', |
|
105 | + 'geohash' => 'GeoHash', |
|
106 | + ); |
|
107 | 107 | } |
108 | 108 | |
109 | 109 | static function geometryList() { |
110 | - return array( |
|
111 | - 'point' => 'Point', |
|
112 | - 'linestring' => 'LineString', |
|
113 | - 'polygon' => 'Polygon', |
|
114 | - 'multipoint' => 'MultiPoint', |
|
115 | - 'multilinestring' => 'MultiLineString', |
|
116 | - 'multipolygon' => 'MultiPolygon', |
|
117 | - 'geometrycollection' => 'GeometryCollection', |
|
118 | - ); |
|
110 | + return array( |
|
111 | + 'point' => 'Point', |
|
112 | + 'linestring' => 'LineString', |
|
113 | + 'polygon' => 'Polygon', |
|
114 | + 'multipoint' => 'MultiPoint', |
|
115 | + 'multilinestring' => 'MultiLineString', |
|
116 | + 'multipolygon' => 'MultiPolygon', |
|
117 | + 'geometrycollection' => 'GeometryCollection', |
|
118 | + ); |
|
119 | 119 | } |
120 | 120 | |
121 | 121 | static function geosInstalled($force = NULL) { |
122 | - static $geos_installed = NULL; |
|
123 | - if ($force !== NULL) $geos_installed = $force; |
|
124 | - if ($geos_installed !== NULL) { |
|
125 | - return $geos_installed; |
|
126 | - } |
|
127 | - $geos_installed = class_exists('GEOSGeometry'); |
|
128 | - return $geos_installed; |
|
122 | + static $geos_installed = NULL; |
|
123 | + if ($force !== NULL) $geos_installed = $force; |
|
124 | + if ($geos_installed !== NULL) { |
|
125 | + return $geos_installed; |
|
126 | + } |
|
127 | + $geos_installed = class_exists('GEOSGeometry'); |
|
128 | + return $geos_installed; |
|
129 | 129 | } |
130 | 130 | |
131 | 131 | static function geosToGeometry($geos) { |
132 | - if (!geoPHP::geosInstalled()) { |
|
133 | - return NULL; |
|
134 | - } |
|
135 | - $wkb_writer = new GEOSWKBWriter(); |
|
136 | - $wkb = $wkb_writer->writeHEX($geos); |
|
137 | - $geometry = geoPHP::load($wkb, 'wkb', TRUE); |
|
138 | - if ($geometry) { |
|
139 | - $geometry->setGeos($geos); |
|
140 | - return $geometry; |
|
141 | - } |
|
132 | + if (!geoPHP::geosInstalled()) { |
|
133 | + return NULL; |
|
134 | + } |
|
135 | + $wkb_writer = new GEOSWKBWriter(); |
|
136 | + $wkb = $wkb_writer->writeHEX($geos); |
|
137 | + $geometry = geoPHP::load($wkb, 'wkb', TRUE); |
|
138 | + if ($geometry) { |
|
139 | + $geometry->setGeos($geos); |
|
140 | + return $geometry; |
|
141 | + } |
|
142 | 142 | } |
143 | 143 | |
144 | 144 | // Reduce a geometry, or an array of geometries, into their 'lowest' available common geometry. |
@@ -146,155 +146,155 @@ discard block |
||
146 | 146 | // A multi-point containing a single point will return a point. |
147 | 147 | // An array of geometries can be passed and they will be compiled into a single geometry |
148 | 148 | static function geometryReduce($geometry) { |
149 | - // If it's an array of one, then just parse the one |
|
150 | - if (is_array($geometry)) { |
|
151 | - if (empty($geometry)) return FALSE; |
|
152 | - if (count($geometry) == 1) return geoPHP::geometryReduce(array_shift($geometry)); |
|
153 | - } |
|
154 | - |
|
155 | - // If the geometry cannot even theoretically be reduced more, then pass it back |
|
156 | - if (gettype($geometry) == 'object') { |
|
157 | - $passbacks = array('Point','LineString','Polygon'); |
|
158 | - if (in_array($geometry->geometryType(),$passbacks)) { |
|
159 | - return $geometry; |
|
160 | - } |
|
161 | - } |
|
162 | - |
|
163 | - // If it is a mutlti-geometry, check to see if it just has one member |
|
164 | - // If it does, then pass the member, if not, then just pass back the geometry |
|
165 | - if (gettype($geometry) == 'object') { |
|
166 | - $simple_collections = array('MultiPoint','MultiLineString','MultiPolygon'); |
|
167 | - if (in_array(get_class($geometry),$passbacks)) { |
|
168 | - $components = $geometry->getComponents(); |
|
169 | - if (count($components) == 1) { |
|
170 | - return $components[0]; |
|
171 | - } |
|
172 | - else { |
|
173 | - return $geometry; |
|
174 | - } |
|
175 | - } |
|
176 | - } |
|
177 | - |
|
178 | - // So now we either have an array of geometries, a GeometryCollection, or an array of GeometryCollections |
|
179 | - if (!is_array($geometry)) { |
|
180 | - $geometry = array($geometry); |
|
181 | - } |
|
182 | - |
|
183 | - $geometries = array(); |
|
184 | - $geom_types = array(); |
|
185 | - |
|
186 | - $collections = array('MultiPoint','MultiLineString','MultiPolygon','GeometryCollection'); |
|
187 | - |
|
188 | - foreach ($geometry as $item) { |
|
189 | - if ($item) { |
|
190 | - if (in_array(get_class($item), $collections)) { |
|
191 | - foreach ($item->getComponents() as $component) { |
|
192 | - $geometries[] = $component; |
|
193 | - $geom_types[] = $component->geometryType(); |
|
194 | - } |
|
195 | - } |
|
196 | - else { |
|
197 | - $geometries[] = $item; |
|
198 | - $geom_types[] = $item->geometryType(); |
|
199 | - } |
|
200 | - } |
|
201 | - } |
|
202 | - |
|
203 | - $geom_types = array_unique($geom_types); |
|
149 | + // If it's an array of one, then just parse the one |
|
150 | + if (is_array($geometry)) { |
|
151 | + if (empty($geometry)) return FALSE; |
|
152 | + if (count($geometry) == 1) return geoPHP::geometryReduce(array_shift($geometry)); |
|
153 | + } |
|
154 | + |
|
155 | + // If the geometry cannot even theoretically be reduced more, then pass it back |
|
156 | + if (gettype($geometry) == 'object') { |
|
157 | + $passbacks = array('Point','LineString','Polygon'); |
|
158 | + if (in_array($geometry->geometryType(),$passbacks)) { |
|
159 | + return $geometry; |
|
160 | + } |
|
161 | + } |
|
162 | + |
|
163 | + // If it is a mutlti-geometry, check to see if it just has one member |
|
164 | + // If it does, then pass the member, if not, then just pass back the geometry |
|
165 | + if (gettype($geometry) == 'object') { |
|
166 | + $simple_collections = array('MultiPoint','MultiLineString','MultiPolygon'); |
|
167 | + if (in_array(get_class($geometry),$passbacks)) { |
|
168 | + $components = $geometry->getComponents(); |
|
169 | + if (count($components) == 1) { |
|
170 | + return $components[0]; |
|
171 | + } |
|
172 | + else { |
|
173 | + return $geometry; |
|
174 | + } |
|
175 | + } |
|
176 | + } |
|
177 | + |
|
178 | + // So now we either have an array of geometries, a GeometryCollection, or an array of GeometryCollections |
|
179 | + if (!is_array($geometry)) { |
|
180 | + $geometry = array($geometry); |
|
181 | + } |
|
182 | + |
|
183 | + $geometries = array(); |
|
184 | + $geom_types = array(); |
|
185 | + |
|
186 | + $collections = array('MultiPoint','MultiLineString','MultiPolygon','GeometryCollection'); |
|
187 | + |
|
188 | + foreach ($geometry as $item) { |
|
189 | + if ($item) { |
|
190 | + if (in_array(get_class($item), $collections)) { |
|
191 | + foreach ($item->getComponents() as $component) { |
|
192 | + $geometries[] = $component; |
|
193 | + $geom_types[] = $component->geometryType(); |
|
194 | + } |
|
195 | + } |
|
196 | + else { |
|
197 | + $geometries[] = $item; |
|
198 | + $geom_types[] = $item->geometryType(); |
|
199 | + } |
|
200 | + } |
|
201 | + } |
|
202 | + |
|
203 | + $geom_types = array_unique($geom_types); |
|
204 | 204 | |
205 | - if (empty($geom_types)) { |
|
206 | - return FALSE; |
|
207 | - } |
|
208 | - |
|
209 | - if (count($geom_types) == 1) { |
|
210 | - if (count($geometries) == 1) { |
|
211 | - return $geometries[0]; |
|
212 | - } |
|
213 | - else { |
|
214 | - $class = 'Multi'.$geom_types[0]; |
|
215 | - return new $class($geometries); |
|
216 | - } |
|
217 | - } |
|
218 | - else { |
|
219 | - return new GeometryCollection($geometries); |
|
220 | - } |
|
205 | + if (empty($geom_types)) { |
|
206 | + return FALSE; |
|
207 | + } |
|
208 | + |
|
209 | + if (count($geom_types) == 1) { |
|
210 | + if (count($geometries) == 1) { |
|
211 | + return $geometries[0]; |
|
212 | + } |
|
213 | + else { |
|
214 | + $class = 'Multi'.$geom_types[0]; |
|
215 | + return new $class($geometries); |
|
216 | + } |
|
217 | + } |
|
218 | + else { |
|
219 | + return new GeometryCollection($geometries); |
|
220 | + } |
|
221 | 221 | } |
222 | 222 | |
223 | 223 | // Detect a format given a value. This function is meant to be SPEEDY. |
224 | 224 | // It could make a mistake in XML detection if you are mixing or using namespaces in weird ways (ie, KML inside an RSS feed) |
225 | 225 | static function detectFormat(&$input) { |
226 | - $mem = fopen('php://memory', 'r+'); |
|
227 | - fwrite($mem, $input, 11); // Write 11 bytes - we can detect the vast majority of formats in the first 11 bytes |
|
228 | - fseek($mem, 0); |
|
229 | - |
|
230 | - $bytes = unpack("c*", fread($mem, 11)); |
|
231 | - |
|
232 | - // If bytes is empty, then we were passed empty input |
|
233 | - if (empty($bytes)) return FALSE; |
|
234 | - |
|
235 | - // First char is a tab, space or carriage-return. trim it and try again |
|
236 | - if ($bytes[1] == 9 || $bytes[1] == 10 || $bytes[1] == 32) { |
|
237 | - return geoPHP::detectFormat(ltrim($input)); |
|
238 | - } |
|
239 | - |
|
240 | - // Detect WKB or EWKB -- first byte is 1 (little endian indicator) |
|
241 | - if ($bytes[1] == 1) { |
|
242 | - // If SRID byte is TRUE (1), it's EWKB |
|
243 | - if ($bytes[5]) return 'ewkb'; |
|
244 | - else return 'wkb'; |
|
245 | - } |
|
246 | - |
|
247 | - // Detect HEX encoded WKB or EWKB (PostGIS format) -- first byte is 48, second byte is 49 (hex '01' => first-byte = 1) |
|
248 | - if ($bytes[1] == 48 && $bytes[2] == 49) { |
|
249 | - // The shortest possible WKB string (LINESTRING EMPTY) is 18 hex-chars (9 encoded bytes) long |
|
250 | - // This differentiates it from a geohash, which is always shorter than 18 characters. |
|
251 | - if (strlen($input) >= 18) { |
|
252 | - //@@TODO: Differentiate between EWKB and WKB -- check hex-char 10 or 11 (SRID bool indicator at encoded byte 5) |
|
253 | - return 'ewkb:1'; |
|
254 | - } |
|
255 | - } |
|
256 | - |
|
257 | - // Detect GeoJSON - first char starts with { |
|
258 | - if ($bytes[1] == 123) { |
|
259 | - return 'json'; |
|
260 | - } |
|
261 | - |
|
262 | - // Detect EWKT - first char is S |
|
263 | - if ($bytes[1] == 83) { |
|
264 | - return 'ewkt'; |
|
265 | - } |
|
266 | - |
|
267 | - // Detect WKT - first char starts with P (80), L (76), M (77), or G (71) |
|
268 | - $wkt_chars = array(80, 76, 77, 71); |
|
269 | - if (in_array($bytes[1], $wkt_chars)) { |
|
270 | - return 'wkt'; |
|
271 | - } |
|
272 | - |
|
273 | - // Detect XML -- first char is < |
|
274 | - if ($bytes[1] == 60) { |
|
275 | - // grab the first 256 characters |
|
276 | - $string = substr($input, 0, 256); |
|
277 | - if (strpos($string, '<kml') !== FALSE) return 'kml'; |
|
278 | - if (strpos($string, '<coordinate') !== FALSE) return 'kml'; |
|
279 | - if (strpos($string, '<gpx') !== FALSE) return 'gpx'; |
|
280 | - if (strpos($string, '<georss') !== FALSE) return 'georss'; |
|
281 | - if (strpos($string, '<rss') !== FALSE) return 'georss'; |
|
282 | - if (strpos($string, '<feed') !== FALSE) return 'georss'; |
|
283 | - } |
|
284 | - |
|
285 | - // We need an 8 byte string for geohash and unpacked WKB / WKT |
|
286 | - fseek($mem, 0); |
|
287 | - $string = trim(fread($mem, 8)); |
|
288 | - |
|
289 | - // Detect geohash - geohash ONLY contains lowercase chars and numerics |
|
290 | - preg_match('/[a-z0-9]+/', $string, $matches); |
|
291 | - if ($matches[0] == $string) { |
|
292 | - return 'geohash'; |
|
293 | - } |
|
294 | - |
|
295 | - // What do you get when you cross an elephant with a rhino? |
|
296 | - // http://youtu.be/RCBn5J83Poc |
|
297 | - return FALSE; |
|
226 | + $mem = fopen('php://memory', 'r+'); |
|
227 | + fwrite($mem, $input, 11); // Write 11 bytes - we can detect the vast majority of formats in the first 11 bytes |
|
228 | + fseek($mem, 0); |
|
229 | + |
|
230 | + $bytes = unpack("c*", fread($mem, 11)); |
|
231 | + |
|
232 | + // If bytes is empty, then we were passed empty input |
|
233 | + if (empty($bytes)) return FALSE; |
|
234 | + |
|
235 | + // First char is a tab, space or carriage-return. trim it and try again |
|
236 | + if ($bytes[1] == 9 || $bytes[1] == 10 || $bytes[1] == 32) { |
|
237 | + return geoPHP::detectFormat(ltrim($input)); |
|
238 | + } |
|
239 | + |
|
240 | + // Detect WKB or EWKB -- first byte is 1 (little endian indicator) |
|
241 | + if ($bytes[1] == 1) { |
|
242 | + // If SRID byte is TRUE (1), it's EWKB |
|
243 | + if ($bytes[5]) return 'ewkb'; |
|
244 | + else return 'wkb'; |
|
245 | + } |
|
246 | + |
|
247 | + // Detect HEX encoded WKB or EWKB (PostGIS format) -- first byte is 48, second byte is 49 (hex '01' => first-byte = 1) |
|
248 | + if ($bytes[1] == 48 && $bytes[2] == 49) { |
|
249 | + // The shortest possible WKB string (LINESTRING EMPTY) is 18 hex-chars (9 encoded bytes) long |
|
250 | + // This differentiates it from a geohash, which is always shorter than 18 characters. |
|
251 | + if (strlen($input) >= 18) { |
|
252 | + //@@TODO: Differentiate between EWKB and WKB -- check hex-char 10 or 11 (SRID bool indicator at encoded byte 5) |
|
253 | + return 'ewkb:1'; |
|
254 | + } |
|
255 | + } |
|
256 | + |
|
257 | + // Detect GeoJSON - first char starts with { |
|
258 | + if ($bytes[1] == 123) { |
|
259 | + return 'json'; |
|
260 | + } |
|
261 | + |
|
262 | + // Detect EWKT - first char is S |
|
263 | + if ($bytes[1] == 83) { |
|
264 | + return 'ewkt'; |
|
265 | + } |
|
266 | + |
|
267 | + // Detect WKT - first char starts with P (80), L (76), M (77), or G (71) |
|
268 | + $wkt_chars = array(80, 76, 77, 71); |
|
269 | + if (in_array($bytes[1], $wkt_chars)) { |
|
270 | + return 'wkt'; |
|
271 | + } |
|
272 | + |
|
273 | + // Detect XML -- first char is < |
|
274 | + if ($bytes[1] == 60) { |
|
275 | + // grab the first 256 characters |
|
276 | + $string = substr($input, 0, 256); |
|
277 | + if (strpos($string, '<kml') !== FALSE) return 'kml'; |
|
278 | + if (strpos($string, '<coordinate') !== FALSE) return 'kml'; |
|
279 | + if (strpos($string, '<gpx') !== FALSE) return 'gpx'; |
|
280 | + if (strpos($string, '<georss') !== FALSE) return 'georss'; |
|
281 | + if (strpos($string, '<rss') !== FALSE) return 'georss'; |
|
282 | + if (strpos($string, '<feed') !== FALSE) return 'georss'; |
|
283 | + } |
|
284 | + |
|
285 | + // We need an 8 byte string for geohash and unpacked WKB / WKT |
|
286 | + fseek($mem, 0); |
|
287 | + $string = trim(fread($mem, 8)); |
|
288 | + |
|
289 | + // Detect geohash - geohash ONLY contains lowercase chars and numerics |
|
290 | + preg_match('/[a-z0-9]+/', $string, $matches); |
|
291 | + if ($matches[0] == $string) { |
|
292 | + return 'geohash'; |
|
293 | + } |
|
294 | + |
|
295 | + // What do you get when you cross an elephant with a rhino? |
|
296 | + // http://youtu.be/RCBn5J83Poc |
|
297 | + return FALSE; |
|
298 | 298 | } |
299 | 299 | |
300 | 300 | } |
@@ -11,12 +11,12 @@ |
||
11 | 11 | //checks to see if FlightAware import is set |
12 | 12 | if ($globalFlightAware == TRUE) |
13 | 13 | { |
14 | - $SpotterLive = new SpotterLive(); |
|
15 | - $Spotter = new Spotter(); |
|
16 | - //deletes the spotter LIVE data |
|
17 | - $SpotterLive->deleteLiveSpotterData(); |
|
14 | + $SpotterLive = new SpotterLive(); |
|
15 | + $Spotter = new Spotter(); |
|
16 | + //deletes the spotter LIVE data |
|
17 | + $SpotterLive->deleteLiveSpotterData(); |
|
18 | 18 | |
19 | - //imports the new data from FlightAware |
|
20 | - $Spotter->importFromFlightAware(); |
|
19 | + //imports the new data from FlightAware |
|
20 | + $Spotter->importFromFlightAware(); |
|
21 | 21 | } |
22 | 22 | ?> |
23 | 23 | \ No newline at end of file |
@@ -5,8 +5,8 @@ |
||
5 | 5 | */ |
6 | 6 | require_once(dirname(__FILE__).'/../require/settings.php'); |
7 | 7 | if ($globalInstalled) { |
8 | - echo '$globalInstalled must be set to FALSE in require/settings.php'; |
|
9 | - exit; |
|
8 | + echo '$globalInstalled must be set to FALSE in require/settings.php'; |
|
9 | + exit; |
|
10 | 10 | } |
11 | 11 | |
12 | 12 | require_once('../require/class.Connection.php'); |
@@ -3,8 +3,8 @@ |
||
3 | 3 | require_once('require/class.Spotter.php'); |
4 | 4 | require_once('require/class.Language.php'); |
5 | 5 | if (!isset($_GET['ident'])) { |
6 | - header('Location: '.$globalURL.'/ident'); |
|
7 | - die(); |
|
6 | + header('Location: '.$globalURL.'/ident'); |
|
7 | + die(); |
|
8 | 8 | } |
9 | 9 | $Spotter = new Spotter(); |
10 | 10 | $ident = filter_input(INPUT_GET,'ident',FILTER_SANITIZE_STRING); |
@@ -52,824 +52,824 @@ |
||
52 | 52 | */ |
53 | 53 | class Predict |
54 | 54 | { |
55 | - const de2ra = 1.74532925E-2; /* Degrees to Radians */ |
|
56 | - const pi = 3.1415926535898; /* Pi */ |
|
57 | - const pio2 = 1.5707963267949; /* Pi/2 */ |
|
58 | - const x3pio2 = 4.71238898; /* 3*Pi/2 */ |
|
59 | - const twopi = 6.2831853071796; /* 2*Pi */ |
|
60 | - const e6a = 1.0E-6; |
|
61 | - const tothrd = 6.6666667E-1; /* 2/3 */ |
|
62 | - const xj2 = 1.0826158E-3; /* J2 Harmonic */ |
|
63 | - const xj3 = -2.53881E-6; /* J3 Harmonic */ |
|
64 | - const xj4 = -1.65597E-6; /* J4 Harmonic */ |
|
65 | - const xke = 7.43669161E-2; |
|
66 | - const xkmper = 6.378135E3; /* Earth radius km */ |
|
67 | - const xmnpda = 1.44E3; /* Minutes per day */ |
|
68 | - const km2mi = 0.621371; /* Kilometers per Mile */ |
|
69 | - const ae = 1.0; |
|
70 | - const ck2 = 5.413079E-4; |
|
71 | - const ck4 = 6.209887E-7; |
|
72 | - const __f = 3.352779E-3; |
|
73 | - const ge = 3.986008E5; |
|
74 | - const __s__ = 1.012229; |
|
75 | - const qoms2t = 1.880279E-09; |
|
76 | - const secday = 8.6400E4; /* Seconds per day */ |
|
77 | - const omega_E = 1.0027379; |
|
78 | - const omega_ER = 6.3003879; |
|
79 | - const zns = 1.19459E-5; |
|
80 | - const c1ss = 2.9864797E-6; |
|
81 | - const zes = 1.675E-2; |
|
82 | - const znl = 1.5835218E-4; |
|
83 | - const c1l = 4.7968065E-7; |
|
84 | - const zel = 5.490E-2; |
|
85 | - const zcosis = 9.1744867E-1; |
|
86 | - const zsinis = 3.9785416E-1; |
|
87 | - const zsings = -9.8088458E-1; |
|
88 | - const zcosgs = 1.945905E-1; |
|
89 | - const zcoshs = 1; |
|
90 | - const zsinhs = 0; |
|
91 | - const q22 = 1.7891679E-6; |
|
92 | - const q31 = 2.1460748E-6; |
|
93 | - const q33 = 2.2123015E-7; |
|
94 | - const g22 = 5.7686396; |
|
95 | - const g32 = 9.5240898E-1; |
|
96 | - const g44 = 1.8014998; |
|
97 | - const g52 = 1.0508330; |
|
98 | - const g54 = 4.4108898; |
|
99 | - const root22 = 1.7891679E-6; |
|
100 | - const root32 = 3.7393792E-7; |
|
101 | - const root44 = 7.3636953E-9; |
|
102 | - const root52 = 1.1428639E-7; |
|
103 | - const root54 = 2.1765803E-9; |
|
104 | - const thdt = 4.3752691E-3; |
|
105 | - const rho = 1.5696615E-1; |
|
106 | - const mfactor = 7.292115E-5; |
|
107 | - const __sr__ = 6.96000E5; /*Solar radius - kilometers (IAU 76)*/ |
|
108 | - const AU = 1.49597870E8; /*Astronomical unit - kilometers (IAU 76)*/ |
|
109 | - |
|
110 | - /* visibility constants */ |
|
111 | - const SAT_VIS_NONE = 0; |
|
112 | - const SAT_VIS_VISIBLE = 1; |
|
113 | - const SAT_VIS_DAYLIGHT = 2; |
|
114 | - const SAT_VIS_ECLIPSED = 3; |
|
115 | - |
|
116 | - /* preferences */ |
|
117 | - public $minEle = 10; // Minimum elevation |
|
118 | - public $timeRes = 10; // Pass details: time resolution |
|
119 | - public $numEntries = 20; // Pass details: number of entries |
|
120 | - public $threshold = -6; // Twilight threshold |
|
121 | - |
|
122 | - /** |
|
123 | - * Predict the next pass. |
|
124 | - * |
|
125 | - * This function simply wraps the get_pass function using the current time |
|
126 | - * as parameter. |
|
127 | - * |
|
128 | - * Note: the data in sat will be corrupt (future) and must be refreshed |
|
129 | - * by the caller, if the caller will need it later on (eg. if the caller |
|
130 | - * is GtkSatList). |
|
131 | - * |
|
132 | - * @param Predict_Sat $sat The satellite data. |
|
133 | - * @param Predict_QTH $qth The observer data. |
|
134 | - * @param int $maxdt The maximum number of days to look ahead. |
|
135 | - * |
|
136 | - * @return Predict_Pass Pointer instance or NULL if no pass can be |
|
137 | - * found. |
|
138 | - */ |
|
139 | - public function get_next_pass(Predict_Sat $sat, Predict_QTH $qth, $maxdt) |
|
140 | - { |
|
141 | - /* get the current time and call the get_pass function */ |
|
142 | - $now = Predict_Time::get_current_daynum(); |
|
143 | - |
|
144 | - return $this->get_pass($sat, $qth, $now, $maxdt); |
|
145 | - } |
|
146 | - |
|
147 | - /** Predict first pass after a certain time. |
|
148 | - * |
|
149 | - * @param Predict_Sat $sat The satellite data. |
|
150 | - * @param Predict_QTH $qth The observer's location data. |
|
151 | - * @param float $start Starting time. |
|
152 | - * @param int $maxdt The maximum number of days to look ahead (0 for no limit). |
|
153 | - * |
|
154 | - * @return Predict_Pass or NULL if there was an error. |
|
155 | - * |
|
156 | - * This function will find the first upcoming pass with AOS no earlier than |
|
157 | - * t = start and no later than t = (start+maxdt). |
|
158 | - * |
|
159 | - * note For no time limit use maxdt = 0.0 |
|
160 | - * |
|
161 | - * note the data in sat will be corrupt (future) and must be refreshed |
|
162 | - * by the caller, if the caller will need it later on |
|
163 | - */ |
|
164 | - public function get_pass(Predict_Sat $sat_in, Predict_QTH $qth, $start, $maxdt) |
|
165 | - { |
|
166 | - $aos = 0.0; /* time of AOS */ |
|
167 | - $tca = 0.0; /* time of TCA */ |
|
168 | - $los = 0.0; /* time of LOS */ |
|
169 | - $dt = 0.0; /* time diff */ |
|
170 | - $step = 0.0; /* time step */ |
|
171 | - $t0 = $start; |
|
172 | - $tres = 0.0; /* required time resolution */ |
|
173 | - $max_el = 0.0; /* maximum elevation */ |
|
174 | - $pass = null; |
|
175 | - $detail = null; |
|
176 | - $done = false; |
|
177 | - $iter = 0; /* number of iterations */ |
|
178 | - /* FIXME: watchdog */ |
|
179 | - |
|
180 | - /*copy sat_in to a working structure*/ |
|
181 | - $sat = clone $sat_in; |
|
182 | - $sat_working = clone $sat_in; |
|
183 | - |
|
184 | - /* get time resolution; sat-cfg stores it in seconds */ |
|
185 | - $tres = $this->timeRes / 86400.0; |
|
186 | - |
|
187 | - /* loop until we find a pass with elevation > SAT_CFG_INT_PRED_MIN_EL |
|
55 | + const de2ra = 1.74532925E-2; /* Degrees to Radians */ |
|
56 | + const pi = 3.1415926535898; /* Pi */ |
|
57 | + const pio2 = 1.5707963267949; /* Pi/2 */ |
|
58 | + const x3pio2 = 4.71238898; /* 3*Pi/2 */ |
|
59 | + const twopi = 6.2831853071796; /* 2*Pi */ |
|
60 | + const e6a = 1.0E-6; |
|
61 | + const tothrd = 6.6666667E-1; /* 2/3 */ |
|
62 | + const xj2 = 1.0826158E-3; /* J2 Harmonic */ |
|
63 | + const xj3 = -2.53881E-6; /* J3 Harmonic */ |
|
64 | + const xj4 = -1.65597E-6; /* J4 Harmonic */ |
|
65 | + const xke = 7.43669161E-2; |
|
66 | + const xkmper = 6.378135E3; /* Earth radius km */ |
|
67 | + const xmnpda = 1.44E3; /* Minutes per day */ |
|
68 | + const km2mi = 0.621371; /* Kilometers per Mile */ |
|
69 | + const ae = 1.0; |
|
70 | + const ck2 = 5.413079E-4; |
|
71 | + const ck4 = 6.209887E-7; |
|
72 | + const __f = 3.352779E-3; |
|
73 | + const ge = 3.986008E5; |
|
74 | + const __s__ = 1.012229; |
|
75 | + const qoms2t = 1.880279E-09; |
|
76 | + const secday = 8.6400E4; /* Seconds per day */ |
|
77 | + const omega_E = 1.0027379; |
|
78 | + const omega_ER = 6.3003879; |
|
79 | + const zns = 1.19459E-5; |
|
80 | + const c1ss = 2.9864797E-6; |
|
81 | + const zes = 1.675E-2; |
|
82 | + const znl = 1.5835218E-4; |
|
83 | + const c1l = 4.7968065E-7; |
|
84 | + const zel = 5.490E-2; |
|
85 | + const zcosis = 9.1744867E-1; |
|
86 | + const zsinis = 3.9785416E-1; |
|
87 | + const zsings = -9.8088458E-1; |
|
88 | + const zcosgs = 1.945905E-1; |
|
89 | + const zcoshs = 1; |
|
90 | + const zsinhs = 0; |
|
91 | + const q22 = 1.7891679E-6; |
|
92 | + const q31 = 2.1460748E-6; |
|
93 | + const q33 = 2.2123015E-7; |
|
94 | + const g22 = 5.7686396; |
|
95 | + const g32 = 9.5240898E-1; |
|
96 | + const g44 = 1.8014998; |
|
97 | + const g52 = 1.0508330; |
|
98 | + const g54 = 4.4108898; |
|
99 | + const root22 = 1.7891679E-6; |
|
100 | + const root32 = 3.7393792E-7; |
|
101 | + const root44 = 7.3636953E-9; |
|
102 | + const root52 = 1.1428639E-7; |
|
103 | + const root54 = 2.1765803E-9; |
|
104 | + const thdt = 4.3752691E-3; |
|
105 | + const rho = 1.5696615E-1; |
|
106 | + const mfactor = 7.292115E-5; |
|
107 | + const __sr__ = 6.96000E5; /*Solar radius - kilometers (IAU 76)*/ |
|
108 | + const AU = 1.49597870E8; /*Astronomical unit - kilometers (IAU 76)*/ |
|
109 | + |
|
110 | + /* visibility constants */ |
|
111 | + const SAT_VIS_NONE = 0; |
|
112 | + const SAT_VIS_VISIBLE = 1; |
|
113 | + const SAT_VIS_DAYLIGHT = 2; |
|
114 | + const SAT_VIS_ECLIPSED = 3; |
|
115 | + |
|
116 | + /* preferences */ |
|
117 | + public $minEle = 10; // Minimum elevation |
|
118 | + public $timeRes = 10; // Pass details: time resolution |
|
119 | + public $numEntries = 20; // Pass details: number of entries |
|
120 | + public $threshold = -6; // Twilight threshold |
|
121 | + |
|
122 | + /** |
|
123 | + * Predict the next pass. |
|
124 | + * |
|
125 | + * This function simply wraps the get_pass function using the current time |
|
126 | + * as parameter. |
|
127 | + * |
|
128 | + * Note: the data in sat will be corrupt (future) and must be refreshed |
|
129 | + * by the caller, if the caller will need it later on (eg. if the caller |
|
130 | + * is GtkSatList). |
|
131 | + * |
|
132 | + * @param Predict_Sat $sat The satellite data. |
|
133 | + * @param Predict_QTH $qth The observer data. |
|
134 | + * @param int $maxdt The maximum number of days to look ahead. |
|
135 | + * |
|
136 | + * @return Predict_Pass Pointer instance or NULL if no pass can be |
|
137 | + * found. |
|
138 | + */ |
|
139 | + public function get_next_pass(Predict_Sat $sat, Predict_QTH $qth, $maxdt) |
|
140 | + { |
|
141 | + /* get the current time and call the get_pass function */ |
|
142 | + $now = Predict_Time::get_current_daynum(); |
|
143 | + |
|
144 | + return $this->get_pass($sat, $qth, $now, $maxdt); |
|
145 | + } |
|
146 | + |
|
147 | + /** Predict first pass after a certain time. |
|
148 | + * |
|
149 | + * @param Predict_Sat $sat The satellite data. |
|
150 | + * @param Predict_QTH $qth The observer's location data. |
|
151 | + * @param float $start Starting time. |
|
152 | + * @param int $maxdt The maximum number of days to look ahead (0 for no limit). |
|
153 | + * |
|
154 | + * @return Predict_Pass or NULL if there was an error. |
|
155 | + * |
|
156 | + * This function will find the first upcoming pass with AOS no earlier than |
|
157 | + * t = start and no later than t = (start+maxdt). |
|
158 | + * |
|
159 | + * note For no time limit use maxdt = 0.0 |
|
160 | + * |
|
161 | + * note the data in sat will be corrupt (future) and must be refreshed |
|
162 | + * by the caller, if the caller will need it later on |
|
163 | + */ |
|
164 | + public function get_pass(Predict_Sat $sat_in, Predict_QTH $qth, $start, $maxdt) |
|
165 | + { |
|
166 | + $aos = 0.0; /* time of AOS */ |
|
167 | + $tca = 0.0; /* time of TCA */ |
|
168 | + $los = 0.0; /* time of LOS */ |
|
169 | + $dt = 0.0; /* time diff */ |
|
170 | + $step = 0.0; /* time step */ |
|
171 | + $t0 = $start; |
|
172 | + $tres = 0.0; /* required time resolution */ |
|
173 | + $max_el = 0.0; /* maximum elevation */ |
|
174 | + $pass = null; |
|
175 | + $detail = null; |
|
176 | + $done = false; |
|
177 | + $iter = 0; /* number of iterations */ |
|
178 | + /* FIXME: watchdog */ |
|
179 | + |
|
180 | + /*copy sat_in to a working structure*/ |
|
181 | + $sat = clone $sat_in; |
|
182 | + $sat_working = clone $sat_in; |
|
183 | + |
|
184 | + /* get time resolution; sat-cfg stores it in seconds */ |
|
185 | + $tres = $this->timeRes / 86400.0; |
|
186 | + |
|
187 | + /* loop until we find a pass with elevation > SAT_CFG_INT_PRED_MIN_EL |
|
188 | 188 | or we run out of time |
189 | 189 | FIXME: we should have a safety break |
190 | 190 | */ |
191 | - while (!$done) { |
|
192 | - /* Find los of next pass or of current pass */ |
|
193 | - $los = $this->find_los($sat, $qth, $t0, $maxdt); // See if a pass is ongoing |
|
194 | - $aos = $this->find_aos($sat, $qth, $t0, $maxdt); |
|
195 | - /* sat_log_log(SAT_LOG_LEVEL_MSG, "%s:%s:%d: found aos %f and los %f for t0=%f", */ |
|
196 | - /* __FILE__, */ |
|
197 | - /* __FUNCTION__, */ |
|
198 | - /* __LINE__, */ |
|
199 | - /* aos, */ |
|
200 | - /* los, */ |
|
201 | - /* t0); */ |
|
202 | - if ($aos > $los) { |
|
203 | - // los is from an currently happening pass, find previous aos |
|
204 | - $aos = $this->find_prev_aos($sat, $qth, $t0); |
|
205 | - } |
|
206 | - |
|
207 | - /* aos = 0.0 means no aos */ |
|
208 | - if ($aos == 0.0) { |
|
209 | - $done = true; |
|
210 | - } else if (($maxdt > 0.0) && ($aos > ($start + $maxdt)) ) { |
|
211 | - /* check whether we are within time limits; |
|
191 | + while (!$done) { |
|
192 | + /* Find los of next pass or of current pass */ |
|
193 | + $los = $this->find_los($sat, $qth, $t0, $maxdt); // See if a pass is ongoing |
|
194 | + $aos = $this->find_aos($sat, $qth, $t0, $maxdt); |
|
195 | + /* sat_log_log(SAT_LOG_LEVEL_MSG, "%s:%s:%d: found aos %f and los %f for t0=%f", */ |
|
196 | + /* __FILE__, */ |
|
197 | + /* __FUNCTION__, */ |
|
198 | + /* __LINE__, */ |
|
199 | + /* aos, */ |
|
200 | + /* los, */ |
|
201 | + /* t0); */ |
|
202 | + if ($aos > $los) { |
|
203 | + // los is from an currently happening pass, find previous aos |
|
204 | + $aos = $this->find_prev_aos($sat, $qth, $t0); |
|
205 | + } |
|
206 | + |
|
207 | + /* aos = 0.0 means no aos */ |
|
208 | + if ($aos == 0.0) { |
|
209 | + $done = true; |
|
210 | + } else if (($maxdt > 0.0) && ($aos > ($start + $maxdt)) ) { |
|
211 | + /* check whether we are within time limits; |
|
212 | 212 | maxdt = 0 mean no time limit. |
213 | 213 | */ |
214 | - $done = true; |
|
215 | - } else { |
|
216 | - //los = find_los (sat, qth, aos + 0.001, maxdt); // +1.5 min later |
|
217 | - $dt = $los - $aos; |
|
214 | + $done = true; |
|
215 | + } else { |
|
216 | + //los = find_los (sat, qth, aos + 0.001, maxdt); // +1.5 min later |
|
217 | + $dt = $los - $aos; |
|
218 | 218 | |
219 | - /* get time step, which will give us the max number of entries */ |
|
220 | - $step = $dt / $this->numEntries; |
|
219 | + /* get time step, which will give us the max number of entries */ |
|
220 | + $step = $dt / $this->numEntries; |
|
221 | 221 | |
222 | - /* but if this is smaller than the required resolution |
|
222 | + /* but if this is smaller than the required resolution |
|
223 | 223 | we go with the resolution |
224 | 224 | */ |
225 | - if ($step < $tres) { |
|
226 | - $step = $tres; |
|
227 | - } |
|
228 | - |
|
229 | - /* create a pass_t entry; FIXME: g_try_new in 2.8 */ |
|
230 | - $pass = new Predict_Pass(); |
|
231 | - |
|
232 | - $pass->aos = $aos; |
|
233 | - $pass->los = $los; |
|
234 | - $pass->max_el = 0.0; |
|
235 | - $pass->aos_az = 0.0; |
|
236 | - $pass->los_az = 0.0; |
|
237 | - $pass->maxel_az = 0.0; |
|
238 | - $pass->vis = '---'; |
|
239 | - $pass->satname = $sat->nickname; |
|
240 | - $pass->details = array(); |
|
241 | - |
|
242 | - /* iterate over each time step */ |
|
243 | - for ($t = $pass->aos; $t <= $pass->los; $t += $step) { |
|
244 | - |
|
245 | - /* calculate satellite data */ |
|
246 | - $this->predict_calc($sat, $qth, $t); |
|
247 | - |
|
248 | - /* in the first iter we want to store |
|
225 | + if ($step < $tres) { |
|
226 | + $step = $tres; |
|
227 | + } |
|
228 | + |
|
229 | + /* create a pass_t entry; FIXME: g_try_new in 2.8 */ |
|
230 | + $pass = new Predict_Pass(); |
|
231 | + |
|
232 | + $pass->aos = $aos; |
|
233 | + $pass->los = $los; |
|
234 | + $pass->max_el = 0.0; |
|
235 | + $pass->aos_az = 0.0; |
|
236 | + $pass->los_az = 0.0; |
|
237 | + $pass->maxel_az = 0.0; |
|
238 | + $pass->vis = '---'; |
|
239 | + $pass->satname = $sat->nickname; |
|
240 | + $pass->details = array(); |
|
241 | + |
|
242 | + /* iterate over each time step */ |
|
243 | + for ($t = $pass->aos; $t <= $pass->los; $t += $step) { |
|
244 | + |
|
245 | + /* calculate satellite data */ |
|
246 | + $this->predict_calc($sat, $qth, $t); |
|
247 | + |
|
248 | + /* in the first iter we want to store |
|
249 | 249 | pass->aos_az |
250 | 250 | */ |
251 | - if ($t == $pass->aos) { |
|
252 | - $pass->aos_az = $sat->az; |
|
253 | - $pass->orbit = $sat->orbit; |
|
254 | - } |
|
255 | - |
|
256 | - /* append details to sat->details */ |
|
257 | - $detail = new Predict_PassDetail(); |
|
258 | - $detail->time = $t; |
|
259 | - $detail->pos->x = $sat->pos->x; |
|
260 | - $detail->pos->y = $sat->pos->y; |
|
261 | - $detail->pos->z = $sat->pos->z; |
|
262 | - $detail->pos->w = $sat->pos->w; |
|
263 | - $detail->vel->x = $sat->vel->x; |
|
264 | - $detail->vel->y = $sat->vel->y; |
|
265 | - $detail->vel->z = $sat->vel->z; |
|
266 | - $detail->vel->w = $sat->vel->w; |
|
267 | - $detail->velo = $sat->velo; |
|
268 | - $detail->az = $sat->az; |
|
269 | - $detail->el = $sat->el; |
|
270 | - $detail->range = $sat->range; |
|
271 | - $detail->range_rate = $sat->range_rate; |
|
272 | - $detail->lat = $sat->ssplat; |
|
273 | - $detail->lon = $sat->ssplon; |
|
274 | - $detail->alt = $sat->alt; |
|
275 | - $detail->ma = $sat->ma; |
|
276 | - $detail->phase = $sat->phase; |
|
277 | - $detail->footprint = $sat->footprint; |
|
278 | - $detail->orbit = $sat->orbit; |
|
279 | - $detail->vis = $this->get_sat_vis($sat, $qth, $t); |
|
280 | - |
|
281 | - /* also store visibility "bit" */ |
|
282 | - switch ($detail->vis) { |
|
283 | - case self::SAT_VIS_VISIBLE: |
|
284 | - $pass->vis[0] = 'V'; |
|
285 | - break; |
|
286 | - case self::SAT_VIS_DAYLIGHT: |
|
287 | - $pass->vis[1] = 'D'; |
|
288 | - break; |
|
289 | - case self::SAT_VIS_ECLIPSED: |
|
290 | - $pass->vis[2] = 'E'; |
|
291 | - break; |
|
292 | - default: |
|
293 | - break; |
|
294 | - } |
|
295 | - |
|
296 | - // Using an array, no need to prepend and reverse the list |
|
297 | - // as gpredict does |
|
298 | - $pass->details[] = $detail; |
|
299 | - |
|
300 | - // Look up apparent magnitude if this is a visible pass |
|
301 | - if ($detail->vis === self::SAT_VIS_VISIBLE) { |
|
302 | - $apmag = $sat->calculateApparentMagnitude($t, $qth); |
|
303 | - if ($pass->max_apparent_magnitude === null || $apmag < $pass->max_apparent_magnitude) { |
|
304 | - $pass->max_apparent_magnitude = $apmag; |
|
305 | - } |
|
306 | - } |
|
307 | - |
|
308 | - /* store elevation if greater than the |
|
251 | + if ($t == $pass->aos) { |
|
252 | + $pass->aos_az = $sat->az; |
|
253 | + $pass->orbit = $sat->orbit; |
|
254 | + } |
|
255 | + |
|
256 | + /* append details to sat->details */ |
|
257 | + $detail = new Predict_PassDetail(); |
|
258 | + $detail->time = $t; |
|
259 | + $detail->pos->x = $sat->pos->x; |
|
260 | + $detail->pos->y = $sat->pos->y; |
|
261 | + $detail->pos->z = $sat->pos->z; |
|
262 | + $detail->pos->w = $sat->pos->w; |
|
263 | + $detail->vel->x = $sat->vel->x; |
|
264 | + $detail->vel->y = $sat->vel->y; |
|
265 | + $detail->vel->z = $sat->vel->z; |
|
266 | + $detail->vel->w = $sat->vel->w; |
|
267 | + $detail->velo = $sat->velo; |
|
268 | + $detail->az = $sat->az; |
|
269 | + $detail->el = $sat->el; |
|
270 | + $detail->range = $sat->range; |
|
271 | + $detail->range_rate = $sat->range_rate; |
|
272 | + $detail->lat = $sat->ssplat; |
|
273 | + $detail->lon = $sat->ssplon; |
|
274 | + $detail->alt = $sat->alt; |
|
275 | + $detail->ma = $sat->ma; |
|
276 | + $detail->phase = $sat->phase; |
|
277 | + $detail->footprint = $sat->footprint; |
|
278 | + $detail->orbit = $sat->orbit; |
|
279 | + $detail->vis = $this->get_sat_vis($sat, $qth, $t); |
|
280 | + |
|
281 | + /* also store visibility "bit" */ |
|
282 | + switch ($detail->vis) { |
|
283 | + case self::SAT_VIS_VISIBLE: |
|
284 | + $pass->vis[0] = 'V'; |
|
285 | + break; |
|
286 | + case self::SAT_VIS_DAYLIGHT: |
|
287 | + $pass->vis[1] = 'D'; |
|
288 | + break; |
|
289 | + case self::SAT_VIS_ECLIPSED: |
|
290 | + $pass->vis[2] = 'E'; |
|
291 | + break; |
|
292 | + default: |
|
293 | + break; |
|
294 | + } |
|
295 | + |
|
296 | + // Using an array, no need to prepend and reverse the list |
|
297 | + // as gpredict does |
|
298 | + $pass->details[] = $detail; |
|
299 | + |
|
300 | + // Look up apparent magnitude if this is a visible pass |
|
301 | + if ($detail->vis === self::SAT_VIS_VISIBLE) { |
|
302 | + $apmag = $sat->calculateApparentMagnitude($t, $qth); |
|
303 | + if ($pass->max_apparent_magnitude === null || $apmag < $pass->max_apparent_magnitude) { |
|
304 | + $pass->max_apparent_magnitude = $apmag; |
|
305 | + } |
|
306 | + } |
|
307 | + |
|
308 | + /* store elevation if greater than the |
|
309 | 309 | previously stored one |
310 | 310 | */ |
311 | - if ($sat->el > $max_el) { |
|
312 | - $max_el = $sat->el; |
|
313 | - $tca = $t; |
|
314 | - $pass->maxel_az = $sat->az; |
|
315 | - } |
|
316 | - |
|
317 | - /* g_print ("TIME: %f\tAZ: %f\tEL: %f (MAX: %f)\n", */ |
|
318 | - /* t, sat->az, sat->el, max_el); */ |
|
319 | - } |
|
320 | - |
|
321 | - /* calculate satellite data */ |
|
322 | - $this->predict_calc($sat, $qth, $pass->los); |
|
323 | - /* store los_az, max_el and tca */ |
|
324 | - $pass->los_az = $sat->az; |
|
325 | - $pass->max_el = $max_el; |
|
326 | - $pass->tca = $tca; |
|
327 | - |
|
328 | - /* check whether this pass is good */ |
|
329 | - if ($max_el >= $this->minEle) { |
|
330 | - $done = true; |
|
331 | - } else { |
|
332 | - $done = false; |
|
333 | - $t0 = $los + 0.014; // +20 min |
|
334 | - $pass = null; |
|
335 | - } |
|
336 | - |
|
337 | - $iter++; |
|
338 | - } |
|
339 | - } |
|
340 | - |
|
341 | - return $pass; |
|
342 | - } |
|
343 | - |
|
344 | - /** |
|
345 | - * Calculate satellite visibility. |
|
346 | - * |
|
347 | - * @param Predict_Sat $sat The satellite structure. |
|
348 | - * @param Predict_QTH $qth The QTH |
|
349 | - * @param float $jul_utc The time at which the visibility should be calculated. |
|
350 | - * |
|
351 | - * @return int The visiblity constant, 0, 1, 2, or 3 (see above) |
|
352 | - */ |
|
353 | - public function get_sat_vis(Predict_Sat $sat, Predict_QTH $qth, $jul_utc) |
|
354 | - { |
|
355 | - /* gboolean sat_sun_status; |
|
311 | + if ($sat->el > $max_el) { |
|
312 | + $max_el = $sat->el; |
|
313 | + $tca = $t; |
|
314 | + $pass->maxel_az = $sat->az; |
|
315 | + } |
|
316 | + |
|
317 | + /* g_print ("TIME: %f\tAZ: %f\tEL: %f (MAX: %f)\n", */ |
|
318 | + /* t, sat->az, sat->el, max_el); */ |
|
319 | + } |
|
320 | + |
|
321 | + /* calculate satellite data */ |
|
322 | + $this->predict_calc($sat, $qth, $pass->los); |
|
323 | + /* store los_az, max_el and tca */ |
|
324 | + $pass->los_az = $sat->az; |
|
325 | + $pass->max_el = $max_el; |
|
326 | + $pass->tca = $tca; |
|
327 | + |
|
328 | + /* check whether this pass is good */ |
|
329 | + if ($max_el >= $this->minEle) { |
|
330 | + $done = true; |
|
331 | + } else { |
|
332 | + $done = false; |
|
333 | + $t0 = $los + 0.014; // +20 min |
|
334 | + $pass = null; |
|
335 | + } |
|
336 | + |
|
337 | + $iter++; |
|
338 | + } |
|
339 | + } |
|
340 | + |
|
341 | + return $pass; |
|
342 | + } |
|
343 | + |
|
344 | + /** |
|
345 | + * Calculate satellite visibility. |
|
346 | + * |
|
347 | + * @param Predict_Sat $sat The satellite structure. |
|
348 | + * @param Predict_QTH $qth The QTH |
|
349 | + * @param float $jul_utc The time at which the visibility should be calculated. |
|
350 | + * |
|
351 | + * @return int The visiblity constant, 0, 1, 2, or 3 (see above) |
|
352 | + */ |
|
353 | + public function get_sat_vis(Predict_Sat $sat, Predict_QTH $qth, $jul_utc) |
|
354 | + { |
|
355 | + /* gboolean sat_sun_status; |
|
356 | 356 | gdouble sun_el; |
357 | 357 | gdouble threshold; |
358 | 358 | gdouble eclipse_depth; |
359 | 359 | sat_vis_t vis = SAT_VIS_NONE; */ |
360 | 360 | |
361 | - $eclipse_depth = 0.0; |
|
362 | - $zero_vector = new Predict_Vector(); |
|
363 | - $obs_geodetic = new Predict_Geodetic(); |
|
364 | - |
|
365 | - /* Solar ECI position vector */ |
|
366 | - $solar_vector = new Predict_Vector(); |
|
367 | - |
|
368 | - /* Solar observed az and el vector */ |
|
369 | - $solar_set = new Predict_ObsSet(); |
|
370 | - |
|
371 | - /* FIXME: could be passed as parameter */ |
|
372 | - $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
373 | - $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
374 | - $obs_geodetic->alt = $qth->alt / 1000.0; |
|
375 | - $obs_geodetic->theta = 0; |
|
376 | - |
|
377 | - Predict_Solar::Calculate_Solar_Position($jul_utc, $solar_vector); |
|
378 | - Predict_SGPObs::Calculate_Obs($jul_utc, $solar_vector, $zero_vector, $obs_geodetic, $solar_set); |
|
379 | - |
|
380 | - if (Predict_Solar::Sat_Eclipsed($sat->pos, $solar_vector, $eclipse_depth)) { |
|
381 | - /* satellite is eclipsed */ |
|
382 | - $sat_sun_status = false; |
|
383 | - } else { |
|
384 | - /* satellite in sunlight => may be visible */ |
|
385 | - $sat_sun_status = true; |
|
386 | - } |
|
387 | - |
|
388 | - if ($sat_sun_status) { |
|
389 | - $sun_el = Predict_Math::Degrees($solar_set->el); |
|
390 | - |
|
391 | - if ($sun_el <= $this->threshold && $sat->el >= 0.0) { |
|
392 | - $vis = self::SAT_VIS_VISIBLE; |
|
393 | - } else { |
|
394 | - $vis = self::SAT_VIS_DAYLIGHT; |
|
395 | - } |
|
396 | - } else { |
|
397 | - $vis = self::SAT_VIS_ECLIPSED; |
|
398 | - } |
|
399 | - |
|
400 | - return $vis; |
|
401 | - } |
|
402 | - |
|
403 | - /** Find the AOS time of the next pass. |
|
404 | - * @author Alexandru Csete, OZ9AEC |
|
405 | - * @author John A. Magliacane, KD2BD |
|
406 | - * @param Predict_Sat $sat The satellite data. |
|
407 | - * @param Predict_QTH $qth The observer's location (QTH) data. |
|
408 | - * @param float $start The julian date where calculation should start. |
|
409 | - * @param int $maxdt The upper time limit in days (0.0 = no limit) |
|
410 | - * @return The julain date of the next AOS or 0.0 if the satellite has no AOS. |
|
411 | - * |
|
412 | - * This function finds the time of AOS for the first coming pass taking place |
|
413 | - * no earlier that start. |
|
414 | - * If the satellite is currently within range, the function first calls |
|
415 | - * find_los to get the next LOS time. Then the calculations are done using |
|
416 | - * the new start time. |
|
417 | - * |
|
418 | - */ |
|
419 | - public function find_aos(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt) |
|
420 | - { |
|
421 | - $t = $start; |
|
422 | - $aostime = 0.0; |
|
423 | - |
|
424 | - |
|
425 | - /* make sure current sat values are |
|
361 | + $eclipse_depth = 0.0; |
|
362 | + $zero_vector = new Predict_Vector(); |
|
363 | + $obs_geodetic = new Predict_Geodetic(); |
|
364 | + |
|
365 | + /* Solar ECI position vector */ |
|
366 | + $solar_vector = new Predict_Vector(); |
|
367 | + |
|
368 | + /* Solar observed az and el vector */ |
|
369 | + $solar_set = new Predict_ObsSet(); |
|
370 | + |
|
371 | + /* FIXME: could be passed as parameter */ |
|
372 | + $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
373 | + $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
374 | + $obs_geodetic->alt = $qth->alt / 1000.0; |
|
375 | + $obs_geodetic->theta = 0; |
|
376 | + |
|
377 | + Predict_Solar::Calculate_Solar_Position($jul_utc, $solar_vector); |
|
378 | + Predict_SGPObs::Calculate_Obs($jul_utc, $solar_vector, $zero_vector, $obs_geodetic, $solar_set); |
|
379 | + |
|
380 | + if (Predict_Solar::Sat_Eclipsed($sat->pos, $solar_vector, $eclipse_depth)) { |
|
381 | + /* satellite is eclipsed */ |
|
382 | + $sat_sun_status = false; |
|
383 | + } else { |
|
384 | + /* satellite in sunlight => may be visible */ |
|
385 | + $sat_sun_status = true; |
|
386 | + } |
|
387 | + |
|
388 | + if ($sat_sun_status) { |
|
389 | + $sun_el = Predict_Math::Degrees($solar_set->el); |
|
390 | + |
|
391 | + if ($sun_el <= $this->threshold && $sat->el >= 0.0) { |
|
392 | + $vis = self::SAT_VIS_VISIBLE; |
|
393 | + } else { |
|
394 | + $vis = self::SAT_VIS_DAYLIGHT; |
|
395 | + } |
|
396 | + } else { |
|
397 | + $vis = self::SAT_VIS_ECLIPSED; |
|
398 | + } |
|
399 | + |
|
400 | + return $vis; |
|
401 | + } |
|
402 | + |
|
403 | + /** Find the AOS time of the next pass. |
|
404 | + * @author Alexandru Csete, OZ9AEC |
|
405 | + * @author John A. Magliacane, KD2BD |
|
406 | + * @param Predict_Sat $sat The satellite data. |
|
407 | + * @param Predict_QTH $qth The observer's location (QTH) data. |
|
408 | + * @param float $start The julian date where calculation should start. |
|
409 | + * @param int $maxdt The upper time limit in days (0.0 = no limit) |
|
410 | + * @return The julain date of the next AOS or 0.0 if the satellite has no AOS. |
|
411 | + * |
|
412 | + * This function finds the time of AOS for the first coming pass taking place |
|
413 | + * no earlier that start. |
|
414 | + * If the satellite is currently within range, the function first calls |
|
415 | + * find_los to get the next LOS time. Then the calculations are done using |
|
416 | + * the new start time. |
|
417 | + * |
|
418 | + */ |
|
419 | + public function find_aos(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt) |
|
420 | + { |
|
421 | + $t = $start; |
|
422 | + $aostime = 0.0; |
|
423 | + |
|
424 | + |
|
425 | + /* make sure current sat values are |
|
426 | 426 | in sync with the time |
427 | 427 | */ |
428 | - $this->predict_calc($sat, $qth, $start); |
|
429 | - |
|
430 | - /* check whether satellite has aos */ |
|
431 | - if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
432 | - ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
433 | - !$this->has_aos($sat, $qth)) { |
|
434 | - |
|
435 | - return 0.0; |
|
436 | - } |
|
437 | - |
|
438 | - if ($sat->el > 0.0) { |
|
439 | - $t = $this->find_los($sat, $qth, $start, $maxdt) + 0.014; // +20 min |
|
440 | - } |
|
441 | - |
|
442 | - /* invalid time (potentially returned by find_los) */ |
|
443 | - if ($t < 0.1) { |
|
444 | - return 0.0; |
|
445 | - } |
|
446 | - |
|
447 | - /* update satellite data */ |
|
448 | - $this->predict_calc($sat, $qth, $t); |
|
449 | - |
|
450 | - /* use upper time limit */ |
|
451 | - if ($maxdt > 0.0) { |
|
452 | - |
|
453 | - /* coarse time steps */ |
|
454 | - while (($sat->el < -1.0) && ($t <= ($start + $maxdt))) { |
|
455 | - $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
456 | - $this->predict_calc($sat, $qth, $t); |
|
457 | - } |
|
458 | - |
|
459 | - /* fine steps */ |
|
460 | - while (($aostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
461 | - |
|
462 | - if (abs($sat->el) < 0.005) { |
|
463 | - $aostime = $t; |
|
464 | - } else { |
|
465 | - $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
466 | - $this->predict_calc($sat, $qth, $t); |
|
467 | - } |
|
468 | - } |
|
469 | - } else { |
|
470 | - /* don't use upper time limit */ |
|
471 | - |
|
472 | - /* coarse time steps */ |
|
473 | - while ($sat->el < -1.0) { |
|
474 | - |
|
475 | - $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
476 | - $this->predict_calc($sat, $qth, $t); |
|
477 | - } |
|
478 | - |
|
479 | - /* fine steps */ |
|
480 | - while ($aostime == 0.0) { |
|
481 | - |
|
482 | - if (abs($sat->el) < 0.005) { |
|
483 | - $aostime = $t; |
|
484 | - } else { |
|
485 | - $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
486 | - $this->predict_calc($sat, $qth, $t); |
|
487 | - } |
|
488 | - |
|
489 | - } |
|
490 | - } |
|
491 | - |
|
492 | - return $aostime; |
|
493 | - } |
|
494 | - |
|
495 | - /** SGP4SDP4 driver for doing AOS/LOS calculations. |
|
496 | - * @param Predict_Sat $sat The satellite data. |
|
497 | - * @param Predict_QTH $qth The QTH observer location data. |
|
498 | - * @param float $t The time for calculation (Julian Date) |
|
499 | - * |
|
500 | - */ |
|
501 | - public function predict_calc(Predict_Sat $sat, Predict_QTH $qth, $t) |
|
502 | - { |
|
503 | - $obs_set = new Predict_ObsSet(); |
|
504 | - $sat_geodetic = new Predict_Geodetic(); |
|
505 | - $obs_geodetic = new Predict_Geodetic(); |
|
506 | - |
|
507 | - $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
508 | - $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
509 | - $obs_geodetic->alt = $qth->alt / 1000.0; |
|
510 | - $obs_geodetic->theta = 0; |
|
511 | - |
|
512 | - $sat->jul_utc = $t; |
|
513 | - $sat->tsince = ($sat->jul_utc - $sat->jul_epoch) * self::xmnpda; |
|
514 | - |
|
515 | - /* call the norad routines according to the deep-space flag */ |
|
516 | - $sgpsdp = Predict_SGPSDP::getInstance($sat); |
|
517 | - if ($sat->flags & Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
518 | - $sgpsdp->SDP4($sat, $sat->tsince); |
|
519 | - } else { |
|
520 | - $sgpsdp->SGP4($sat, $sat->tsince); |
|
521 | - } |
|
522 | - |
|
523 | - Predict_Math::Convert_Sat_State($sat->pos, $sat->vel); |
|
524 | - |
|
525 | - /* get the velocity of the satellite */ |
|
526 | - $sat->vel->w = sqrt($sat->vel->x * $sat->vel->x + $sat->vel->y * $sat->vel->y + $sat->vel->z * $sat->vel->z); |
|
527 | - $sat->velo = $sat->vel->w; |
|
528 | - Predict_SGPObs::Calculate_Obs($sat->jul_utc, $sat->pos, $sat->vel, $obs_geodetic, $obs_set); |
|
529 | - Predict_SGPObs::Calculate_LatLonAlt($sat->jul_utc, $sat->pos, $sat_geodetic); |
|
530 | - |
|
531 | - while ($sat_geodetic->lon < -self::pi) { |
|
532 | - $sat_geodetic->lon += self::twopi; |
|
533 | - } |
|
534 | - |
|
535 | - while ($sat_geodetic->lon > (self::pi)) { |
|
536 | - $sat_geodetic->lon -= self::twopi; |
|
537 | - } |
|
538 | - |
|
539 | - $sat->az = Predict_Math::Degrees($obs_set->az); |
|
540 | - $sat->el = Predict_Math::Degrees($obs_set->el); |
|
541 | - $sat->range = $obs_set->range; |
|
542 | - $sat->range_rate = $obs_set->range_rate; |
|
543 | - $sat->ssplat = Predict_Math::Degrees($sat_geodetic->lat); |
|
544 | - $sat->ssplon = Predict_Math::Degrees($sat_geodetic->lon); |
|
545 | - $sat->alt = $sat_geodetic->alt; |
|
546 | - $sat->ma = Predict_Math::Degrees($sat->phase); |
|
547 | - $sat->ma *= 256.0 / 360.0; |
|
548 | - $sat->phase = Predict_Math::Degrees($sat->phase); |
|
549 | - |
|
550 | - /* same formulas, but the one from predict is nicer */ |
|
551 | - //sat->footprint = 2.0 * xkmper * acos (xkmper/sat->pos.w); |
|
552 | - $sat->footprint = 12756.33 * acos(self::xkmper / (self::xkmper + $sat->alt)); |
|
553 | - $age = $sat->jul_utc - $sat->jul_epoch; |
|
554 | - $sat->orbit = floor(($sat->tle->xno * self::xmnpda / self::twopi + |
|
555 | - $age * $sat->tle->bstar * self::ae) * $age + |
|
556 | - $sat->tle->xmo / self::twopi) + $sat->tle->revnum - 1; |
|
557 | - } |
|
558 | - |
|
559 | - /** Find the LOS time of the next pass. |
|
560 | - * @author Alexandru Csete, OZ9AEC |
|
561 | - * @author John A. Magliacane, KD2BD |
|
562 | - * @param Predict_Sat $sat The satellite data. |
|
563 | - * @param Predict_QTH $qth The QTH observer location data. |
|
564 | - * @param float $start The time where calculation should start. (Julian Date) |
|
565 | - * @param int $maxdt The upper time limit in days (0.0 = no limit) |
|
566 | - * @return The time (julian date) of the next LOS or 0.0 if the satellite has no LOS. |
|
567 | - * |
|
568 | - * This function finds the time of LOS for the first coming pass taking place |
|
569 | - * no earlier that start. |
|
570 | - * If the satellite is currently out of range, the function first calls |
|
571 | - * find_aos to get the next AOS time. Then the calculations are done using |
|
572 | - * the new start time. |
|
573 | - * The function has a built-in watchdog to ensure that we don't end up in |
|
574 | - * lengthy loops. |
|
575 | - * |
|
576 | - */ |
|
577 | - public function find_los(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt) |
|
578 | - { |
|
579 | - $t = $start; |
|
580 | - $lostime = 0.0; |
|
581 | - |
|
582 | - |
|
583 | - $this->predict_calc($sat, $qth, $start); |
|
584 | - |
|
585 | - /* check whether satellite has aos */ |
|
586 | - if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
587 | - ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
588 | - !$this->has_aos ($sat, $qth)) { |
|
589 | - |
|
590 | - return 0.0; |
|
591 | - } |
|
592 | - |
|
593 | - if ($sat->el < 0.0) { |
|
594 | - $t = $this->find_aos($sat, $qth, $start, $maxdt) + 0.001; // +1.5 min |
|
595 | - } |
|
596 | - |
|
597 | - /* invalid time (potentially returned by find_aos) */ |
|
598 | - if ($t < 0.01) { |
|
599 | - return 0.0; |
|
600 | - } |
|
601 | - |
|
602 | - /* update satellite data */ |
|
603 | - $this->predict_calc($sat, $qth, $t); |
|
604 | - |
|
605 | - /* use upper time limit */ |
|
606 | - if ($maxdt > 0.0) { |
|
607 | - |
|
608 | - /* coarse steps */ |
|
609 | - while (($sat->el >= 1.0) && ($t <= ($start + $maxdt))) { |
|
610 | - $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
611 | - $this->predict_calc($sat, $qth, $t); |
|
612 | - } |
|
613 | - |
|
614 | - /* fine steps */ |
|
615 | - while (($lostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
616 | - |
|
617 | - $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
618 | - $this->predict_calc($sat, $qth, $t); |
|
619 | - |
|
620 | - if (abs($sat->el) < 0.005) { |
|
621 | - $lostime = $t; |
|
622 | - } |
|
623 | - } |
|
624 | - } else { |
|
625 | - /* don't use upper limit */ |
|
626 | - |
|
627 | - /* coarse steps */ |
|
628 | - while ($sat->el >= 1.0) { |
|
629 | - $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
630 | - $this->predict_calc($sat, $qth, $t); |
|
631 | - } |
|
632 | - |
|
633 | - /* fine steps */ |
|
634 | - while ($lostime == 0.0) { |
|
635 | - |
|
636 | - $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
637 | - $this->predict_calc($sat, $qth, $t); |
|
638 | - |
|
639 | - if (abs($sat->el) < 0.005) |
|
640 | - $lostime = $t; |
|
641 | - } |
|
642 | - } |
|
643 | - |
|
644 | - return $lostime; |
|
645 | - } |
|
646 | - |
|
647 | - /** Find AOS time of current pass. |
|
648 | - * @param Predict_Sat $sat The satellite to find AOS for. |
|
649 | - * @param Predict_QTH $qth The ground station. |
|
650 | - * @param float $start Start time, prefereably now. |
|
651 | - * @return The time of the previous AOS or 0.0 if the satellite has no AOS. |
|
652 | - * |
|
653 | - * This function can be used to find the AOS time in the past of the |
|
654 | - * current pass. |
|
655 | - */ |
|
656 | - public function find_prev_aos(Predict_Sat $sat, Predict_QTH $qth, $start) |
|
657 | - { |
|
658 | - $aostime = $start; |
|
659 | - |
|
660 | - /* make sure current sat values are |
|
428 | + $this->predict_calc($sat, $qth, $start); |
|
429 | + |
|
430 | + /* check whether satellite has aos */ |
|
431 | + if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
432 | + ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
433 | + !$this->has_aos($sat, $qth)) { |
|
434 | + |
|
435 | + return 0.0; |
|
436 | + } |
|
437 | + |
|
438 | + if ($sat->el > 0.0) { |
|
439 | + $t = $this->find_los($sat, $qth, $start, $maxdt) + 0.014; // +20 min |
|
440 | + } |
|
441 | + |
|
442 | + /* invalid time (potentially returned by find_los) */ |
|
443 | + if ($t < 0.1) { |
|
444 | + return 0.0; |
|
445 | + } |
|
446 | + |
|
447 | + /* update satellite data */ |
|
448 | + $this->predict_calc($sat, $qth, $t); |
|
449 | + |
|
450 | + /* use upper time limit */ |
|
451 | + if ($maxdt > 0.0) { |
|
452 | + |
|
453 | + /* coarse time steps */ |
|
454 | + while (($sat->el < -1.0) && ($t <= ($start + $maxdt))) { |
|
455 | + $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
456 | + $this->predict_calc($sat, $qth, $t); |
|
457 | + } |
|
458 | + |
|
459 | + /* fine steps */ |
|
460 | + while (($aostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
461 | + |
|
462 | + if (abs($sat->el) < 0.005) { |
|
463 | + $aostime = $t; |
|
464 | + } else { |
|
465 | + $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
466 | + $this->predict_calc($sat, $qth, $t); |
|
467 | + } |
|
468 | + } |
|
469 | + } else { |
|
470 | + /* don't use upper time limit */ |
|
471 | + |
|
472 | + /* coarse time steps */ |
|
473 | + while ($sat->el < -1.0) { |
|
474 | + |
|
475 | + $t -= 0.00035 * ($sat->el * (($sat->alt / 8400.0) + 0.46) - 2.0); |
|
476 | + $this->predict_calc($sat, $qth, $t); |
|
477 | + } |
|
478 | + |
|
479 | + /* fine steps */ |
|
480 | + while ($aostime == 0.0) { |
|
481 | + |
|
482 | + if (abs($sat->el) < 0.005) { |
|
483 | + $aostime = $t; |
|
484 | + } else { |
|
485 | + $t -= $sat->el * sqrt($sat->alt) / 530000.0; |
|
486 | + $this->predict_calc($sat, $qth, $t); |
|
487 | + } |
|
488 | + |
|
489 | + } |
|
490 | + } |
|
491 | + |
|
492 | + return $aostime; |
|
493 | + } |
|
494 | + |
|
495 | + /** SGP4SDP4 driver for doing AOS/LOS calculations. |
|
496 | + * @param Predict_Sat $sat The satellite data. |
|
497 | + * @param Predict_QTH $qth The QTH observer location data. |
|
498 | + * @param float $t The time for calculation (Julian Date) |
|
499 | + * |
|
500 | + */ |
|
501 | + public function predict_calc(Predict_Sat $sat, Predict_QTH $qth, $t) |
|
502 | + { |
|
503 | + $obs_set = new Predict_ObsSet(); |
|
504 | + $sat_geodetic = new Predict_Geodetic(); |
|
505 | + $obs_geodetic = new Predict_Geodetic(); |
|
506 | + |
|
507 | + $obs_geodetic->lon = $qth->lon * self::de2ra; |
|
508 | + $obs_geodetic->lat = $qth->lat * self::de2ra; |
|
509 | + $obs_geodetic->alt = $qth->alt / 1000.0; |
|
510 | + $obs_geodetic->theta = 0; |
|
511 | + |
|
512 | + $sat->jul_utc = $t; |
|
513 | + $sat->tsince = ($sat->jul_utc - $sat->jul_epoch) * self::xmnpda; |
|
514 | + |
|
515 | + /* call the norad routines according to the deep-space flag */ |
|
516 | + $sgpsdp = Predict_SGPSDP::getInstance($sat); |
|
517 | + if ($sat->flags & Predict_SGPSDP::DEEP_SPACE_EPHEM_FLAG) { |
|
518 | + $sgpsdp->SDP4($sat, $sat->tsince); |
|
519 | + } else { |
|
520 | + $sgpsdp->SGP4($sat, $sat->tsince); |
|
521 | + } |
|
522 | + |
|
523 | + Predict_Math::Convert_Sat_State($sat->pos, $sat->vel); |
|
524 | + |
|
525 | + /* get the velocity of the satellite */ |
|
526 | + $sat->vel->w = sqrt($sat->vel->x * $sat->vel->x + $sat->vel->y * $sat->vel->y + $sat->vel->z * $sat->vel->z); |
|
527 | + $sat->velo = $sat->vel->w; |
|
528 | + Predict_SGPObs::Calculate_Obs($sat->jul_utc, $sat->pos, $sat->vel, $obs_geodetic, $obs_set); |
|
529 | + Predict_SGPObs::Calculate_LatLonAlt($sat->jul_utc, $sat->pos, $sat_geodetic); |
|
530 | + |
|
531 | + while ($sat_geodetic->lon < -self::pi) { |
|
532 | + $sat_geodetic->lon += self::twopi; |
|
533 | + } |
|
534 | + |
|
535 | + while ($sat_geodetic->lon > (self::pi)) { |
|
536 | + $sat_geodetic->lon -= self::twopi; |
|
537 | + } |
|
538 | + |
|
539 | + $sat->az = Predict_Math::Degrees($obs_set->az); |
|
540 | + $sat->el = Predict_Math::Degrees($obs_set->el); |
|
541 | + $sat->range = $obs_set->range; |
|
542 | + $sat->range_rate = $obs_set->range_rate; |
|
543 | + $sat->ssplat = Predict_Math::Degrees($sat_geodetic->lat); |
|
544 | + $sat->ssplon = Predict_Math::Degrees($sat_geodetic->lon); |
|
545 | + $sat->alt = $sat_geodetic->alt; |
|
546 | + $sat->ma = Predict_Math::Degrees($sat->phase); |
|
547 | + $sat->ma *= 256.0 / 360.0; |
|
548 | + $sat->phase = Predict_Math::Degrees($sat->phase); |
|
549 | + |
|
550 | + /* same formulas, but the one from predict is nicer */ |
|
551 | + //sat->footprint = 2.0 * xkmper * acos (xkmper/sat->pos.w); |
|
552 | + $sat->footprint = 12756.33 * acos(self::xkmper / (self::xkmper + $sat->alt)); |
|
553 | + $age = $sat->jul_utc - $sat->jul_epoch; |
|
554 | + $sat->orbit = floor(($sat->tle->xno * self::xmnpda / self::twopi + |
|
555 | + $age * $sat->tle->bstar * self::ae) * $age + |
|
556 | + $sat->tle->xmo / self::twopi) + $sat->tle->revnum - 1; |
|
557 | + } |
|
558 | + |
|
559 | + /** Find the LOS time of the next pass. |
|
560 | + * @author Alexandru Csete, OZ9AEC |
|
561 | + * @author John A. Magliacane, KD2BD |
|
562 | + * @param Predict_Sat $sat The satellite data. |
|
563 | + * @param Predict_QTH $qth The QTH observer location data. |
|
564 | + * @param float $start The time where calculation should start. (Julian Date) |
|
565 | + * @param int $maxdt The upper time limit in days (0.0 = no limit) |
|
566 | + * @return The time (julian date) of the next LOS or 0.0 if the satellite has no LOS. |
|
567 | + * |
|
568 | + * This function finds the time of LOS for the first coming pass taking place |
|
569 | + * no earlier that start. |
|
570 | + * If the satellite is currently out of range, the function first calls |
|
571 | + * find_aos to get the next AOS time. Then the calculations are done using |
|
572 | + * the new start time. |
|
573 | + * The function has a built-in watchdog to ensure that we don't end up in |
|
574 | + * lengthy loops. |
|
575 | + * |
|
576 | + */ |
|
577 | + public function find_los(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt) |
|
578 | + { |
|
579 | + $t = $start; |
|
580 | + $lostime = 0.0; |
|
581 | + |
|
582 | + |
|
583 | + $this->predict_calc($sat, $qth, $start); |
|
584 | + |
|
585 | + /* check whether satellite has aos */ |
|
586 | + if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
587 | + ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
588 | + !$this->has_aos ($sat, $qth)) { |
|
589 | + |
|
590 | + return 0.0; |
|
591 | + } |
|
592 | + |
|
593 | + if ($sat->el < 0.0) { |
|
594 | + $t = $this->find_aos($sat, $qth, $start, $maxdt) + 0.001; // +1.5 min |
|
595 | + } |
|
596 | + |
|
597 | + /* invalid time (potentially returned by find_aos) */ |
|
598 | + if ($t < 0.01) { |
|
599 | + return 0.0; |
|
600 | + } |
|
601 | + |
|
602 | + /* update satellite data */ |
|
603 | + $this->predict_calc($sat, $qth, $t); |
|
604 | + |
|
605 | + /* use upper time limit */ |
|
606 | + if ($maxdt > 0.0) { |
|
607 | + |
|
608 | + /* coarse steps */ |
|
609 | + while (($sat->el >= 1.0) && ($t <= ($start + $maxdt))) { |
|
610 | + $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
611 | + $this->predict_calc($sat, $qth, $t); |
|
612 | + } |
|
613 | + |
|
614 | + /* fine steps */ |
|
615 | + while (($lostime == 0.0) && ($t <= ($start + $maxdt))) { |
|
616 | + |
|
617 | + $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
618 | + $this->predict_calc($sat, $qth, $t); |
|
619 | + |
|
620 | + if (abs($sat->el) < 0.005) { |
|
621 | + $lostime = $t; |
|
622 | + } |
|
623 | + } |
|
624 | + } else { |
|
625 | + /* don't use upper limit */ |
|
626 | + |
|
627 | + /* coarse steps */ |
|
628 | + while ($sat->el >= 1.0) { |
|
629 | + $t += cos(($sat->el - 1.0) * self::de2ra) * sqrt($sat->alt) / 25000.0; |
|
630 | + $this->predict_calc($sat, $qth, $t); |
|
631 | + } |
|
632 | + |
|
633 | + /* fine steps */ |
|
634 | + while ($lostime == 0.0) { |
|
635 | + |
|
636 | + $t += $sat->el * sqrt($sat->alt) / 502500.0; |
|
637 | + $this->predict_calc($sat, $qth, $t); |
|
638 | + |
|
639 | + if (abs($sat->el) < 0.005) |
|
640 | + $lostime = $t; |
|
641 | + } |
|
642 | + } |
|
643 | + |
|
644 | + return $lostime; |
|
645 | + } |
|
646 | + |
|
647 | + /** Find AOS time of current pass. |
|
648 | + * @param Predict_Sat $sat The satellite to find AOS for. |
|
649 | + * @param Predict_QTH $qth The ground station. |
|
650 | + * @param float $start Start time, prefereably now. |
|
651 | + * @return The time of the previous AOS or 0.0 if the satellite has no AOS. |
|
652 | + * |
|
653 | + * This function can be used to find the AOS time in the past of the |
|
654 | + * current pass. |
|
655 | + */ |
|
656 | + public function find_prev_aos(Predict_Sat $sat, Predict_QTH $qth, $start) |
|
657 | + { |
|
658 | + $aostime = $start; |
|
659 | + |
|
660 | + /* make sure current sat values are |
|
661 | 661 | in sync with the time |
662 | 662 | */ |
663 | - $this->predict_calc($sat, $qth, $start); |
|
664 | - |
|
665 | - /* check whether satellite has aos */ |
|
666 | - if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
667 | - ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
668 | - !$this->has_aos($sat, $qth)) { |
|
669 | - |
|
670 | - return 0.0; |
|
671 | - } |
|
672 | - |
|
673 | - while ($sat->el >= 0.0) { |
|
674 | - $aostime -= 0.0005; // 0.75 min |
|
675 | - $this->predict_calc($sat, $qth, $aostime); |
|
676 | - } |
|
677 | - |
|
678 | - return $aostime; |
|
679 | - } |
|
680 | - |
|
681 | - /** Determine whether satellite ever reaches AOS. |
|
682 | - * @author John A. Magliacane, KD2BD |
|
683 | - * @author Alexandru Csete, OZ9AEC |
|
684 | - * @param Predict_Sat $sat The satellite data. |
|
685 | - * @param Predict_QTH $qth The observer's location data |
|
686 | - * @return bool true if the satellite will reach AOS, false otherwise. |
|
687 | - * |
|
688 | - */ |
|
689 | - public function has_aos(Predict_Sat $sat, Predict_QTH $qth) |
|
690 | - { |
|
691 | - $retcode = false; |
|
692 | - |
|
693 | - /* FIXME */ |
|
694 | - if ($sat->meanmo == 0.0) { |
|
695 | - $retcode = false; |
|
696 | - } else { |
|
697 | - |
|
698 | - /* xincl is already in RAD by select_ephemeris */ |
|
699 | - $lin = $sat->tle->xincl; |
|
700 | - if ($lin >= self::pio2) { |
|
701 | - $lin = self::pi - $lin; |
|
702 | - } |
|
703 | - |
|
704 | - $sma = 331.25 * exp(log(1440.0 / $sat->meanmo) * (2.0 / 3.0)); |
|
705 | - $apogee = $sma * (1.0 + $sat->tle->eo) - self::xkmper; |
|
706 | - |
|
707 | - if ((acos(self::xkmper / ($apogee + self::xkmper)) + ($lin)) > abs($qth->lat * self::de2ra)) { |
|
708 | - $retcode = true; |
|
709 | - } else { |
|
710 | - $retcode = false; |
|
711 | - } |
|
712 | - } |
|
713 | - |
|
714 | - return $retcode; |
|
715 | - } |
|
716 | - |
|
717 | - /** Predict passes after a certain time. |
|
718 | - * |
|
719 | - * |
|
720 | - * This function calculates num upcoming passes with AOS no earlier |
|
721 | - * than t = start and not later that t = (start+maxdt). The function will |
|
722 | - * repeatedly call get_pass until |
|
723 | - * the number of predicted passes is equal to num, the time has reached |
|
724 | - * limit or the get_pass function returns NULL. |
|
725 | - * |
|
726 | - * note For no time limit use maxdt = 0.0 |
|
727 | - * |
|
728 | - * note the data in sat will be corrupt (future) and must be refreshed |
|
729 | - * by the caller, if the caller will need it later on (eg. if the caller |
|
730 | - * is GtkSatList). |
|
731 | - * |
|
732 | - * note Prepending to a singly linked list is much faster than appending. |
|
733 | - * Therefore, the elements are prepended whereafter the GSList is |
|
734 | - * reversed |
|
735 | - * |
|
736 | - * |
|
737 | - * @param Predict_Sat $sat The satellite data |
|
738 | - * @param Predict_QTH $qth The observer's location data |
|
739 | - * @param float $start The start julian date |
|
740 | - * @param int $maxdt The max # of days to look |
|
741 | - * @param int $num The max # of passes to get |
|
742 | - * @return array of Predict_Pass instances if found, empty array otherwise |
|
743 | - */ |
|
744 | - public function get_passes(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt, $num = 0) |
|
745 | - { |
|
746 | - $passes = array(); |
|
747 | - |
|
748 | - /* if no number has been specified |
|
663 | + $this->predict_calc($sat, $qth, $start); |
|
664 | + |
|
665 | + /* check whether satellite has aos */ |
|
666 | + if (($sat->otype == Predict_SGPSDP::ORBIT_TYPE_GEO) || |
|
667 | + ($sat->otype == Predict_SGPSDP::ORBIT_TYPE_DECAYED) || |
|
668 | + !$this->has_aos($sat, $qth)) { |
|
669 | + |
|
670 | + return 0.0; |
|
671 | + } |
|
672 | + |
|
673 | + while ($sat->el >= 0.0) { |
|
674 | + $aostime -= 0.0005; // 0.75 min |
|
675 | + $this->predict_calc($sat, $qth, $aostime); |
|
676 | + } |
|
677 | + |
|
678 | + return $aostime; |
|
679 | + } |
|
680 | + |
|
681 | + /** Determine whether satellite ever reaches AOS. |
|
682 | + * @author John A. Magliacane, KD2BD |
|
683 | + * @author Alexandru Csete, OZ9AEC |
|
684 | + * @param Predict_Sat $sat The satellite data. |
|
685 | + * @param Predict_QTH $qth The observer's location data |
|
686 | + * @return bool true if the satellite will reach AOS, false otherwise. |
|
687 | + * |
|
688 | + */ |
|
689 | + public function has_aos(Predict_Sat $sat, Predict_QTH $qth) |
|
690 | + { |
|
691 | + $retcode = false; |
|
692 | + |
|
693 | + /* FIXME */ |
|
694 | + if ($sat->meanmo == 0.0) { |
|
695 | + $retcode = false; |
|
696 | + } else { |
|
697 | + |
|
698 | + /* xincl is already in RAD by select_ephemeris */ |
|
699 | + $lin = $sat->tle->xincl; |
|
700 | + if ($lin >= self::pio2) { |
|
701 | + $lin = self::pi - $lin; |
|
702 | + } |
|
703 | + |
|
704 | + $sma = 331.25 * exp(log(1440.0 / $sat->meanmo) * (2.0 / 3.0)); |
|
705 | + $apogee = $sma * (1.0 + $sat->tle->eo) - self::xkmper; |
|
706 | + |
|
707 | + if ((acos(self::xkmper / ($apogee + self::xkmper)) + ($lin)) > abs($qth->lat * self::de2ra)) { |
|
708 | + $retcode = true; |
|
709 | + } else { |
|
710 | + $retcode = false; |
|
711 | + } |
|
712 | + } |
|
713 | + |
|
714 | + return $retcode; |
|
715 | + } |
|
716 | + |
|
717 | + /** Predict passes after a certain time. |
|
718 | + * |
|
719 | + * |
|
720 | + * This function calculates num upcoming passes with AOS no earlier |
|
721 | + * than t = start and not later that t = (start+maxdt). The function will |
|
722 | + * repeatedly call get_pass until |
|
723 | + * the number of predicted passes is equal to num, the time has reached |
|
724 | + * limit or the get_pass function returns NULL. |
|
725 | + * |
|
726 | + * note For no time limit use maxdt = 0.0 |
|
727 | + * |
|
728 | + * note the data in sat will be corrupt (future) and must be refreshed |
|
729 | + * by the caller, if the caller will need it later on (eg. if the caller |
|
730 | + * is GtkSatList). |
|
731 | + * |
|
732 | + * note Prepending to a singly linked list is much faster than appending. |
|
733 | + * Therefore, the elements are prepended whereafter the GSList is |
|
734 | + * reversed |
|
735 | + * |
|
736 | + * |
|
737 | + * @param Predict_Sat $sat The satellite data |
|
738 | + * @param Predict_QTH $qth The observer's location data |
|
739 | + * @param float $start The start julian date |
|
740 | + * @param int $maxdt The max # of days to look |
|
741 | + * @param int $num The max # of passes to get |
|
742 | + * @return array of Predict_Pass instances if found, empty array otherwise |
|
743 | + */ |
|
744 | + public function get_passes(Predict_Sat $sat, Predict_QTH $qth, $start, $maxdt, $num = 0) |
|
745 | + { |
|
746 | + $passes = array(); |
|
747 | + |
|
748 | + /* if no number has been specified |
|
749 | 749 | set it to something big */ |
750 | - if ($num == 0) { |
|
751 | - $num = 100; |
|
752 | - } |
|
750 | + if ($num == 0) { |
|
751 | + $num = 100; |
|
752 | + } |
|
753 | 753 | |
754 | - $t = $start; |
|
754 | + $t = $start; |
|
755 | 755 | |
756 | - for ($i = 0; $i < $num; $i++) { |
|
757 | - $pass = $this->get_pass($sat, $qth, $t, $maxdt); |
|
756 | + for ($i = 0; $i < $num; $i++) { |
|
757 | + $pass = $this->get_pass($sat, $qth, $t, $maxdt); |
|
758 | 758 | |
759 | - if ($pass != null) { |
|
760 | - $passes[] = $pass; |
|
761 | - $t = $pass->los + 0.014; // +20 min |
|
759 | + if ($pass != null) { |
|
760 | + $passes[] = $pass; |
|
761 | + $t = $pass->los + 0.014; // +20 min |
|
762 | 762 | |
763 | - /* if maxdt > 0.0 check whether we have reached t = start+maxdt |
|
763 | + /* if maxdt > 0.0 check whether we have reached t = start+maxdt |
|
764 | 764 | if yes finish predictions |
765 | 765 | */ |
766 | - if (($maxdt > 0.0) && ($t >= ($start + $maxdt))) { |
|
767 | - $i = $num; |
|
768 | - } |
|
769 | - } else { |
|
770 | - /* we can't get any more passes */ |
|
771 | - $i = $num; |
|
772 | - } |
|
773 | - } |
|
774 | - |
|
775 | - return $passes; |
|
776 | - } |
|
777 | - |
|
778 | - /** |
|
779 | - * Filters out visible passes and adds the visible aos, tca, los, and |
|
780 | - * corresponding az and ele for each. |
|
781 | - * |
|
782 | - * @param array $passes The passes returned from get_passes() |
|
783 | - * |
|
784 | - * @author Bill Shupp |
|
785 | - * @return array |
|
786 | - */ |
|
787 | - public function filterVisiblePasses(array $passes) |
|
788 | - { |
|
789 | - $filtered = array(); |
|
790 | - |
|
791 | - foreach ($passes as $result) { |
|
792 | - // Dummy check |
|
793 | - if ($result->vis[0] != 'V') { |
|
794 | - continue; |
|
795 | - } |
|
796 | - |
|
797 | - $aos = false; |
|
798 | - $aos_az = false; |
|
799 | - $aos = false; |
|
800 | - $tca = false; |
|
801 | - $los_az = false; |
|
802 | - $max_el = 0; |
|
803 | - |
|
804 | - foreach ($result->details as $detail) { |
|
805 | - if ($detail->vis != Predict::SAT_VIS_VISIBLE) { |
|
806 | - continue; |
|
807 | - } |
|
808 | - if ($detail->el < $this->minEle) { |
|
809 | - continue; |
|
810 | - } |
|
811 | - |
|
812 | - if ($aos == false) { |
|
813 | - $aos = $detail->time; |
|
814 | - $aos_az = $detail->az; |
|
815 | - $aos_el = $detail->el; |
|
816 | - $tca = $detail->time; |
|
817 | - $los = $detail->time; |
|
818 | - $los_az = $detail->az; |
|
819 | - $los_el = $detail->el; |
|
820 | - $max_el = $detail->el; |
|
821 | - $max_el_az = $detail->el; |
|
822 | - continue; |
|
823 | - } |
|
824 | - $los = $detail->time; |
|
825 | - $los_az = $detail->az; |
|
826 | - $los_el = $detail->el; |
|
827 | - |
|
828 | - if ($detail->el > $max_el) { |
|
829 | - $tca = $detail->time; |
|
830 | - $max_el = $detail->el; |
|
831 | - $max_el_az = $detail->az; |
|
832 | - } |
|
833 | - } |
|
834 | - |
|
835 | - if ($aos === false) { |
|
836 | - // Does not reach minimum elevation, skip |
|
837 | - continue; |
|
838 | - } |
|
839 | - |
|
840 | - $result->visible_aos = $aos; |
|
841 | - $result->visible_aos_az = $aos_az; |
|
842 | - $result->visible_aos_el = $aos_el; |
|
843 | - $result->visible_tca = $tca; |
|
844 | - $result->visible_max_el = $max_el; |
|
845 | - $result->visible_max_el_az = $max_el_az; |
|
846 | - $result->visible_los = $los; |
|
847 | - $result->visible_los_az = $los_az; |
|
848 | - $result->visible_los_el = $los_el; |
|
849 | - |
|
850 | - $filtered[] = $result; |
|
851 | - } |
|
852 | - |
|
853 | - return $filtered; |
|
854 | - } |
|
855 | - |
|
856 | - /** |
|
857 | - * Translates aziumuth degrees to compass direction: |
|
858 | - * |
|
859 | - * N (0°), NNE (22.5°), NE (45°), ENE (67.5°), E (90°), ESE (112.5°), |
|
860 | - * SE (135°), SSE (157.5°), S (180°), SSW (202.5°), SW (225°), |
|
861 | - * WSW (247.5°), W (270°), WNW (292.5°), NW (315°), NNW (337.5°) |
|
862 | - * |
|
863 | - * @param int $az The azimuth in degrees, defaults to 0 |
|
864 | - * |
|
865 | - * @return string |
|
866 | - */ |
|
867 | - public function azDegreesToDirection($az = 0) |
|
868 | - { |
|
869 | - $i = floor($az / 22.5); |
|
870 | - $m = (22.5 * (2 * $i + 1)) / 2; |
|
871 | - $i = ($az >= $m) ? $i + 1 : $i; |
|
872 | - |
|
873 | - return trim(substr('N NNENE ENEE ESESE SSES SSWSW WSWW WNWNW NNWN ', $i * 3, 3)); |
|
874 | - } |
|
766 | + if (($maxdt > 0.0) && ($t >= ($start + $maxdt))) { |
|
767 | + $i = $num; |
|
768 | + } |
|
769 | + } else { |
|
770 | + /* we can't get any more passes */ |
|
771 | + $i = $num; |
|
772 | + } |
|
773 | + } |
|
774 | + |
|
775 | + return $passes; |
|
776 | + } |
|
777 | + |
|
778 | + /** |
|
779 | + * Filters out visible passes and adds the visible aos, tca, los, and |
|
780 | + * corresponding az and ele for each. |
|
781 | + * |
|
782 | + * @param array $passes The passes returned from get_passes() |
|
783 | + * |
|
784 | + * @author Bill Shupp |
|
785 | + * @return array |
|
786 | + */ |
|
787 | + public function filterVisiblePasses(array $passes) |
|
788 | + { |
|
789 | + $filtered = array(); |
|
790 | + |
|
791 | + foreach ($passes as $result) { |
|
792 | + // Dummy check |
|
793 | + if ($result->vis[0] != 'V') { |
|
794 | + continue; |
|
795 | + } |
|
796 | + |
|
797 | + $aos = false; |
|
798 | + $aos_az = false; |
|
799 | + $aos = false; |
|
800 | + $tca = false; |
|
801 | + $los_az = false; |
|
802 | + $max_el = 0; |
|
803 | + |
|
804 | + foreach ($result->details as $detail) { |
|
805 | + if ($detail->vis != Predict::SAT_VIS_VISIBLE) { |
|
806 | + continue; |
|
807 | + } |
|
808 | + if ($detail->el < $this->minEle) { |
|
809 | + continue; |
|
810 | + } |
|
811 | + |
|
812 | + if ($aos == false) { |
|
813 | + $aos = $detail->time; |
|
814 | + $aos_az = $detail->az; |
|
815 | + $aos_el = $detail->el; |
|
816 | + $tca = $detail->time; |
|
817 | + $los = $detail->time; |
|
818 | + $los_az = $detail->az; |
|
819 | + $los_el = $detail->el; |
|
820 | + $max_el = $detail->el; |
|
821 | + $max_el_az = $detail->el; |
|
822 | + continue; |
|
823 | + } |
|
824 | + $los = $detail->time; |
|
825 | + $los_az = $detail->az; |
|
826 | + $los_el = $detail->el; |
|
827 | + |
|
828 | + if ($detail->el > $max_el) { |
|
829 | + $tca = $detail->time; |
|
830 | + $max_el = $detail->el; |
|
831 | + $max_el_az = $detail->az; |
|
832 | + } |
|
833 | + } |
|
834 | + |
|
835 | + if ($aos === false) { |
|
836 | + // Does not reach minimum elevation, skip |
|
837 | + continue; |
|
838 | + } |
|
839 | + |
|
840 | + $result->visible_aos = $aos; |
|
841 | + $result->visible_aos_az = $aos_az; |
|
842 | + $result->visible_aos_el = $aos_el; |
|
843 | + $result->visible_tca = $tca; |
|
844 | + $result->visible_max_el = $max_el; |
|
845 | + $result->visible_max_el_az = $max_el_az; |
|
846 | + $result->visible_los = $los; |
|
847 | + $result->visible_los_az = $los_az; |
|
848 | + $result->visible_los_el = $los_el; |
|
849 | + |
|
850 | + $filtered[] = $result; |
|
851 | + } |
|
852 | + |
|
853 | + return $filtered; |
|
854 | + } |
|
855 | + |
|
856 | + /** |
|
857 | + * Translates aziumuth degrees to compass direction: |
|
858 | + * |
|
859 | + * N (0°), NNE (22.5°), NE (45°), ENE (67.5°), E (90°), ESE (112.5°), |
|
860 | + * SE (135°), SSE (157.5°), S (180°), SSW (202.5°), SW (225°), |
|
861 | + * WSW (247.5°), W (270°), WNW (292.5°), NW (315°), NNW (337.5°) |
|
862 | + * |
|
863 | + * @param int $az The azimuth in degrees, defaults to 0 |
|
864 | + * |
|
865 | + * @return string |
|
866 | + */ |
|
867 | + public function azDegreesToDirection($az = 0) |
|
868 | + { |
|
869 | + $i = floor($az / 22.5); |
|
870 | + $m = (22.5 * (2 * $i + 1)) / 2; |
|
871 | + $i = ($az >= $m) ? $i + 1 : $i; |
|
872 | + |
|
873 | + return trim(substr('N NNENE ENEE ESESE SSES SSWSW WSWW WNWNW NNWN ', $i * 3, 3)); |
|
874 | + } |
|
875 | 875 | } |
@@ -6,30 +6,30 @@ |
||
6 | 6 | /* Common arguments between deep-space functions */ |
7 | 7 | class Predict_DeepArg |
8 | 8 | { |
9 | - /* Used by dpinit part of Deep() */ |
|
10 | - public $eosq; |
|
11 | - public $sinio; |
|
12 | - public $cosio; |
|
13 | - public $betao; |
|
14 | - public $aodp; |
|
15 | - public $theta2; |
|
16 | - public $sing; |
|
17 | - public $cosg; |
|
18 | - public $betao2; |
|
19 | - public $xmdot; |
|
20 | - public $omgdot; |
|
21 | - public $xnodot; |
|
22 | - public $xnodp; |
|
9 | + /* Used by dpinit part of Deep() */ |
|
10 | + public $eosq; |
|
11 | + public $sinio; |
|
12 | + public $cosio; |
|
13 | + public $betao; |
|
14 | + public $aodp; |
|
15 | + public $theta2; |
|
16 | + public $sing; |
|
17 | + public $cosg; |
|
18 | + public $betao2; |
|
19 | + public $xmdot; |
|
20 | + public $omgdot; |
|
21 | + public $xnodot; |
|
22 | + public $xnodp; |
|
23 | 23 | |
24 | - /* Used by dpsec and dpper parts of Deep() */ |
|
25 | - public $xll; |
|
26 | - public $omgadf; |
|
27 | - public $xnode; |
|
28 | - public $em; |
|
29 | - public $xinc; |
|
30 | - public $xn; |
|
31 | - public $t; |
|
24 | + /* Used by dpsec and dpper parts of Deep() */ |
|
25 | + public $xll; |
|
26 | + public $omgadf; |
|
27 | + public $xnode; |
|
28 | + public $em; |
|
29 | + public $xinc; |
|
30 | + public $xn; |
|
31 | + public $t; |
|
32 | 32 | |
33 | - /* Used by thetg and Deep() */ |
|
34 | - public $ds50; |
|
33 | + /* Used by thetg and Deep() */ |
|
34 | + public $ds50; |
|
35 | 35 | } |
@@ -3,16 +3,16 @@ |
||
3 | 3 | /** Brief satellite pass info. */ |
4 | 4 | class Predict_Pass |
5 | 5 | { |
6 | - public $satname; /*!< satellite name */ |
|
7 | - public $aos; /*!< AOS time in "jul_utc" */ |
|
8 | - public $tca; /*!< TCA time in "jul_utc" */ |
|
9 | - public $los; /*!< LOS time in "jul_utc" */ |
|
10 | - public $max_el; /*!< Maximum elevation during pass */ |
|
11 | - public $aos_az; /*!< Azimuth at AOS */ |
|
12 | - public $los_az; /*!< Azimuth at LOS */ |
|
13 | - public $orbit; /*!< Orbit number */ |
|
14 | - public $maxel_az; /*!< Azimuth at maximum elevation */ |
|
15 | - public $vis; /*!< Visibility string, e.g. VSE, -S-, V-- */ |
|
16 | - public $details = array(); /*!< List of pass_detail_t entries */ |
|
17 | - public $max_apparent_magnitude = null; /* maximum apparent magnitude, experimental */ |
|
6 | + public $satname; /*!< satellite name */ |
|
7 | + public $aos; /*!< AOS time in "jul_utc" */ |
|
8 | + public $tca; /*!< TCA time in "jul_utc" */ |
|
9 | + public $los; /*!< LOS time in "jul_utc" */ |
|
10 | + public $max_el; /*!< Maximum elevation during pass */ |
|
11 | + public $aos_az; /*!< Azimuth at AOS */ |
|
12 | + public $los_az; /*!< Azimuth at LOS */ |
|
13 | + public $orbit; /*!< Orbit number */ |
|
14 | + public $maxel_az; /*!< Azimuth at maximum elevation */ |
|
15 | + public $vis; /*!< Visibility string, e.g. VSE, -S-, V-- */ |
|
16 | + public $details = array(); /*!< List of pass_detail_t entries */ |
|
17 | + public $max_apparent_magnitude = null; /* maximum apparent magnitude, experimental */ |
|
18 | 18 | } |
@@ -19,178 +19,178 @@ |
||
19 | 19 | */ |
20 | 20 | class Predict_Math |
21 | 21 | { |
22 | - /* Returns sign of a float */ |
|
23 | - public static function Sign($arg) |
|
24 | - { |
|
25 | - if ($arg > 0 ) { |
|
26 | - return 1; |
|
27 | - } else if ($arg < 0 ) { |
|
28 | - return -1; |
|
29 | - } else { |
|
30 | - return 0; |
|
31 | - } |
|
32 | - } |
|
33 | - |
|
34 | - /* Returns the arcsine of the argument */ |
|
35 | - public static function ArcSin($arg) |
|
36 | - { |
|
37 | - if (abs($arg) >= 1 ) { |
|
38 | - return (self::Sign($arg) * Predict::pio2); |
|
39 | - } else { |
|
40 | - return(atan($arg / sqrt(1 - $arg * $arg))); |
|
41 | - } |
|
42 | - } |
|
43 | - |
|
44 | - /* Returns arccosine of rgument */ |
|
45 | - public static function ArcCos($arg) |
|
46 | - { |
|
47 | - return Predict::pio2 - self::ArcSin($arg); |
|
48 | - } |
|
49 | - |
|
50 | - /* Adds vectors v1 and v2 together to produce v3 */ |
|
51 | - public static function Vec_Add(Predict_Vector $v1, Predict_Vector $v2, Predict_Vector $v3) |
|
52 | - { |
|
53 | - $v3->x = $v1->x + $v2->x; |
|
54 | - $v3->y = $v1->y + $v2->y; |
|
55 | - $v3->z = $v1->z + $v2->z; |
|
56 | - |
|
57 | - $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
58 | - } |
|
59 | - |
|
60 | - /* Subtracts vector v2 from v1 to produce v3 */ |
|
61 | - public static function Vec_Sub(Predict_Vector $v1, Predict_Vector $v2, Predict_Vector $v3) |
|
62 | - { |
|
63 | - $v3->x = $v1->x - $v2->x; |
|
64 | - $v3->y = $v1->y - $v2->y; |
|
65 | - $v3->z = $v1->z - $v2->z; |
|
66 | - |
|
67 | - $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
68 | - } |
|
69 | - |
|
70 | - /* Multiplies the vector v1 by the scalar k to produce the vector v2 */ |
|
71 | - public static function Scalar_Multiply($k, Predict_Vector $v1, Predict_Vector $v2) |
|
72 | - { |
|
73 | - $v2->x = $k * $v1->x; |
|
74 | - $v2->y = $k * $v1->y; |
|
75 | - $v2->z = $k * $v1->z; |
|
76 | - $v2->w = abs($k) * $v1->w; |
|
77 | - } |
|
78 | - |
|
79 | - /* Multiplies the vector v1 by the scalar k */ |
|
80 | - public static function Scale_Vector($k, Predict_Vector $v) |
|
81 | - { |
|
82 | - $v->x *= $k; |
|
83 | - $v->y *= $k; |
|
84 | - $v->z *= $k; |
|
85 | - |
|
86 | - $v->w = sqrt($v->x * $v->x + $v->y * $v->y + $v->z * $v->z); |
|
87 | - } |
|
88 | - |
|
89 | - /* Returns the dot product of two vectors */ |
|
90 | - public static function Dot(Predict_Vector $v1, Predict_Vector $v2) |
|
91 | - { |
|
92 | - return ($v1->x * $v2->x + $v1->y * $v2->y + $v1->z * $v2->z); |
|
93 | - } |
|
94 | - |
|
95 | - /* Calculates the angle between vectors v1 and v2 */ |
|
96 | - public static function Angle(Predict_Vector $v1, Predict_Vector $v2) |
|
97 | - { |
|
98 | - $v1->w = sqrt($v1->x * $v1->x + $v1->y * $v1->y + $v1->z * $v1->z); |
|
99 | - $v2->w = sqrt($v2->x * $v2->x + $v2->y * $v2->y + $v2->z * $v2->z); |
|
100 | - return (self::ArcCos(self::Dot($v1, $v2) / ($v1->w * $v2->w))); |
|
101 | - } |
|
102 | - |
|
103 | - /* Produces cross product of v1 and v2, and returns in v3 */ |
|
104 | - public static function Cross(Predict_Vector $v1, Predict_Vector $v2 ,Predict_Vector $v3) |
|
105 | - { |
|
106 | - $v3->x = $v1->y * $v2->z - $v1->z * $v2->y; |
|
107 | - $v3->y = $v1->z * $v2->x - $v1->x * $v2->z; |
|
108 | - $v3->z = $v1->x * $v2->y - $v1->y * $v2->x; |
|
109 | - |
|
110 | - $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
111 | - } |
|
112 | - |
|
113 | - /* Normalizes a vector */ |
|
114 | - public static function Normalize(Predict_Vector $v ) |
|
115 | - { |
|
116 | - $v->x /= $v->w; |
|
117 | - $v->y /= $v->w; |
|
118 | - $v->z /= $v->w; |
|
119 | - } |
|
120 | - |
|
121 | - /* Four-quadrant arctan function */ |
|
122 | - public static function AcTan($sinx, $cosx) |
|
123 | - { |
|
124 | - if ($cosx == 0) { |
|
125 | - if ($sinx > 0) { |
|
126 | - return Predict::pio2; |
|
127 | - } else { |
|
128 | - return Predict::x3pio2; |
|
129 | - } |
|
130 | - } else { |
|
131 | - if ($cosx > 0) { |
|
132 | - if ($sinx > 0) { |
|
133 | - return atan($sinx / $cosx); |
|
134 | - } else { |
|
135 | - return Predict::twopi + atan($sinx / $cosx); |
|
136 | - } |
|
137 | - } else { |
|
138 | - return Predict::pi + atan($sinx / $cosx); |
|
139 | - } |
|
140 | - } |
|
141 | - } |
|
142 | - |
|
143 | - /* Returns mod 2pi of argument */ |
|
144 | - public static function FMod2p($x) |
|
145 | - { |
|
146 | - $ret_val = $x; |
|
147 | - $i = (int) ($ret_val / Predict::twopi); |
|
148 | - $ret_val -= $i * Predict::twopi; |
|
149 | - |
|
150 | - if ($ret_val < 0) { |
|
151 | - $ret_val += Predict::twopi; |
|
152 | - } |
|
153 | - |
|
154 | - return $ret_val; |
|
155 | - } |
|
156 | - |
|
157 | - /* Returns arg1 mod arg2 */ |
|
158 | - public static function Modulus($arg1, $arg2) |
|
159 | - { |
|
160 | - $ret_val = $arg1; |
|
161 | - $i = (int) ($ret_val / $arg2); |
|
162 | - $ret_val -= $i * $arg2; |
|
163 | - |
|
164 | - if ($ret_val < 0) { |
|
165 | - $ret_val += $arg2; |
|
166 | - } |
|
167 | - |
|
168 | - return $ret_val; |
|
169 | - } |
|
170 | - |
|
171 | - /* Returns fractional part of double argument */ |
|
172 | - public static function Frac($arg) |
|
173 | - { |
|
174 | - return $arg - floor($arg); |
|
175 | - } |
|
176 | - |
|
177 | - /* Converts the satellite's position and velocity */ |
|
178 | - /* vectors from normalised values to km and km/sec */ |
|
179 | - public static function Convert_Sat_State(Predict_Vector $pos, Predict_Vector $vel) |
|
180 | - { |
|
181 | - self::Scale_Vector(Predict::xkmper, $pos); |
|
182 | - self::Scale_Vector(Predict::xkmper * Predict::xmnpda / Predict::secday, $vel); |
|
183 | - } |
|
184 | - |
|
185 | - /* Returns angle in radians from arg in degrees */ |
|
186 | - public static function Radians($arg) |
|
187 | - { |
|
188 | - return $arg * Predict::de2ra; |
|
189 | - } |
|
190 | - |
|
191 | - /* Returns angle in degrees from arg in rads */ |
|
192 | - public static function Degrees($arg) |
|
193 | - { |
|
194 | - return $arg / Predict::de2ra; |
|
195 | - } |
|
22 | + /* Returns sign of a float */ |
|
23 | + public static function Sign($arg) |
|
24 | + { |
|
25 | + if ($arg > 0 ) { |
|
26 | + return 1; |
|
27 | + } else if ($arg < 0 ) { |
|
28 | + return -1; |
|
29 | + } else { |
|
30 | + return 0; |
|
31 | + } |
|
32 | + } |
|
33 | + |
|
34 | + /* Returns the arcsine of the argument */ |
|
35 | + public static function ArcSin($arg) |
|
36 | + { |
|
37 | + if (abs($arg) >= 1 ) { |
|
38 | + return (self::Sign($arg) * Predict::pio2); |
|
39 | + } else { |
|
40 | + return(atan($arg / sqrt(1 - $arg * $arg))); |
|
41 | + } |
|
42 | + } |
|
43 | + |
|
44 | + /* Returns arccosine of rgument */ |
|
45 | + public static function ArcCos($arg) |
|
46 | + { |
|
47 | + return Predict::pio2 - self::ArcSin($arg); |
|
48 | + } |
|
49 | + |
|
50 | + /* Adds vectors v1 and v2 together to produce v3 */ |
|
51 | + public static function Vec_Add(Predict_Vector $v1, Predict_Vector $v2, Predict_Vector $v3) |
|
52 | + { |
|
53 | + $v3->x = $v1->x + $v2->x; |
|
54 | + $v3->y = $v1->y + $v2->y; |
|
55 | + $v3->z = $v1->z + $v2->z; |
|
56 | + |
|
57 | + $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
58 | + } |
|
59 | + |
|
60 | + /* Subtracts vector v2 from v1 to produce v3 */ |
|
61 | + public static function Vec_Sub(Predict_Vector $v1, Predict_Vector $v2, Predict_Vector $v3) |
|
62 | + { |
|
63 | + $v3->x = $v1->x - $v2->x; |
|
64 | + $v3->y = $v1->y - $v2->y; |
|
65 | + $v3->z = $v1->z - $v2->z; |
|
66 | + |
|
67 | + $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
68 | + } |
|
69 | + |
|
70 | + /* Multiplies the vector v1 by the scalar k to produce the vector v2 */ |
|
71 | + public static function Scalar_Multiply($k, Predict_Vector $v1, Predict_Vector $v2) |
|
72 | + { |
|
73 | + $v2->x = $k * $v1->x; |
|
74 | + $v2->y = $k * $v1->y; |
|
75 | + $v2->z = $k * $v1->z; |
|
76 | + $v2->w = abs($k) * $v1->w; |
|
77 | + } |
|
78 | + |
|
79 | + /* Multiplies the vector v1 by the scalar k */ |
|
80 | + public static function Scale_Vector($k, Predict_Vector $v) |
|
81 | + { |
|
82 | + $v->x *= $k; |
|
83 | + $v->y *= $k; |
|
84 | + $v->z *= $k; |
|
85 | + |
|
86 | + $v->w = sqrt($v->x * $v->x + $v->y * $v->y + $v->z * $v->z); |
|
87 | + } |
|
88 | + |
|
89 | + /* Returns the dot product of two vectors */ |
|
90 | + public static function Dot(Predict_Vector $v1, Predict_Vector $v2) |
|
91 | + { |
|
92 | + return ($v1->x * $v2->x + $v1->y * $v2->y + $v1->z * $v2->z); |
|
93 | + } |
|
94 | + |
|
95 | + /* Calculates the angle between vectors v1 and v2 */ |
|
96 | + public static function Angle(Predict_Vector $v1, Predict_Vector $v2) |
|
97 | + { |
|
98 | + $v1->w = sqrt($v1->x * $v1->x + $v1->y * $v1->y + $v1->z * $v1->z); |
|
99 | + $v2->w = sqrt($v2->x * $v2->x + $v2->y * $v2->y + $v2->z * $v2->z); |
|
100 | + return (self::ArcCos(self::Dot($v1, $v2) / ($v1->w * $v2->w))); |
|
101 | + } |
|
102 | + |
|
103 | + /* Produces cross product of v1 and v2, and returns in v3 */ |
|
104 | + public static function Cross(Predict_Vector $v1, Predict_Vector $v2 ,Predict_Vector $v3) |
|
105 | + { |
|
106 | + $v3->x = $v1->y * $v2->z - $v1->z * $v2->y; |
|
107 | + $v3->y = $v1->z * $v2->x - $v1->x * $v2->z; |
|
108 | + $v3->z = $v1->x * $v2->y - $v1->y * $v2->x; |
|
109 | + |
|
110 | + $v3->w = sqrt($v3->x * $v3->x + $v3->y * $v3->y + $v3->z * $v3->z); |
|
111 | + } |
|
112 | + |
|
113 | + /* Normalizes a vector */ |
|
114 | + public static function Normalize(Predict_Vector $v ) |
|
115 | + { |
|
116 | + $v->x /= $v->w; |
|
117 | + $v->y /= $v->w; |
|
118 | + $v->z /= $v->w; |
|
119 | + } |
|
120 | + |
|
121 | + /* Four-quadrant arctan function */ |
|
122 | + public static function AcTan($sinx, $cosx) |
|
123 | + { |
|
124 | + if ($cosx == 0) { |
|
125 | + if ($sinx > 0) { |
|
126 | + return Predict::pio2; |
|
127 | + } else { |
|
128 | + return Predict::x3pio2; |
|
129 | + } |
|
130 | + } else { |
|
131 | + if ($cosx > 0) { |
|
132 | + if ($sinx > 0) { |
|
133 | + return atan($sinx / $cosx); |
|
134 | + } else { |
|
135 | + return Predict::twopi + atan($sinx / $cosx); |
|
136 | + } |
|
137 | + } else { |
|
138 | + return Predict::pi + atan($sinx / $cosx); |
|
139 | + } |
|
140 | + } |
|
141 | + } |
|
142 | + |
|
143 | + /* Returns mod 2pi of argument */ |
|
144 | + public static function FMod2p($x) |
|
145 | + { |
|
146 | + $ret_val = $x; |
|
147 | + $i = (int) ($ret_val / Predict::twopi); |
|
148 | + $ret_val -= $i * Predict::twopi; |
|
149 | + |
|
150 | + if ($ret_val < 0) { |
|
151 | + $ret_val += Predict::twopi; |
|
152 | + } |
|
153 | + |
|
154 | + return $ret_val; |
|
155 | + } |
|
156 | + |
|
157 | + /* Returns arg1 mod arg2 */ |
|
158 | + public static function Modulus($arg1, $arg2) |
|
159 | + { |
|
160 | + $ret_val = $arg1; |
|
161 | + $i = (int) ($ret_val / $arg2); |
|
162 | + $ret_val -= $i * $arg2; |
|
163 | + |
|
164 | + if ($ret_val < 0) { |
|
165 | + $ret_val += $arg2; |
|
166 | + } |
|
167 | + |
|
168 | + return $ret_val; |
|
169 | + } |
|
170 | + |
|
171 | + /* Returns fractional part of double argument */ |
|
172 | + public static function Frac($arg) |
|
173 | + { |
|
174 | + return $arg - floor($arg); |
|
175 | + } |
|
176 | + |
|
177 | + /* Converts the satellite's position and velocity */ |
|
178 | + /* vectors from normalised values to km and km/sec */ |
|
179 | + public static function Convert_Sat_State(Predict_Vector $pos, Predict_Vector $vel) |
|
180 | + { |
|
181 | + self::Scale_Vector(Predict::xkmper, $pos); |
|
182 | + self::Scale_Vector(Predict::xkmper * Predict::xmnpda / Predict::secday, $vel); |
|
183 | + } |
|
184 | + |
|
185 | + /* Returns angle in radians from arg in degrees */ |
|
186 | + public static function Radians($arg) |
|
187 | + { |
|
188 | + return $arg * Predict::de2ra; |
|
189 | + } |
|
190 | + |
|
191 | + /* Returns angle in degrees from arg in rads */ |
|
192 | + public static function Degrees($arg) |
|
193 | + { |
|
194 | + return $arg / Predict::de2ra; |
|
195 | + } |
|
196 | 196 | } |
@@ -24,91 +24,91 @@ |
||
24 | 24 | */ |
25 | 25 | class Predict_Solar |
26 | 26 | { |
27 | - /* Calculates solar position vector */ |
|
28 | - public static function Calculate_Solar_Position($time, Predict_Vector $solar_vector) |
|
29 | - { |
|
30 | - $mjd = $time - 2415020.0; |
|
31 | - $year = 1900 + $mjd / 365.25; |
|
32 | - $T = ($mjd + Predict_Time::Delta_ET($year) / Predict::secday) / 36525.0; |
|
33 | - $M = Predict_Math::Radians(Predict_Math::Modulus(358.47583 + Predict_Math::Modulus(35999.04975 * $T, 360.0) |
|
34 | - - (0.000150 + 0.0000033 * $T) * ($T * $T), 360.0)); |
|
35 | - $L = Predict_Math::Radians(Predict_Math::Modulus(279.69668 + Predict_Math::Modulus(36000.76892 * $T, 360.0) |
|
36 | - + 0.0003025 * ($T * $T), 360.0)); |
|
37 | - $e = 0.01675104 - (0.0000418 + 0.000000126 * $T) * $T; |
|
38 | - $C = Predict_Math::Radians((1.919460 - (0.004789 + 0.000014 * $T) * $T) * sin($M) |
|
39 | - + (0.020094 - 0.000100 * $T) * sin(2 * $M) + 0.000293 * sin(3 * $M)); |
|
40 | - $O = Predict_Math::Radians(Predict_Math::Modulus(259.18 - 1934.142 * $T, 360.0)); |
|
41 | - $Lsa = Predict_Math::Modulus($L + $C - Predict_Math::Radians(0.00569 - 0.00479 * sin($O)), Predict::twopi); |
|
42 | - $nu = Predict_Math::Modulus($M + $C, Predict::twopi); |
|
43 | - $R = 1.0000002 * (1 - ($e * $e)) / (1 + $e * cos($nu)); |
|
44 | - $eps = Predict_Math::Radians(23.452294 - (0.0130125 + (0.00000164 - 0.000000503 * $T) * $T) * $T + 0.00256 * cos($O)); |
|
45 | - $R = Predict::AU * $R; |
|
27 | + /* Calculates solar position vector */ |
|
28 | + public static function Calculate_Solar_Position($time, Predict_Vector $solar_vector) |
|
29 | + { |
|
30 | + $mjd = $time - 2415020.0; |
|
31 | + $year = 1900 + $mjd / 365.25; |
|
32 | + $T = ($mjd + Predict_Time::Delta_ET($year) / Predict::secday) / 36525.0; |
|
33 | + $M = Predict_Math::Radians(Predict_Math::Modulus(358.47583 + Predict_Math::Modulus(35999.04975 * $T, 360.0) |
|
34 | + - (0.000150 + 0.0000033 * $T) * ($T * $T), 360.0)); |
|
35 | + $L = Predict_Math::Radians(Predict_Math::Modulus(279.69668 + Predict_Math::Modulus(36000.76892 * $T, 360.0) |
|
36 | + + 0.0003025 * ($T * $T), 360.0)); |
|
37 | + $e = 0.01675104 - (0.0000418 + 0.000000126 * $T) * $T; |
|
38 | + $C = Predict_Math::Radians((1.919460 - (0.004789 + 0.000014 * $T) * $T) * sin($M) |
|
39 | + + (0.020094 - 0.000100 * $T) * sin(2 * $M) + 0.000293 * sin(3 * $M)); |
|
40 | + $O = Predict_Math::Radians(Predict_Math::Modulus(259.18 - 1934.142 * $T, 360.0)); |
|
41 | + $Lsa = Predict_Math::Modulus($L + $C - Predict_Math::Radians(0.00569 - 0.00479 * sin($O)), Predict::twopi); |
|
42 | + $nu = Predict_Math::Modulus($M + $C, Predict::twopi); |
|
43 | + $R = 1.0000002 * (1 - ($e * $e)) / (1 + $e * cos($nu)); |
|
44 | + $eps = Predict_Math::Radians(23.452294 - (0.0130125 + (0.00000164 - 0.000000503 * $T) * $T) * $T + 0.00256 * cos($O)); |
|
45 | + $R = Predict::AU * $R; |
|
46 | 46 | |
47 | - $solar_vector->x = $R * cos($Lsa); |
|
48 | - $solar_vector->y = $R * sin($Lsa) * cos($eps); |
|
49 | - $solar_vector->z = $R * sin($Lsa) * sin($eps); |
|
50 | - $solar_vector->w = $R; |
|
51 | - } |
|
47 | + $solar_vector->x = $R * cos($Lsa); |
|
48 | + $solar_vector->y = $R * sin($Lsa) * cos($eps); |
|
49 | + $solar_vector->z = $R * sin($Lsa) * sin($eps); |
|
50 | + $solar_vector->w = $R; |
|
51 | + } |
|
52 | 52 | |
53 | - /* Calculates stellite's eclipse status and depth */ |
|
54 | - public static function Sat_Eclipsed(Predict_Vector $pos, Predict_Vector $sol, &$depth) |
|
55 | - { |
|
56 | - $Rho = new Predict_Vector(); |
|
57 | - $earth = new Predict_Vector(); |
|
53 | + /* Calculates stellite's eclipse status and depth */ |
|
54 | + public static function Sat_Eclipsed(Predict_Vector $pos, Predict_Vector $sol, &$depth) |
|
55 | + { |
|
56 | + $Rho = new Predict_Vector(); |
|
57 | + $earth = new Predict_Vector(); |
|
58 | 58 | |
59 | - /* Determine partial eclipse */ |
|
60 | - $sd_earth = Predict_Math::ArcSin(Predict::xkmper / $pos->w); |
|
61 | - Predict_Math::Vec_Sub($sol, $pos, $Rho); |
|
62 | - $sd_sun = Predict_Math::ArcSin(Predict::__sr__ / $Rho->w); |
|
63 | - Predict_Math::Scalar_Multiply(-1, $pos, $earth); |
|
64 | - $delta = Predict_Math::Angle($sol, $earth); |
|
65 | - $depth = $sd_earth - $sd_sun - $delta; |
|
59 | + /* Determine partial eclipse */ |
|
60 | + $sd_earth = Predict_Math::ArcSin(Predict::xkmper / $pos->w); |
|
61 | + Predict_Math::Vec_Sub($sol, $pos, $Rho); |
|
62 | + $sd_sun = Predict_Math::ArcSin(Predict::__sr__ / $Rho->w); |
|
63 | + Predict_Math::Scalar_Multiply(-1, $pos, $earth); |
|
64 | + $delta = Predict_Math::Angle($sol, $earth); |
|
65 | + $depth = $sd_earth - $sd_sun - $delta; |
|
66 | 66 | |
67 | - if ($sd_earth < $sd_sun) { |
|
68 | - return 0; |
|
69 | - } else if ($depth >= 0) { |
|
70 | - return 1; |
|
71 | - } else { |
|
72 | - return 0; |
|
73 | - } |
|
74 | - } |
|
67 | + if ($sd_earth < $sd_sun) { |
|
68 | + return 0; |
|
69 | + } else if ($depth >= 0) { |
|
70 | + return 1; |
|
71 | + } else { |
|
72 | + return 0; |
|
73 | + } |
|
74 | + } |
|
75 | 75 | |
76 | - /** |
|
77 | - * Finds the current location of the sun based on the observer location |
|
78 | - * |
|
79 | - * @param Predict_QTH $qth The observer location |
|
80 | - * @param int $daynum The daynum or null to use the current daynum |
|
81 | - * |
|
82 | - * @return Predict_ObsSet |
|
83 | - */ |
|
84 | - public static function FindSun(Predict_QTH $qth, $daynum = null) |
|
85 | - { |
|
86 | - if ($daynum === null) { |
|
87 | - $daynum = Predict_Time::get_current_daynum(); |
|
88 | - } |
|
76 | + /** |
|
77 | + * Finds the current location of the sun based on the observer location |
|
78 | + * |
|
79 | + * @param Predict_QTH $qth The observer location |
|
80 | + * @param int $daynum The daynum or null to use the current daynum |
|
81 | + * |
|
82 | + * @return Predict_ObsSet |
|
83 | + */ |
|
84 | + public static function FindSun(Predict_QTH $qth, $daynum = null) |
|
85 | + { |
|
86 | + if ($daynum === null) { |
|
87 | + $daynum = Predict_Time::get_current_daynum(); |
|
88 | + } |
|
89 | 89 | |
90 | - $obs_geodetic = new Predict_Geodetic(); |
|
91 | - $obs_geodetic->lon = $qth->lon * Predict::de2ra; |
|
92 | - $obs_geodetic->lat = $qth->lat * Predict::de2ra; |
|
93 | - $obs_geodetic->alt = $qth->alt / 1000.0; |
|
94 | - $obs_geodetic->theta = 0; |
|
90 | + $obs_geodetic = new Predict_Geodetic(); |
|
91 | + $obs_geodetic->lon = $qth->lon * Predict::de2ra; |
|
92 | + $obs_geodetic->lat = $qth->lat * Predict::de2ra; |
|
93 | + $obs_geodetic->alt = $qth->alt / 1000.0; |
|
94 | + $obs_geodetic->theta = 0; |
|
95 | 95 | |
96 | - $solar_vector = new Predict_Vector(); |
|
97 | - $zero_vector = new Predict_Vector(); |
|
98 | - $solar_set = new Predict_ObsSet(); |
|
96 | + $solar_vector = new Predict_Vector(); |
|
97 | + $zero_vector = new Predict_Vector(); |
|
98 | + $solar_set = new Predict_ObsSet(); |
|
99 | 99 | |
100 | - self::Calculate_Solar_Position($daynum, $solar_vector); |
|
101 | - Predict_SGPObs::Calculate_Obs( |
|
102 | - $daynum, |
|
103 | - $solar_vector, |
|
104 | - $zero_vector, |
|
105 | - $obs_geodetic, |
|
106 | - $solar_set |
|
107 | - ); |
|
100 | + self::Calculate_Solar_Position($daynum, $solar_vector); |
|
101 | + Predict_SGPObs::Calculate_Obs( |
|
102 | + $daynum, |
|
103 | + $solar_vector, |
|
104 | + $zero_vector, |
|
105 | + $obs_geodetic, |
|
106 | + $solar_set |
|
107 | + ); |
|
108 | 108 | |
109 | - $solar_set->az = Predict_Math::Degrees($solar_set->az); |
|
110 | - $solar_set->el = Predict_Math::Degrees($solar_set->el); |
|
109 | + $solar_set->az = Predict_Math::Degrees($solar_set->az); |
|
110 | + $solar_set->el = Predict_Math::Degrees($solar_set->el); |
|
111 | 111 | |
112 | - return $solar_set; |
|
113 | - } |
|
112 | + return $solar_set; |
|
113 | + } |
|
114 | 114 | } |