| Total Complexity | 182 |
| Total Lines | 1049 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
Complex classes like PiePlot3D often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
While breaking up the class, it is a good idea to analyze how other classes use PiePlot3D, and based on these observations, apply Extract Interface, too.
| 1 | <?php |
||
| 26 | class PiePlot3D extends PiePlot |
||
| 27 | { |
||
| 28 | private $labelhintcolor = 'red'; |
||
| 29 | private $showlabelhint = true; |
||
| 30 | private $angle = 50; |
||
| 31 | private $edgecolor = ''; |
||
| 32 | private $edgeweight = 1; |
||
| 33 | private $iThickness = false; |
||
| 34 | |||
| 35 | /** |
||
| 36 | * CONSTRUCTOR. |
||
| 37 | * |
||
| 38 | * @param mixed $data |
||
| 39 | */ |
||
| 40 | public function __construct($data) |
||
| 41 | { |
||
| 42 | $this->radius = 0.5; |
||
| 43 | $this->data = $data; |
||
| 44 | $this->title = new Text\Text(''); |
||
| 45 | $this->title->SetFont(FF_FONT1, FS_BOLD); |
||
| 46 | $this->value = new DisplayValue(); |
||
| 47 | $this->value->Show(); |
||
| 48 | $this->value->SetFormat('%.0f%%'); |
||
| 49 | } |
||
| 50 | |||
| 51 | /** |
||
| 52 | * PUBLIC METHODS. |
||
| 53 | * |
||
| 54 | * @param mixed $aLegend |
||
| 55 | */ |
||
| 56 | // Set label arrays |
||
| 57 | public function SetLegends($aLegend) |
||
| 58 | { |
||
| 59 | $this->legends = array_reverse(array_slice($aLegend, 0, safe_count($this->data))); |
||
| 60 | } |
||
| 61 | |||
| 62 | public function SetSliceColors($aColors) |
||
| 63 | { |
||
| 64 | $this->setslicecolors = $aColors; |
||
| 65 | } |
||
| 66 | |||
| 67 | public function Legend($aGraph) |
||
| 68 | { |
||
| 69 | parent::Legend($aGraph); |
||
| 70 | $aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol); |
||
| 71 | } |
||
| 72 | |||
| 73 | public function SetCSIMTargets($aTargets, $aAlts = '', $aWinTargets = '') |
||
| 74 | { |
||
| 75 | $this->csimtargets = $aTargets; |
||
| 76 | $this->csimwintargets = $aWinTargets; |
||
| 77 | $this->csimalts = $aAlts; |
||
| 78 | } |
||
| 79 | |||
| 80 | // Should the slices be separated by a line? If color is specified as "" no line |
||
| 81 | // will be used to separate pie slices. |
||
| 82 | public function SetEdge($aColor = 'black', $aWeight = 1) |
||
| 86 | } |
||
| 87 | |||
| 88 | // Specify projection angle for 3D in degrees |
||
| 89 | // Must be between 20 and 70 degrees |
||
| 90 | public function SetAngle($a) |
||
| 97 | } |
||
| 98 | } |
||
| 99 | |||
| 100 | public function Add3DSliceToCSIM($i, $xc, $yc, $height, $width, $thick, $sa, $ea) |
||
| 101 | { |
||
| 102 | //Slice number, ellipse centre (x,y), height, width, start angle, end angle |
||
| 103 | |||
| 104 | $sa *= M_PI / 180; |
||
| 105 | $ea *= M_PI / 180; |
||
| 106 | |||
| 107 | //add coordinates of the centre to the map |
||
| 108 | $coords = "${xc}, ${yc}"; |
||
| 109 | |||
| 110 | //add coordinates of the first point on the arc to the map |
||
| 111 | $xp = floor($width * cos($sa) / 2 + $xc); |
||
| 112 | $yp = floor($yc - $height * sin($sa) / 2); |
||
| 113 | $coords .= ", ${xp}, ${yp}"; |
||
| 114 | |||
| 115 | //If on the front half, add the thickness offset |
||
| 116 | if ($sa >= M_PI && $sa <= 2 * M_PI * 1.01) { |
||
| 117 | $yp = floor($yp + $thick); |
||
| 118 | $coords .= ", ${xp}, ${yp}"; |
||
| 119 | } |
||
| 120 | |||
| 121 | //add coordinates every 0.2 radians |
||
| 122 | $a = $sa + 0.2; |
||
| 123 | while ($a < $ea) { |
||
| 124 | $xp = floor($width * cos($a) / 2 + $xc); |
||
| 125 | if ($a >= M_PI && $a <= 2 * M_PI * 1.01) { |
||
| 126 | $yp = floor($yc - ($height * sin($a) / 2) + $thick); |
||
| 127 | } else { |
||
| 128 | $yp = floor($yc - $height * sin($a) / 2); |
||
| 129 | } |
||
| 130 | $coords .= ", ${xp}, ${yp}"; |
||
| 131 | $a += 0.2; |
||
| 132 | } |
||
| 133 | |||
| 134 | //Add the last point on the arc |
||
| 135 | $xp = floor($width * cos($ea) / 2 + $xc); |
||
| 136 | $yp = floor($yc - $height * sin($ea) / 2); |
||
| 137 | |||
| 138 | if ($ea >= M_PI && $ea <= 2 * M_PI * 1.01) { |
||
| 139 | $coords .= ", ${xp}, " . floor($yp + $thick); |
||
| 140 | } |
||
| 141 | $coords .= ", ${xp}, ${yp}"; |
||
| 142 | $alt = ''; |
||
|
|
|||
| 143 | |||
| 144 | if (!empty($this->csimtargets[$i])) { |
||
| 145 | $this->csimareas .= "<area shape=\"poly\" coords=\"${coords}\" href=\"" . $this->csimtargets[$i] . '"'; |
||
| 146 | |||
| 147 | if (!empty($this->csimwintargets[$i])) { |
||
| 148 | $this->csimareas .= ' target="' . $this->csimwintargets[$i] . '" '; |
||
| 149 | } |
||
| 150 | |||
| 151 | if (!empty($this->csimalts[$i])) { |
||
| 152 | $tmp = sprintf($this->csimalts[$i], $this->data[$i]); |
||
| 153 | $this->csimareas .= "alt=\"${tmp}\" title=\"${tmp}\" "; |
||
| 154 | } |
||
| 155 | $this->csimareas .= " />\n"; |
||
| 156 | } |
||
| 157 | } |
||
| 158 | |||
| 159 | public function SetLabels($aLabels, $aLblPosAdj = 'auto') |
||
| 160 | { |
||
| 161 | $this->labels = $aLabels; |
||
| 162 | $this->ilabelposadj = $aLblPosAdj; |
||
| 163 | } |
||
| 164 | |||
| 165 | // Distance from the pie to the labels |
||
| 166 | public function SetLabelMargin($m) |
||
| 169 | } |
||
| 170 | |||
| 171 | // Show a thin line from the pie to the label for a specific slice |
||
| 172 | public function ShowLabelHint($f = true) |
||
| 173 | { |
||
| 174 | $this->showlabelhint = $f; |
||
| 175 | } |
||
| 176 | |||
| 177 | // Set color of hint line to label for each slice |
||
| 178 | public function SetLabelHintColor($c) |
||
| 179 | { |
||
| 180 | $this->labelhintcolor = $c; |
||
| 181 | } |
||
| 182 | |||
| 183 | public function SetHeight($aHeight) |
||
| 186 | } |
||
| 187 | |||
| 188 | // Normalize Angle between 0-360 |
||
| 189 | public function NormAngle($a) |
||
| 190 | { |
||
| 191 | // Normalize anle to 0 to 2M_PI |
||
| 192 | // |
||
| 193 | if ($a > 0) { |
||
| 194 | while ($a > 360) { |
||
| 195 | $a -= 360; |
||
| 196 | } |
||
| 197 | } else { |
||
| 198 | while ($a < 0) { |
||
| 199 | $a += 360; |
||
| 200 | } |
||
| 201 | } |
||
| 202 | if ($a < 0) { |
||
| 203 | $a = 360 + $a; |
||
| 204 | } |
||
| 205 | |||
| 206 | if ($a == 360) { |
||
| 207 | $a = 0; |
||
| 208 | } |
||
| 209 | |||
| 210 | return $a; |
||
| 211 | } |
||
| 212 | |||
| 213 | // Draw one 3D pie slice at position ($xc,$yc) with height $z |
||
| 214 | public function Pie3DSlice($img, $xc, $yc, $w, $h, $sa, $ea, $z, $fillcolor, $shadow = 0.65) |
||
| 215 | { |
||
| 216 | // Due to the way the 3D Pie algorithm works we are |
||
| 217 | // guaranteed that any slice we get into this method |
||
| 218 | // belongs to either the left or right side of the |
||
| 219 | // pie ellipse. Hence, no slice will cross 90 or 270 |
||
| 220 | // point. |
||
| 221 | if (($sa < 90 && $ea > 90) || (($sa > 90 && $sa < 270) && $ea > 270)) { |
||
| 222 | Util\JpGraphError::RaiseL(14003); //('Internal assertion failed. Pie3D::Pie3DSlice'); |
||
| 223 | exit(1); |
||
| 224 | } |
||
| 225 | |||
| 226 | $p[] = []; |
||
| 227 | |||
| 228 | // Setup pre-calculated values |
||
| 229 | $rsa = $sa / 180 * M_PI; // to Rad |
||
| 230 | $rea = $ea / 180 * M_PI; // to Rad |
||
| 231 | $sinsa = sin($rsa); |
||
| 232 | $cossa = cos($rsa); |
||
| 233 | $sinea = sin($rea); |
||
| 234 | $cosea = cos($rea); |
||
| 235 | |||
| 236 | // p[] is the points for the overall slice and |
||
| 237 | // pt[] is the points for the top pie |
||
| 238 | |||
| 239 | // Angular step when approximating the arc with a polygon train. |
||
| 240 | $step = 0.05; |
||
| 241 | |||
| 242 | if ($sa >= 270) { |
||
| 243 | if ($ea > 360 || ($ea > 0 && $ea <= 90)) { |
||
| 244 | if ($ea > 0 && $ea <= 90) { |
||
| 245 | // Adjust angle to simplify conditions in loops |
||
| 246 | $rea += 2 * M_PI; |
||
| 247 | } |
||
| 248 | |||
| 249 | $p = [$xc, $yc, $xc, $yc + $z, |
||
| 250 | $xc + $w * $cossa, $z + $yc - $h * $sinsa, ]; |
||
| 251 | $pt = [$xc, $yc, $xc + $w * $cossa, $yc - $h * $sinsa]; |
||
| 252 | |||
| 253 | for ($a = $rsa; $a < 2 * M_PI; $a += $step) { |
||
| 254 | $tca = cos($a); |
||
| 255 | $tsa = sin($a); |
||
| 256 | $p[] = $xc + $w * $tca; |
||
| 257 | $p[] = $z + $yc - $h * $tsa; |
||
| 258 | $pt[] = $xc + $w * $tca; |
||
| 259 | $pt[] = $yc - $h * $tsa; |
||
| 260 | } |
||
| 261 | |||
| 262 | $pt[] = $xc + $w; |
||
| 263 | $pt[] = $yc; |
||
| 264 | |||
| 265 | $p[] = $xc + $w; |
||
| 266 | $p[] = $z + $yc; |
||
| 267 | $p[] = $xc + $w; |
||
| 268 | $p[] = $yc; |
||
| 269 | $p[] = $xc; |
||
| 270 | $p[] = $yc; |
||
| 271 | |||
| 272 | for ($a = 2 * M_PI + $step; $a < $rea; $a += $step) { |
||
| 273 | $pt[] = $xc + $w * cos($a); |
||
| 274 | $pt[] = $yc - $h * sin($a); |
||
| 275 | } |
||
| 276 | |||
| 277 | $pt[] = $xc + $w * $cosea; |
||
| 278 | $pt[] = $yc - $h * $sinea; |
||
| 279 | $pt[] = $xc; |
||
| 280 | $pt[] = $yc; |
||
| 281 | } else { |
||
| 282 | $p = [$xc, $yc, $xc, $yc + $z, |
||
| 283 | $xc + $w * $cossa, $z + $yc - $h * $sinsa, ]; |
||
| 284 | $pt = [$xc, $yc, $xc + $w * $cossa, $yc - $h * $sinsa]; |
||
| 285 | |||
| 286 | $rea = $rea == 0.0 ? 2 * M_PI : $rea; |
||
| 287 | for ($a = $rsa; $a < $rea; $a += $step) { |
||
| 288 | $tca = cos($a); |
||
| 289 | $tsa = sin($a); |
||
| 290 | $p[] = $xc + $w * $tca; |
||
| 291 | $p[] = $z + $yc - $h * $tsa; |
||
| 292 | $pt[] = $xc + $w * $tca; |
||
| 293 | $pt[] = $yc - $h * $tsa; |
||
| 294 | } |
||
| 295 | |||
| 296 | $pt[] = $xc + $w * $cosea; |
||
| 297 | $pt[] = $yc - $h * $sinea; |
||
| 298 | $pt[] = $xc; |
||
| 299 | $pt[] = $yc; |
||
| 300 | |||
| 301 | $p[] = $xc + $w * $cosea; |
||
| 302 | $p[] = $z + $yc - $h * $sinea; |
||
| 303 | $p[] = $xc + $w * $cosea; |
||
| 304 | $p[] = $yc - $h * $sinea; |
||
| 305 | $p[] = $xc; |
||
| 306 | $p[] = $yc; |
||
| 307 | } |
||
| 308 | } elseif ($sa >= 180) { |
||
| 309 | $p = [$xc, $yc, $xc, $yc + $z, $xc + $w * $cosea, $z + $yc - $h * $sinea]; |
||
| 310 | $pt = [$xc, $yc, $xc + $w * $cosea, $yc - $h * $sinea]; |
||
| 311 | |||
| 312 | for ($a = $rea; $a > $rsa; $a -= $step) { |
||
| 313 | $tca = cos($a); |
||
| 314 | $tsa = sin($a); |
||
| 315 | $p[] = $xc + $w * $tca; |
||
| 316 | $p[] = $z + $yc - $h * $tsa; |
||
| 317 | $pt[] = $xc + $w * $tca; |
||
| 318 | $pt[] = $yc - $h * $tsa; |
||
| 319 | } |
||
| 320 | |||
| 321 | $pt[] = $xc + $w * $cossa; |
||
| 322 | $pt[] = $yc - $h * $sinsa; |
||
| 323 | $pt[] = $xc; |
||
| 324 | $pt[] = $yc; |
||
| 325 | |||
| 326 | $p[] = $xc + $w * $cossa; |
||
| 327 | $p[] = $z + $yc - $h * $sinsa; |
||
| 328 | $p[] = $xc + $w * $cossa; |
||
| 329 | $p[] = $yc - $h * $sinsa; |
||
| 330 | $p[] = $xc; |
||
| 331 | $p[] = $yc; |
||
| 332 | } elseif ($sa >= 90) { |
||
| 333 | if ($ea > 180) { |
||
| 334 | $p = [$xc, $yc, $xc, $yc + $z, $xc + $w * $cosea, $z + $yc - $h * $sinea]; |
||
| 335 | $pt = [$xc, $yc, $xc + $w * $cosea, $yc - $h * $sinea]; |
||
| 336 | |||
| 337 | for ($a = $rea; $a > M_PI; $a -= $step) { |
||
| 338 | $tca = cos($a); |
||
| 339 | $tsa = sin($a); |
||
| 340 | $p[] = $xc + $w * $tca; |
||
| 341 | $p[] = $z + $yc - $h * $tsa; |
||
| 342 | $pt[] = $xc + $w * $tca; |
||
| 343 | $pt[] = $yc - $h * $tsa; |
||
| 344 | } |
||
| 345 | |||
| 346 | $p[] = $xc - $w; |
||
| 347 | $p[] = $z + $yc; |
||
| 348 | $p[] = $xc - $w; |
||
| 349 | $p[] = $yc; |
||
| 350 | $p[] = $xc; |
||
| 351 | $p[] = $yc; |
||
| 352 | |||
| 353 | $pt[] = $xc - $w; |
||
| 354 | $pt[] = $z + $yc; |
||
| 355 | $pt[] = $xc - $w; |
||
| 356 | $pt[] = $yc; |
||
| 357 | |||
| 358 | for ($a = M_PI - $step; $a > $rsa; $a -= $step) { |
||
| 359 | $pt[] = $xc + $w * cos($a); |
||
| 360 | $pt[] = $yc - $h * sin($a); |
||
| 361 | } |
||
| 362 | |||
| 363 | $pt[] = $xc + $w * $cossa; |
||
| 364 | $pt[] = $yc - $h * $sinsa; |
||
| 365 | $pt[] = $xc; |
||
| 366 | $pt[] = $yc; |
||
| 367 | } else { |
||
| 368 | // $sa >= 90 && $ea <= 180 |
||
| 369 | $p = [$xc, $yc, $xc, $yc + $z, |
||
| 370 | $xc + $w * $cosea, $z + $yc - $h * $sinea, |
||
| 371 | $xc + $w * $cosea, $yc - $h * $sinea, |
||
| 372 | $xc, $yc, ]; |
||
| 373 | |||
| 374 | $pt = [$xc, $yc, $xc + $w * $cosea, $yc - $h * $sinea]; |
||
| 375 | |||
| 376 | for ($a = $rea; $a > $rsa; $a -= $step) { |
||
| 377 | $pt[] = $xc + $w * cos($a); |
||
| 378 | $pt[] = $yc - $h * sin($a); |
||
| 379 | } |
||
| 380 | |||
| 381 | $pt[] = $xc + $w * $cossa; |
||
| 382 | $pt[] = $yc - $h * $sinsa; |
||
| 383 | $pt[] = $xc; |
||
| 384 | $pt[] = $yc; |
||
| 385 | } |
||
| 386 | } else { |
||
| 387 | // sa > 0 && ea < 90 |
||
| 388 | |||
| 389 | $p = [$xc, $yc, $xc, $yc + $z, |
||
| 390 | $xc + $w * $cossa, $z + $yc - $h * $sinsa, |
||
| 391 | $xc + $w * $cossa, $yc - $h * $sinsa, |
||
| 392 | $xc, $yc, ]; |
||
| 393 | |||
| 394 | $pt = [$xc, $yc, $xc + $w * $cossa, $yc - $h * $sinsa]; |
||
| 395 | |||
| 396 | for ($a = $rsa; $a < $rea; $a += $step) { |
||
| 397 | $pt[] = $xc + $w * cos($a); |
||
| 398 | $pt[] = $yc - $h * sin($a); |
||
| 399 | } |
||
| 400 | |||
| 401 | $pt[] = $xc + $w * $cosea; |
||
| 402 | $pt[] = $yc - $h * $sinea; |
||
| 403 | $pt[] = $xc; |
||
| 404 | $pt[] = $yc; |
||
| 405 | } |
||
| 406 | |||
| 407 | $img->PushColor($fillcolor . ':' . $shadow); |
||
| 408 | $img->FilledPolygon($p); |
||
| 409 | $img->PopColor(); |
||
| 410 | |||
| 411 | $img->PushColor($fillcolor); |
||
| 412 | $img->FilledPolygon($pt); |
||
| 413 | $img->PopColor(); |
||
| 414 | } |
||
| 415 | |||
| 416 | public function SetStartAngle($aStart) |
||
| 422 | } |
||
| 423 | |||
| 424 | // Draw a 3D Pie |
||
| 425 | public function Pie3D( |
||
| 426 | $aaoption, |
||
| 427 | $img, |
||
| 428 | $data, |
||
| 429 | $colors, |
||
| 430 | $xc, |
||
| 431 | $yc, |
||
| 432 | $d, |
||
| 433 | $angle, |
||
| 434 | $z, |
||
| 435 | $shadow = 0.65, |
||
| 436 | $startangle = 0, |
||
| 437 | $edgecolor = '', |
||
| 438 | $edgeweight = 1 |
||
| 439 | ) { |
||
| 440 | /** |
||
| 441 | * As usual the algorithm get more complicated than I originally |
||
| 442 | * // envisioned. I believe that this is as simple as it is possible |
||
| 443 | * // to do it with the features I want. It's a good exercise to start |
||
| 444 | * // thinking on how to do this to convince your self that all this |
||
| 445 | * // is really needed for the general case. |
||
| 446 | * // |
||
| 447 | * // The algorithm two draw 3D pies without "real 3D" is done in |
||
| 448 | * // two steps. |
||
| 449 | * // First imagine the pie cut in half through a thought line between |
||
| 450 | * // 12'a clock and 6'a clock. It now easy to imagine that we can plot |
||
| 451 | * // the individual slices for each half by starting with the topmost |
||
| 452 | * // pie slice and continue down to 6'a clock. |
||
| 453 | * // |
||
| 454 | * // In the algortithm this is done in three principal steps |
||
| 455 | * // Step 1. Do the knife cut to ensure by splitting slices that extends |
||
| 456 | * // over the cut line. This is done by splitting the original slices into |
||
| 457 | * // upto 3 subslices. |
||
| 458 | * // Step 2. Find the top slice for each half |
||
| 459 | * // Step 3. Draw the slices from top to bottom |
||
| 460 | * // |
||
| 461 | * // The thing that slightly complicates this scheme with all the |
||
| 462 | * // angle comparisons below is that we can have an arbitrary start |
||
| 463 | * // angle so we must take into account the different equivalence classes. |
||
| 464 | * // For the same reason we must walk through the angle array in a |
||
| 465 | * // modulo fashion. |
||
| 466 | * // |
||
| 467 | * // Limitations of algorithm: |
||
| 468 | * // * A small exploded slice which crosses the 270 degree point |
||
| 469 | * // will get slightly nagged close to the center due to the fact that |
||
| 470 | * // we print the slices in Z-order and that the slice left part |
||
| 471 | * // get printed first and might get slightly nagged by a larger |
||
| 472 | * // slice on the right side just before the right part of the small |
||
| 473 | * // slice. Not a major problem though. |
||
| 474 | */ |
||
| 475 | // Determine the height of the ellippse which gives an |
||
| 476 | // indication of the inclination angle |
||
| 477 | $h = ($angle / 90.0) * $d; |
||
| 478 | $sum = 0; |
||
| 479 | for ($i = 0; $i < safe_count($data); ++$i) { |
||
| 480 | $sum += $data[$i]; |
||
| 481 | } |
||
| 482 | |||
| 483 | // Special optimization |
||
| 484 | if ($sum == 0) { |
||
| 485 | return; |
||
| 486 | } |
||
| 487 | |||
| 488 | if ($this->labeltype == 2) { |
||
| 489 | $this->adjusted_data = $this->AdjPercentage($data); |
||
| 490 | } |
||
| 491 | |||
| 492 | // Setup the start |
||
| 493 | $accsum = 0; |
||
| 494 | $a = $startangle; |
||
| 495 | $a = $this->NormAngle($a); |
||
| 496 | |||
| 497 | // |
||
| 498 | // Step 1 . Split all slices that crosses 90 or 270 |
||
| 499 | // |
||
| 500 | $idx = 0; |
||
| 501 | $adjexplode = []; |
||
| 502 | $numcolors = safe_count($colors); |
||
| 503 | for ($i = 0; $i < safe_count($data); ++$i, ++$idx) { |
||
| 504 | $da = $data[$i] / $sum * 360; |
||
| 505 | |||
| 506 | if (empty($this->explode_radius[$i])) { |
||
| 507 | $this->explode_radius[$i] = 0; |
||
| 508 | } |
||
| 509 | |||
| 510 | $expscale = 1; |
||
| 511 | if ($aaoption == 1) { |
||
| 512 | $expscale = 2; |
||
| 513 | } |
||
| 514 | |||
| 515 | $la = $a + $da / 2; |
||
| 516 | $explode = [$xc + $this->explode_radius[$i] * cos($la * M_PI / 180) * $expscale, |
||
| 517 | $yc - $this->explode_radius[$i] * sin($la * M_PI / 180) * ($h / $d) * $expscale, ]; |
||
| 518 | $adjexplode[$idx] = $explode; |
||
| 519 | $labeldata[$i] = [$la, $explode[0], $explode[1]]; |
||
| 520 | $originalangles[$i] = [$a, $a + $da]; |
||
| 521 | |||
| 522 | $ne = $this->NormAngle($a + $da); |
||
| 523 | if ($da <= 180) { |
||
| 524 | // If the slice size is <= 90 it can at maximum cut across |
||
| 525 | // one boundary (either 90 or 270) where it needs to be split |
||
| 526 | $split = -1; // no split |
||
| 527 | if (($da <= 90 && ($a <= 90 && $ne > 90)) || |
||
| 528 | (($da <= 180 && $da > 90) && (($a < 90 || $a >= 270) && $ne > 90))) { |
||
| 529 | $split = 90; |
||
| 530 | } elseif (($da <= 90 && ($a <= 270 && $ne > 270)) || |
||
| 531 | (($da <= 180 && $da > 90) && ($a >= 90 && $a < 270 && ($a + $da) > 270))) { |
||
| 532 | $split = 270; |
||
| 533 | } |
||
| 534 | if ($split > 0) { |
||
| 535 | // split in two |
||
| 536 | $angles[$idx] = [$a, $split]; |
||
| 537 | $adjcolors[$idx] = $colors[$i % $numcolors]; |
||
| 538 | $adjexplode[$idx] = $explode; |
||
| 539 | $angles[++$idx] = [$split, $ne]; |
||
| 540 | $adjcolors[$idx] = $colors[$i % $numcolors]; |
||
| 541 | $adjexplode[$idx] = $explode; |
||
| 542 | } else { |
||
| 543 | // no split |
||
| 544 | $angles[$idx] = [$a, $ne]; |
||
| 545 | $adjcolors[$idx] = $colors[$i % $numcolors]; |
||
| 546 | $adjexplode[$idx] = $explode; |
||
| 547 | } |
||
| 548 | } else { |
||
| 549 | // da>180 |
||
| 550 | // Slice may, depending on position, cross one or two |
||
| 551 | // bonudaries |
||
| 552 | |||
| 553 | if ($a < 90) { |
||
| 554 | $split = 90; |
||
| 555 | } elseif ($a <= 270) { |
||
| 556 | $split = 270; |
||
| 557 | } else { |
||
| 558 | $split = 90; |
||
| 559 | } |
||
| 560 | |||
| 561 | $angles[$idx] = [$a, $split]; |
||
| 562 | $adjcolors[$idx] = $colors[$i % $numcolors]; |
||
| 563 | $adjexplode[$idx] = $explode; |
||
| 564 | //if( $a+$da > 360-$split ) { |
||
| 565 | // For slices larger than 270 degrees we might cross |
||
| 566 | // another boundary as well. This means that we must |
||
| 567 | // split the slice further. The comparison gets a little |
||
| 568 | // bit complicated since we must take into accound that |
||
| 569 | // a pie might have a startangle >0 and hence a slice might |
||
| 570 | // wrap around the 0 angle. |
||
| 571 | // Three cases: |
||
| 572 | // a) Slice starts before 90 and hence gets a split=90, but |
||
| 573 | // we must also check if we need to split at 270 |
||
| 574 | // b) Slice starts after 90 but before 270 and slices |
||
| 575 | // crosses 90 (after a wrap around of 0) |
||
| 576 | // c) If start is > 270 (hence the firstr split is at 90) |
||
| 577 | // and the slice is so large that it goes all the way |
||
| 578 | // around 270. |
||
| 579 | if (($a < 90 && ($a + $da > 270)) || ($a > 90 && $a <= 270 && ($a + $da > 360 + 90)) || ($a > 270 && $this->NormAngle($a + $da) > 270)) { |
||
| 580 | $angles[++$idx] = [$split, 360 - $split]; |
||
| 581 | $adjcolors[$idx] = $colors[$i % $numcolors]; |
||
| 582 | $adjexplode[$idx] = $explode; |
||
| 583 | $angles[++$idx] = [360 - $split, $ne]; |
||
| 584 | $adjcolors[$idx] = $colors[$i % $numcolors]; |
||
| 585 | $adjexplode[$idx] = $explode; |
||
| 586 | } else { |
||
| 587 | // Just a simple split to the previous decided |
||
| 588 | // angle. |
||
| 589 | $angles[++$idx] = [$split, $ne]; |
||
| 590 | $adjcolors[$idx] = $colors[$i % $numcolors]; |
||
| 591 | $adjexplode[$idx] = $explode; |
||
| 592 | } |
||
| 593 | } |
||
| 594 | $a += $da; |
||
| 595 | $a = $this->NormAngle($a); |
||
| 596 | } |
||
| 597 | |||
| 598 | // Total number of slices |
||
| 599 | $n = safe_count($angles); |
||
| 600 | |||
| 601 | for ($i = 0; $i < $n; ++$i) { |
||
| 602 | list($dbgs, $dbge) = $angles[$i]; |
||
| 603 | } |
||
| 604 | |||
| 605 | // |
||
| 606 | // Step 2. Find start index (first pie that starts in upper left quadrant) |
||
| 607 | // |
||
| 608 | $minval = $angles[0][0]; |
||
| 609 | $min = 0; |
||
| 610 | for ($i = 0; $i < $n; ++$i) { |
||
| 611 | if ($angles[$i][0] < $minval) { |
||
| 612 | $minval = $angles[$i][0]; |
||
| 613 | $min = $i; |
||
| 614 | } |
||
| 615 | } |
||
| 616 | $j = $min; |
||
| 617 | $cnt = 0; |
||
| 618 | while ($angles[$j][1] <= 90) { |
||
| 619 | ++$j; |
||
| 620 | if ($j >= $n) { |
||
| 621 | $j = 0; |
||
| 622 | } |
||
| 623 | if ($cnt > $n) { |
||
| 624 | Util\JpGraphError::RaiseL(14005); |
||
| 625 | //("Pie3D Internal error (#1). Trying to wrap twice when looking for start index"); |
||
| 626 | } |
||
| 627 | ++$cnt; |
||
| 628 | } |
||
| 629 | $start = $j; |
||
| 630 | |||
| 631 | // |
||
| 632 | // Step 3. Print slices in z-order |
||
| 633 | // |
||
| 634 | $cnt = 0; |
||
| 635 | |||
| 636 | // First stroke all the slices between 90 and 270 (left half circle) |
||
| 637 | // counterclockwise |
||
| 638 | |||
| 639 | while ($angles[$j][0] < 270 && $aaoption !== 2) { |
||
| 640 | list($x, $y) = $adjexplode[$j]; |
||
| 641 | |||
| 642 | $this->Pie3DSlice( |
||
| 643 | $img, |
||
| 644 | $x, |
||
| 645 | $y, |
||
| 646 | $d, |
||
| 647 | $h, |
||
| 648 | $angles[$j][0], |
||
| 649 | $angles[$j][1], |
||
| 650 | $z, |
||
| 651 | $adjcolors[$j], |
||
| 652 | $shadow |
||
| 653 | ); |
||
| 654 | |||
| 655 | $last = [$x, $y, $j]; |
||
| 656 | |||
| 657 | ++$j; |
||
| 658 | if ($j >= $n) { |
||
| 659 | $j = 0; |
||
| 660 | } |
||
| 661 | |||
| 662 | if ($cnt > $n) { |
||
| 663 | Util\JpGraphError::RaiseL(14006); |
||
| 664 | //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); |
||
| 665 | } |
||
| 666 | ++$cnt; |
||
| 667 | } |
||
| 668 | |||
| 669 | $slice_left = $n - $cnt; |
||
| 670 | $j = $start - 1; |
||
| 671 | if ($j < 0) { |
||
| 672 | $j = $n - 1; |
||
| 673 | } |
||
| 674 | |||
| 675 | $cnt = 0; |
||
| 676 | |||
| 677 | // The stroke all slices from 90 to -90 (right half circle) |
||
| 678 | // clockwise |
||
| 679 | while ($cnt < $slice_left && $aaoption !== 2) { |
||
| 680 | list($x, $y) = $adjexplode[$j]; |
||
| 681 | |||
| 682 | $this->Pie3DSlice( |
||
| 683 | $img, |
||
| 684 | $x, |
||
| 685 | $y, |
||
| 686 | $d, |
||
| 687 | $h, |
||
| 688 | $angles[$j][0], |
||
| 689 | $angles[$j][1], |
||
| 690 | $z, |
||
| 691 | $adjcolors[$j], |
||
| 692 | $shadow |
||
| 693 | ); |
||
| 694 | --$j; |
||
| 695 | if ($cnt > $n) { |
||
| 696 | Util\JpGraphError::RaiseL(14006); |
||
| 697 | //("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking."); |
||
| 698 | } |
||
| 699 | if ($j < 0) { |
||
| 700 | $j = $n - 1; |
||
| 701 | } |
||
| 702 | |||
| 703 | ++$cnt; |
||
| 704 | } |
||
| 705 | |||
| 706 | // Now do a special thing. Stroke the last slice on the left |
||
| 707 | // halfcircle one more time. This is needed in the case where |
||
| 708 | // the slice close to 270 have been exploded. In that case the |
||
| 709 | // part of the slice close to the center of the pie might be |
||
| 710 | // slightly nagged. |
||
| 711 | if ($aaoption !== 2) { |
||
| 712 | $this->Pie3DSlice( |
||
| 713 | $img, |
||
| 714 | $last[0], |
||
| 715 | $last[1], |
||
| 716 | $d, |
||
| 717 | $h, |
||
| 718 | $angles[$last[2]][0], |
||
| 719 | $angles[$last[2]][1], |
||
| 720 | $z, |
||
| 721 | $adjcolors[$last[2]], |
||
| 722 | $shadow |
||
| 723 | ); |
||
| 724 | } |
||
| 725 | |||
| 726 | if ($aaoption !== 1) { |
||
| 727 | // Now print possible labels and add csim |
||
| 728 | $this->value->ApplyFont($img); |
||
| 729 | $margin = $img->GetFontHeight() / 2 + $this->value->margin; |
||
| 730 | for ($i = 0; $i < safe_count($data); ++$i) { |
||
| 731 | $la = $labeldata[$i][0]; |
||
| 732 | $x = $labeldata[$i][1] + cos($la * M_PI / 180) * ($d + $margin) * $this->ilabelposadj; |
||
| 733 | $y = $labeldata[$i][2] - sin($la * M_PI / 180) * ($h + $margin) * $this->ilabelposadj; |
||
| 734 | if ($this->ilabelposadj >= 1.0) { |
||
| 735 | if ($la > 180 && $la < 360) { |
||
| 736 | $y += $z; |
||
| 737 | } |
||
| 738 | } |
||
| 739 | if ($this->labeltype == 0) { |
||
| 740 | if ($sum > 0) { |
||
| 741 | $l = 100 * $data[$i] / $sum; |
||
| 742 | } else { |
||
| 743 | $l = 0; |
||
| 744 | } |
||
| 745 | } elseif ($this->labeltype == 1) { |
||
| 746 | $l = $data[$i]; |
||
| 747 | } else { |
||
| 748 | $l = $this->adjusted_data[$i]; |
||
| 749 | } |
||
| 750 | if (isset($this->labels[$i]) && is_string($this->labels[$i])) { |
||
| 751 | $l = sprintf($this->labels[$i], $l); |
||
| 752 | } |
||
| 753 | |||
| 754 | $this->StrokeLabels($l, $img, $labeldata[$i][0] * M_PI / 180, $x, $y, $z); |
||
| 755 | |||
| 756 | $this->Add3DSliceToCSIM( |
||
| 757 | $i, |
||
| 758 | $labeldata[$i][1], |
||
| 759 | $labeldata[$i][2], |
||
| 760 | $h * 2, |
||
| 761 | $d * 2, |
||
| 762 | $z, |
||
| 763 | $originalangles[$i][0], |
||
| 764 | $originalangles[$i][1] |
||
| 765 | ); |
||
| 766 | } |
||
| 767 | } |
||
| 768 | |||
| 769 | // |
||
| 770 | // Finally add potential lines in pie |
||
| 771 | // |
||
| 772 | |||
| 773 | if ($edgecolor == '' || $aaoption !== 0) { |
||
| 774 | return; |
||
| 775 | } |
||
| 776 | |||
| 777 | $accsum = 0; |
||
| 778 | $a = $startangle; |
||
| 779 | $a = $this->NormAngle($a); |
||
| 780 | |||
| 781 | $a *= M_PI / 180.0; |
||
| 782 | |||
| 783 | $idx = 0; |
||
| 784 | $img->PushColor($edgecolor); |
||
| 785 | $img->SetLineWeight($edgeweight); |
||
| 786 | |||
| 787 | $fulledge = true; |
||
| 788 | for ($i = 0; $i < safe_count($data) && $fulledge; ++$i) { |
||
| 789 | if (empty($this->explode_radius[$i])) { |
||
| 790 | $this->explode_radius[$i] = 0; |
||
| 791 | } |
||
| 792 | if ($this->explode_radius[$i] > 0) { |
||
| 793 | $fulledge = false; |
||
| 794 | } |
||
| 795 | } |
||
| 796 | |||
| 797 | for ($i = 0; $i < safe_count($data); ++$i, ++$idx) { |
||
| 798 | $da = $data[$i] / $sum * 2 * M_PI; |
||
| 799 | $this->StrokeFullSliceFrame( |
||
| 800 | $img, |
||
| 801 | $xc, |
||
| 802 | $yc, |
||
| 803 | $a, |
||
| 804 | $a + $da, |
||
| 805 | $d, |
||
| 806 | $h, |
||
| 807 | $z, |
||
| 808 | $edgecolor, |
||
| 809 | $this->explode_radius[$i], |
||
| 810 | $fulledge |
||
| 811 | ); |
||
| 812 | $a += $da; |
||
| 813 | } |
||
| 814 | $img->PopColor(); |
||
| 815 | } |
||
| 816 | |||
| 817 | public function StrokeFullSliceFrame($img, $xc, $yc, $sa, $ea, $w, $h, $z, $edgecolor, $exploderadius, $fulledge) |
||
| 872 | } |
||
| 873 | } |
||
| 874 | } |
||
| 875 | |||
| 876 | public function Stroke($img, $aaoption = 0) |
||
| 982 | } |
||
| 983 | } |
||
| 984 | |||
| 985 | /** |
||
| 986 | * PRIVATE METHODS. |
||
| 987 | * |
||
| 988 | * @param mixed $label |
||
| 989 | * @param mixed $img |
||
| 990 | * @param mixed $a |
||
| 991 | * @param mixed $xp |
||
| 992 | * @param mixed $yp |
||
| 993 | * @param mixed $z |
||
| 994 | */ |
||
| 995 | |||
| 996 | // Position the labels of each slice |
||
| 997 | public function StrokeLabels($label, $img, $a, $xp, $yp, $z) |
||
| 1079 |