1
|
|
|
# Copyright (c) 2008-2015 MetPy Developers. |
2
|
|
|
# Distributed under the terms of the BSD 3-Clause License. |
3
|
|
|
# SPDX-License-Identifier: BSD-3-Clause |
4
|
|
|
"""Contains a collection of thermodynamic calculations.""" |
5
|
|
|
|
6
|
|
|
from __future__ import division |
7
|
|
|
|
8
|
|
|
import warnings |
9
|
|
|
|
10
|
|
|
import numpy as np |
11
|
|
|
import scipy.integrate as si |
12
|
|
|
import scipy.optimize as so |
13
|
|
|
|
14
|
|
|
from .tools import (_greater_or_close, _less_or_close, broadcast_indices, find_intersections, |
15
|
|
|
get_layer, interp) |
16
|
|
|
from ..constants import Cp_d, epsilon, kappa, Lv, P0, Rd |
17
|
|
|
from ..package_tools import Exporter |
18
|
|
|
from ..units import atleast_1d, check_units, concatenate, units |
19
|
|
|
|
20
|
|
|
exporter = Exporter(globals()) |
21
|
|
|
|
22
|
|
|
sat_pressure_0c = 6.112 * units.millibar |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
@exporter.export |
26
|
|
|
@check_units('[pressure]', '[temperature]') |
27
|
|
|
def potential_temperature(pressure, temperature): |
28
|
|
|
r"""Calculate the potential temperature. |
29
|
|
|
|
30
|
|
|
Uses the Poisson equation to calculation the potential temperature |
31
|
|
|
given `pressure` and `temperature`. |
32
|
|
|
|
33
|
|
|
Parameters |
34
|
|
|
---------- |
35
|
|
|
pressure : `pint.Quantity` |
36
|
|
|
The total atmospheric pressure |
37
|
|
|
temperature : `pint.Quantity` |
38
|
|
|
The temperature |
39
|
|
|
|
40
|
|
|
Returns |
41
|
|
|
------- |
42
|
|
|
`pint.Quantity` |
43
|
|
|
The potential temperature corresponding to the the temperature and |
44
|
|
|
pressure. |
45
|
|
|
|
46
|
|
|
See Also |
47
|
|
|
-------- |
48
|
|
|
dry_lapse |
49
|
|
|
|
50
|
|
|
Notes |
51
|
|
|
----- |
52
|
|
|
Formula: |
53
|
|
|
|
54
|
|
|
.. math:: \Theta = T (P_0 / P)^\kappa |
55
|
|
|
|
56
|
|
|
Examples |
57
|
|
|
-------- |
58
|
|
|
>>> from metpy.units import units |
59
|
|
|
>>> metpy.calc.potential_temperature(800. * units.mbar, 273. * units.kelvin) |
60
|
|
|
<Quantity(290.96653180346203, 'kelvin')> |
61
|
|
|
|
62
|
|
|
""" |
63
|
|
|
return temperature * (P0 / pressure).to('dimensionless')**kappa |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
@exporter.export |
67
|
|
|
@check_units('[pressure]', '[temperature]') |
68
|
|
|
def dry_lapse(pressure, temperature): |
69
|
|
|
r"""Calculate the temperature at a level assuming only dry processes. |
70
|
|
|
|
71
|
|
|
This function lifts a parcel starting at `temperature`, conserving |
72
|
|
|
potential temperature. The starting pressure should be the first item in |
73
|
|
|
the `pressure` array. |
74
|
|
|
|
75
|
|
|
Parameters |
76
|
|
|
---------- |
77
|
|
|
pressure : `pint.Quantity` |
78
|
|
|
The atmospheric pressure level(s) of interest |
79
|
|
|
temperature : `pint.Quantity` |
80
|
|
|
The starting temperature |
81
|
|
|
|
82
|
|
|
Returns |
83
|
|
|
------- |
84
|
|
|
`pint.Quantity` |
85
|
|
|
The resulting parcel temperature at levels given by `pressure` |
86
|
|
|
|
87
|
|
|
See Also |
88
|
|
|
-------- |
89
|
|
|
moist_lapse : Calculate parcel temperature assuming liquid saturation |
90
|
|
|
processes |
91
|
|
|
parcel_profile : Calculate complete parcel profile |
92
|
|
|
potential_temperature |
93
|
|
|
|
94
|
|
|
""" |
95
|
|
|
return temperature * (pressure / pressure[0])**kappa |
96
|
|
|
|
97
|
|
|
|
98
|
|
|
@exporter.export |
99
|
|
|
@check_units('[pressure]', '[temperature]') |
100
|
|
|
def moist_lapse(pressure, temperature): |
101
|
|
|
r"""Calculate the temperature at a level assuming liquid saturation processes. |
102
|
|
|
|
103
|
|
|
This function lifts a parcel starting at `temperature`. The starting |
104
|
|
|
pressure should be the first item in the `pressure` array. Essentially, |
105
|
|
|
this function is calculating moist pseudo-adiabats. |
106
|
|
|
|
107
|
|
|
Parameters |
108
|
|
|
---------- |
109
|
|
|
pressure : `pint.Quantity` |
110
|
|
|
The atmospheric pressure level(s) of interest |
111
|
|
|
temperature : `pint.Quantity` |
112
|
|
|
The starting temperature |
113
|
|
|
|
114
|
|
|
Returns |
115
|
|
|
------- |
116
|
|
|
`pint.Quantity` |
117
|
|
|
The temperature corresponding to the the starting temperature and |
118
|
|
|
pressure levels. |
119
|
|
|
|
120
|
|
|
See Also |
121
|
|
|
-------- |
122
|
|
|
dry_lapse : Calculate parcel temperature assuming dry adiabatic processes |
123
|
|
|
parcel_profile : Calculate complete parcel profile |
124
|
|
|
|
125
|
|
|
Notes |
126
|
|
|
----- |
127
|
|
|
This function is implemented by integrating the following differential |
128
|
|
|
equation: |
129
|
|
|
|
130
|
|
|
.. math:: \frac{dT}{dP} = \frac{1}{P} \frac{R_d T + L_v r_s} |
131
|
|
|
{C_{pd} + \frac{L_v^2 r_s \epsilon}{R_d T^2}} |
132
|
|
|
|
133
|
|
|
This equation comes from [Bakhshaii2013]_. |
134
|
|
|
|
135
|
|
|
""" |
136
|
|
|
def dt(t, p): |
137
|
|
|
t = units.Quantity(t, temperature.units) |
138
|
|
|
p = units.Quantity(p, pressure.units) |
139
|
|
|
rs = saturation_mixing_ratio(p, t) |
140
|
|
|
frac = ((Rd * t + Lv * rs) / |
141
|
|
|
(Cp_d + (Lv * Lv * rs * epsilon / (Rd * t * t)))).to('kelvin') |
142
|
|
|
return frac / p |
143
|
|
|
return units.Quantity(si.odeint(dt, atleast_1d(temperature).squeeze(), |
144
|
|
|
pressure.squeeze()).T.squeeze(), temperature.units) |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
@exporter.export |
148
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
149
|
|
|
def lcl(pressure, temperature, dewpt, max_iters=50, eps=1e-5): |
150
|
|
|
r"""Calculate the lifted condensation level (LCL) using from the starting point. |
151
|
|
|
|
152
|
|
|
The starting state for the parcel is defined by `temperature`, `dewpt`, |
153
|
|
|
and `pressure`. |
154
|
|
|
|
155
|
|
|
Parameters |
156
|
|
|
---------- |
157
|
|
|
pressure : `pint.Quantity` |
158
|
|
|
The starting atmospheric pressure |
159
|
|
|
temperature : `pint.Quantity` |
160
|
|
|
The starting temperature |
161
|
|
|
dewpt : `pint.Quantity` |
162
|
|
|
The starting dew point |
163
|
|
|
|
164
|
|
|
Returns |
165
|
|
|
------- |
166
|
|
|
`(pint.Quantity, pint.Quantity)` |
167
|
|
|
The LCL pressure and temperature |
168
|
|
|
|
169
|
|
|
Other Parameters |
170
|
|
|
---------------- |
171
|
|
|
max_iters : int, optional |
172
|
|
|
The maximum number of iterations to use in calculation, defaults to 50. |
173
|
|
|
eps : float, optional |
174
|
|
|
The desired relative error in the calculated value, defaults to 1e-5. |
175
|
|
|
|
176
|
|
|
See Also |
177
|
|
|
-------- |
178
|
|
|
parcel_profile |
179
|
|
|
|
180
|
|
|
Notes |
181
|
|
|
----- |
182
|
|
|
This function is implemented using an iterative approach to solve for the |
183
|
|
|
LCL. The basic algorithm is: |
184
|
|
|
|
185
|
|
|
1. Find the dew point from the LCL pressure and starting mixing ratio |
186
|
|
|
2. Find the LCL pressure from the starting temperature and dewpoint |
187
|
|
|
3. Iterate until convergence |
188
|
|
|
|
189
|
|
|
The function is guaranteed to finish by virtue of the `max_iters` counter. |
190
|
|
|
|
191
|
|
|
""" |
192
|
|
|
def _lcl_iter(p, p0, w, t): |
193
|
|
|
td = dewpoint(vapor_pressure(units.Quantity(p, pressure.units), w)) |
194
|
|
|
return (p0 * (td / t) ** (1. / kappa)).m |
195
|
|
|
|
196
|
|
|
w = mixing_ratio(saturation_vapor_pressure(dewpt), pressure) |
197
|
|
|
fp = so.fixed_point(_lcl_iter, pressure.m, args=(pressure.m, w, temperature), |
198
|
|
|
xtol=eps, maxiter=max_iters) |
199
|
|
|
lcl_p = units.Quantity(fp, pressure.units) |
200
|
|
|
return lcl_p, dewpoint(vapor_pressure(lcl_p, w)) |
201
|
|
|
|
202
|
|
|
|
203
|
|
|
@exporter.export |
204
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
205
|
|
|
def lfc(pressure, temperature, dewpt): |
206
|
|
|
r"""Calculate the level of free convection (LFC). |
207
|
|
|
|
208
|
|
|
This works by finding the first intersection of the ideal parcel path and |
209
|
|
|
the measured parcel temperature. |
210
|
|
|
|
211
|
|
|
Parameters |
212
|
|
|
---------- |
213
|
|
|
pressure : `pint.Quantity` |
214
|
|
|
The atmospheric pressure |
215
|
|
|
temperature : `pint.Quantity` |
216
|
|
|
The temperature at the levels given by `pressure` |
217
|
|
|
dewpt : `pint.Quantity` |
218
|
|
|
The dew point at the levels given by `pressure` |
219
|
|
|
|
220
|
|
|
Returns |
221
|
|
|
------- |
222
|
|
|
`pint.Quantity` |
223
|
|
|
The LFC pressure and temperature |
224
|
|
|
|
225
|
|
|
See Also |
226
|
|
|
-------- |
227
|
|
|
parcel_profile |
228
|
|
|
|
229
|
|
|
""" |
230
|
|
|
ideal_profile = parcel_profile(pressure, temperature[0], dewpt[0]).to('degC') |
231
|
|
|
|
232
|
|
|
# The parcel profile and data have the same first data point, so we ignore |
233
|
|
|
# that point to get the real first intersection for the LFC calculation. |
234
|
|
|
x, y = find_intersections(pressure[1:], ideal_profile[1:], temperature[1:], |
235
|
|
|
direction='increasing') |
236
|
|
|
# Two possible cases here: LFC = LCL, or LFC doesn't exist |
237
|
|
|
if len(x) == 0: |
238
|
|
|
if np.all(_less_or_close(ideal_profile, temperature)): |
239
|
|
|
# LFC doesn't exist |
240
|
|
|
return np.nan * pressure.units, np.nan * temperature.units |
241
|
|
|
else: # LFC = LCL |
242
|
|
|
x, y = lcl(pressure[0], temperature[0], dewpt[0]) |
243
|
|
|
return x, y |
244
|
|
|
else: |
245
|
|
|
return x[0], y[0] |
246
|
|
|
|
247
|
|
|
|
248
|
|
|
@exporter.export |
249
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
250
|
|
|
def el(pressure, temperature, dewpt): |
251
|
|
|
r"""Calculate the equilibrium level. |
252
|
|
|
|
253
|
|
|
This works by finding the last intersection of the ideal parcel path and |
254
|
|
|
the measured environmental temperature. If there is one or fewer intersections, there is |
255
|
|
|
no equilibrium level. |
256
|
|
|
|
257
|
|
|
Parameters |
258
|
|
|
---------- |
259
|
|
|
pressure : `pint.Quantity` |
260
|
|
|
The atmospheric pressure |
261
|
|
|
temperature : `pint.Quantity` |
262
|
|
|
The temperature at the levels given by `pressure` |
263
|
|
|
dewpt : `pint.Quantity` |
264
|
|
|
The dew point at the levels given by `pressure` |
265
|
|
|
|
266
|
|
|
Returns |
267
|
|
|
------- |
268
|
|
|
`pint.Quantity, pint.Quantity` |
269
|
|
|
The EL pressure and temperature |
270
|
|
|
|
271
|
|
|
See Also |
272
|
|
|
-------- |
273
|
|
|
parcel_profile |
274
|
|
|
|
275
|
|
|
""" |
276
|
|
|
ideal_profile = parcel_profile(pressure, temperature[0], dewpt[0]).to('degC') |
277
|
|
|
x, y = find_intersections(pressure[1:], ideal_profile[1:], temperature[1:]) |
278
|
|
|
# Find LFC to make sure that the function isn't passing off the LFC as the EL |
279
|
|
|
lfc_pressure, _ = lfc(pressure, temperature, dewpt) |
280
|
|
|
|
281
|
|
|
# If there is only one intersection, there are two possibilities: |
282
|
|
|
# the dataset does not contain the EL, or the LFC = LCL. |
283
|
|
|
if len(x) <= 1: |
284
|
|
|
if (ideal_profile[-1] < temperature[-1]) and (len(x) == 1): |
285
|
|
|
# Profile top colder than environment with one |
286
|
|
|
# intersection, EL exists and LFC = LCL |
287
|
|
|
return x[-1], y[-1] |
288
|
|
|
else: |
289
|
|
|
# The EL does not exist, either due to incomplete data |
290
|
|
|
# or no intersection occurring. |
291
|
|
|
return np.nan * pressure.units, np.nan * temperature.units |
292
|
|
|
else: |
293
|
|
|
# Checking to make sure the LFC is not returned as the EL |
294
|
|
|
# when data is truncated below the EL |
295
|
|
|
if np.isclose(x[-1], lfc_pressure, atol=1e-6): |
296
|
|
|
return np.nan * pressure.units, np.nan * temperature.units |
297
|
|
|
else: |
298
|
|
|
return x[-1], y[-1] |
299
|
|
|
|
300
|
|
|
|
301
|
|
|
@exporter.export |
302
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
303
|
|
|
def parcel_profile(pressure, temperature, dewpt): |
304
|
|
|
r"""Calculate the profile a parcel takes through the atmosphere. |
305
|
|
|
|
306
|
|
|
The parcel starts at `temperature`, and `dewpt`, lifted up |
307
|
|
|
dry adiabatically to the LCL, and then moist adiabatically from there. |
308
|
|
|
`pressure` specifies the pressure levels for the profile. |
309
|
|
|
|
310
|
|
|
Parameters |
311
|
|
|
---------- |
312
|
|
|
pressure : `pint.Quantity` |
313
|
|
|
The atmospheric pressure level(s) of interest. The first entry should be the starting |
314
|
|
|
point pressure. |
315
|
|
|
temperature : `pint.Quantity` |
316
|
|
|
The starting temperature |
317
|
|
|
dewpt : `pint.Quantity` |
318
|
|
|
The starting dew point |
319
|
|
|
|
320
|
|
|
Returns |
321
|
|
|
------- |
322
|
|
|
`pint.Quantity` |
323
|
|
|
The parcel temperatures at the specified pressure levels. |
324
|
|
|
|
325
|
|
|
See Also |
326
|
|
|
-------- |
327
|
|
|
lcl, moist_lapse, dry_lapse |
328
|
|
|
|
329
|
|
|
""" |
330
|
|
|
# Find the LCL |
331
|
|
|
l = lcl(pressure[0], temperature, dewpt)[0].to(pressure.units) |
332
|
|
|
|
333
|
|
|
# Find the dry adiabatic profile, *including* the LCL. We need >= the LCL in case the |
334
|
|
|
# LCL is included in the levels. It's slightly redundant in that case, but simplifies |
335
|
|
|
# the logic for removing it later. |
336
|
|
|
press_lower = concatenate((pressure[pressure >= l], l)) |
337
|
|
|
t1 = dry_lapse(press_lower, temperature) |
338
|
|
|
|
339
|
|
|
# Find moist pseudo-adiabatic profile starting at the LCL |
340
|
|
|
press_upper = concatenate((l, pressure[pressure < l])) |
341
|
|
|
t2 = moist_lapse(press_upper, t1[-1]).to(t1.units) |
342
|
|
|
|
343
|
|
|
# Return LCL *without* the LCL point |
344
|
|
|
return concatenate((t1[:-1], t2[1:])) |
345
|
|
|
|
346
|
|
|
|
347
|
|
|
@exporter.export |
348
|
|
|
@check_units('[pressure]', '[dimensionless]') |
349
|
|
|
def vapor_pressure(pressure, mixing): |
350
|
|
|
r"""Calculate water vapor (partial) pressure. |
351
|
|
|
|
352
|
|
|
Given total `pressure` and water vapor `mixing` ratio, calculates the |
353
|
|
|
partial pressure of water vapor. |
354
|
|
|
|
355
|
|
|
Parameters |
356
|
|
|
---------- |
357
|
|
|
pressure : `pint.Quantity` |
358
|
|
|
total atmospheric pressure |
359
|
|
|
mixing : `pint.Quantity` |
360
|
|
|
dimensionless mass mixing ratio |
361
|
|
|
|
362
|
|
|
Returns |
363
|
|
|
------- |
364
|
|
|
`pint.Quantity` |
365
|
|
|
The ambient water vapor (partial) pressure in the same units as |
366
|
|
|
`pressure`. |
367
|
|
|
|
368
|
|
|
Notes |
369
|
|
|
----- |
370
|
|
|
This function is a straightforward implementation of the equation given in many places, |
371
|
|
|
such as [Hobbs1977]_ pg.71: |
372
|
|
|
|
373
|
|
|
.. math:: e = p \frac{r}{r + \epsilon} |
374
|
|
|
|
375
|
|
|
See Also |
376
|
|
|
-------- |
377
|
|
|
saturation_vapor_pressure, dewpoint |
378
|
|
|
|
379
|
|
|
""" |
380
|
|
|
return pressure * mixing / (epsilon + mixing) |
381
|
|
|
|
382
|
|
|
|
383
|
|
|
@exporter.export |
384
|
|
|
@check_units('[temperature]') |
385
|
|
|
def saturation_vapor_pressure(temperature): |
386
|
|
|
r"""Calculate the saturation water vapor (partial) pressure. |
387
|
|
|
|
388
|
|
|
Parameters |
389
|
|
|
---------- |
390
|
|
|
temperature : `pint.Quantity` |
391
|
|
|
The temperature |
392
|
|
|
|
393
|
|
|
Returns |
394
|
|
|
------- |
395
|
|
|
`pint.Quantity` |
396
|
|
|
The saturation water vapor (partial) pressure |
397
|
|
|
|
398
|
|
|
See Also |
399
|
|
|
-------- |
400
|
|
|
vapor_pressure, dewpoint |
401
|
|
|
|
402
|
|
|
Notes |
403
|
|
|
----- |
404
|
|
|
Instead of temperature, dewpoint may be used in order to calculate |
405
|
|
|
the actual (ambient) water vapor (partial) pressure. |
406
|
|
|
|
407
|
|
|
The formula used is that from [Bolton1980]_ for T in degrees Celsius: |
408
|
|
|
|
409
|
|
|
.. math:: 6.112 e^\frac{17.67T}{T + 243.5} |
410
|
|
|
|
411
|
|
|
""" |
412
|
|
|
# Converted from original in terms of C to use kelvin. Using raw absolute values of C in |
413
|
|
|
# a formula plays havoc with units support. |
414
|
|
|
return sat_pressure_0c * np.exp(17.67 * (temperature - 273.15 * units.kelvin) / |
415
|
|
|
(temperature - 29.65 * units.kelvin)) |
416
|
|
|
|
417
|
|
|
|
418
|
|
|
@exporter.export |
419
|
|
|
@check_units('[temperature]', '[dimensionless]') |
420
|
|
|
def dewpoint_rh(temperature, rh): |
421
|
|
|
r"""Calculate the ambient dewpoint given air temperature and relative humidity. |
422
|
|
|
|
423
|
|
|
Parameters |
424
|
|
|
---------- |
425
|
|
|
temperature : `pint.Quantity` |
426
|
|
|
Air temperature |
427
|
|
|
rh : `pint.Quantity` |
428
|
|
|
Relative humidity expressed as a ratio in the range (0, 1] |
429
|
|
|
|
430
|
|
|
Returns |
431
|
|
|
------- |
432
|
|
|
`pint.Quantity` |
433
|
|
|
The dew point temperature |
434
|
|
|
|
435
|
|
|
See Also |
436
|
|
|
-------- |
437
|
|
|
dewpoint, saturation_vapor_pressure |
438
|
|
|
|
439
|
|
|
""" |
440
|
|
|
if np.any(rh > 1.2): |
441
|
|
|
warnings.warn('Relative humidity >120%, ensure proper units.') |
442
|
|
|
return dewpoint(rh * saturation_vapor_pressure(temperature)) |
443
|
|
|
|
444
|
|
|
|
445
|
|
|
@exporter.export |
446
|
|
|
@check_units('[pressure]') |
447
|
|
|
def dewpoint(e): |
448
|
|
|
r"""Calculate the ambient dewpoint given the vapor pressure. |
449
|
|
|
|
450
|
|
|
Parameters |
451
|
|
|
---------- |
452
|
|
|
e : `pint.Quantity` |
453
|
|
|
Water vapor partial pressure |
454
|
|
|
|
455
|
|
|
Returns |
456
|
|
|
------- |
457
|
|
|
`pint.Quantity` |
458
|
|
|
Dew point temperature |
459
|
|
|
|
460
|
|
|
See Also |
461
|
|
|
-------- |
462
|
|
|
dewpoint_rh, saturation_vapor_pressure, vapor_pressure |
463
|
|
|
|
464
|
|
|
Notes |
465
|
|
|
----- |
466
|
|
|
This function inverts the [Bolton1980]_ formula for saturation vapor |
467
|
|
|
pressure to instead calculate the temperature. This yield the following |
468
|
|
|
formula for dewpoint in degrees Celsius: |
469
|
|
|
|
470
|
|
|
.. math:: T = \frac{243.5 log(e / 6.112)}{17.67 - log(e / 6.112)} |
471
|
|
|
|
472
|
|
|
""" |
473
|
|
|
val = np.log(e / sat_pressure_0c) |
474
|
|
|
return 0. * units.degC + 243.5 * units.delta_degC * val / (17.67 - val) |
475
|
|
|
|
476
|
|
|
|
477
|
|
|
@exporter.export |
478
|
|
|
@check_units('[pressure]', '[pressure]', '[dimensionless]') |
479
|
|
|
def mixing_ratio(part_press, tot_press, molecular_weight_ratio=epsilon): |
480
|
|
|
r"""Calculate the mixing ratio of a gas. |
481
|
|
|
|
482
|
|
|
This calculates mixing ratio given its partial pressure and the total pressure of |
483
|
|
|
the air. There are no required units for the input arrays, other than that |
484
|
|
|
they have the same units. |
485
|
|
|
|
486
|
|
|
Parameters |
487
|
|
|
---------- |
488
|
|
|
part_press : `pint.Quantity` |
489
|
|
|
Partial pressure of the constituent gas |
490
|
|
|
tot_press : `pint.Quantity` |
491
|
|
|
Total air pressure |
492
|
|
|
molecular_weight_ratio : `pint.Quantity` or float, optional |
493
|
|
|
The ratio of the molecular weight of the constituent gas to that assumed |
494
|
|
|
for air. Defaults to the ratio for water vapor to dry air |
495
|
|
|
(:math:`\epsilon\approx0.622`). |
496
|
|
|
|
497
|
|
|
Returns |
498
|
|
|
------- |
499
|
|
|
`pint.Quantity` |
500
|
|
|
The (mass) mixing ratio, dimensionless (e.g. Kg/Kg or g/g) |
501
|
|
|
|
502
|
|
|
Notes |
503
|
|
|
----- |
504
|
|
|
This function is a straightforward implementation of the equation given in many places, |
505
|
|
|
such as [Hobbs1977]_ pg.73: |
506
|
|
|
|
507
|
|
|
.. math:: r = \epsilon \frac{e}{p - e} |
508
|
|
|
|
509
|
|
|
See Also |
510
|
|
|
-------- |
511
|
|
|
saturation_mixing_ratio, vapor_pressure |
512
|
|
|
|
513
|
|
|
""" |
514
|
|
|
return molecular_weight_ratio * part_press / (tot_press - part_press) |
515
|
|
|
|
516
|
|
|
|
517
|
|
|
@exporter.export |
518
|
|
|
@check_units('[pressure]', '[temperature]') |
519
|
|
|
def saturation_mixing_ratio(tot_press, temperature): |
520
|
|
|
r"""Calculate the saturation mixing ratio of water vapor. |
521
|
|
|
|
522
|
|
|
This calculation is given total pressure and the temperature. The implementation |
523
|
|
|
uses the formula outlined in [Hobbs1977]_ pg.73. |
524
|
|
|
|
525
|
|
|
Parameters |
526
|
|
|
---------- |
527
|
|
|
tot_press: `pint.Quantity` |
528
|
|
|
Total atmospheric pressure |
529
|
|
|
temperature: `pint.Quantity` |
530
|
|
|
The temperature |
531
|
|
|
|
532
|
|
|
Returns |
533
|
|
|
------- |
534
|
|
|
`pint.Quantity` |
535
|
|
|
The saturation mixing ratio, dimensionless |
536
|
|
|
|
537
|
|
|
""" |
538
|
|
|
return mixing_ratio(saturation_vapor_pressure(temperature), tot_press) |
539
|
|
|
|
540
|
|
|
|
541
|
|
|
@exporter.export |
542
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
543
|
|
|
def equivalent_potential_temperature(pressure, temperature, dewpoint): |
544
|
|
|
r"""Calculate equivalent potential temperature. |
545
|
|
|
|
546
|
|
|
This calculation must be given an air parcel's pressure, temperature, and dewpoint. |
547
|
|
|
The implementation uses the formula outlined in [Bolton1980]_: |
548
|
|
|
|
549
|
|
|
First, the LCL temperature is calculated: |
550
|
|
|
|
551
|
|
|
.. math:: T_{L}=\frac{1}{\frac{1}{T_{D}-56}+\frac{(T_{K}/T_{D})}{800}}+56 |
552
|
|
|
|
553
|
|
|
Which is then used to calculate the potential temperature at the LCL: |
554
|
|
|
|
555
|
|
|
.. math:: \theta_{DL}=T_{K}\left(\frac{1000}{p-e}\right)^k |
556
|
|
|
\left(\frac{T_{K}}{T_{L}}\right)^{.28r} |
557
|
|
|
|
558
|
|
|
Both of these are used to calculate the final equivalent potential temperature: |
559
|
|
|
|
560
|
|
|
.. math:: \theta_{E}=\theta_{DL}\exp[\left(\left\frac{3036.}{T_{L}} |
561
|
|
|
-1.78\right)*r(1+.448r)\right] |
562
|
|
|
|
563
|
|
|
Parameters |
564
|
|
|
---------- |
565
|
|
|
pressure: `pint.Quantity` |
566
|
|
|
Total atmospheric pressure |
567
|
|
|
temperature: `pint.Quantity` |
568
|
|
|
Temperature of parcel |
569
|
|
|
dewpoint: `pint.Quantity` |
570
|
|
|
Dewpoint of parcel |
571
|
|
|
|
572
|
|
|
Returns |
573
|
|
|
------- |
574
|
|
|
`pint.Quantity` |
575
|
|
|
The equivalent potential temperature of the parcel |
576
|
|
|
|
577
|
|
|
Notes |
578
|
|
|
----- |
579
|
|
|
[Bolton1980]_ formula for Theta-e is used, since according to |
580
|
|
|
[Davies-Jones2009]_ it is the most accurate non-iterative formulation |
581
|
|
|
available. |
582
|
|
|
|
583
|
|
|
""" |
584
|
|
|
t = temperature.to('kelvin').magnitude |
585
|
|
|
td = dewpoint.to('kelvin').magnitude |
586
|
|
|
p = pressure.to('hPa').magnitude |
587
|
|
|
e = saturation_vapor_pressure(dewpoint).to('hPa').magnitude |
588
|
|
|
r = saturation_mixing_ratio(pressure, dewpoint).magnitude |
589
|
|
|
|
590
|
|
|
t_l = 56 + 1. / (1. / (td - 56) + np.log(t / td) / 800.) |
591
|
|
|
th_l = t * (1000 / (p - e)) ** kappa * (t / t_l) ** (0.28 * r) |
592
|
|
|
th_e = th_l * np.exp((3036. / t_l - 1.78) * r * (1 + 0.448 * r)) |
593
|
|
|
|
594
|
|
|
return th_e * units.kelvin |
595
|
|
|
|
596
|
|
|
|
597
|
|
|
@exporter.export |
598
|
|
|
@check_units('[temperature]', '[dimensionless]', '[dimensionless]') |
599
|
|
|
def virtual_temperature(temperature, mixing, molecular_weight_ratio=epsilon): |
600
|
|
|
r"""Calculate virtual temperature. |
601
|
|
|
|
602
|
|
|
This calculation must be given an air parcel's temperature and mixing ratio. |
603
|
|
|
The implementation uses the formula outlined in [Hobbs2006]_ pg.80. |
604
|
|
|
|
605
|
|
|
Parameters |
606
|
|
|
---------- |
607
|
|
|
temperature: `pint.Quantity` |
608
|
|
|
The temperature |
609
|
|
|
mixing : `pint.Quantity` |
610
|
|
|
dimensionless mass mixing ratio |
611
|
|
|
molecular_weight_ratio : `pint.Quantity` or float, optional |
612
|
|
|
The ratio of the molecular weight of the constituent gas to that assumed |
613
|
|
|
for air. Defaults to the ratio for water vapor to dry air. |
614
|
|
|
(:math:`\epsilon\approx0.622`). |
615
|
|
|
|
616
|
|
|
Returns |
617
|
|
|
------- |
618
|
|
|
`pint.Quantity` |
619
|
|
|
The corresponding virtual temperature of the parcel |
620
|
|
|
|
621
|
|
|
Notes |
622
|
|
|
----- |
623
|
|
|
.. math:: T_v = T \frac{\text{w} + \epsilon}{\epsilon\,(1 + \text{w})} |
624
|
|
|
|
625
|
|
|
""" |
626
|
|
|
return temperature * ((mixing + molecular_weight_ratio) / |
627
|
|
|
(molecular_weight_ratio * (1 + mixing))) |
628
|
|
|
|
629
|
|
|
|
630
|
|
|
@exporter.export |
631
|
|
|
@check_units('[pressure]', '[temperature]', '[dimensionless]', '[dimensionless]') |
632
|
|
|
def virtual_potential_temperature(pressure, temperature, mixing, |
633
|
|
|
molecular_weight_ratio=epsilon): |
634
|
|
|
r"""Calculate virtual potential temperature. |
635
|
|
|
|
636
|
|
|
This calculation must be given an air parcel's pressure, temperature, and mixing ratio. |
637
|
|
|
The implementation uses the formula outlined in [Markowski2010]_ pg.13. |
638
|
|
|
|
639
|
|
|
Parameters |
640
|
|
|
---------- |
641
|
|
|
pressure: `pint.Quantity` |
642
|
|
|
Total atmospheric pressure |
643
|
|
|
temperature: `pint.Quantity` |
644
|
|
|
The temperature |
645
|
|
|
mixing : `pint.Quantity` |
646
|
|
|
dimensionless mass mixing ratio |
647
|
|
|
molecular_weight_ratio : `pint.Quantity` or float, optional |
648
|
|
|
The ratio of the molecular weight of the constituent gas to that assumed |
649
|
|
|
for air. Defaults to the ratio for water vapor to dry air. |
650
|
|
|
(:math:`\epsilon\approx0.622`). |
651
|
|
|
|
652
|
|
|
Returns |
653
|
|
|
------- |
654
|
|
|
`pint.Quantity` |
655
|
|
|
The corresponding virtual potential temperature of the parcel |
656
|
|
|
|
657
|
|
|
Notes |
658
|
|
|
----- |
659
|
|
|
.. math:: \Theta_v = \Theta \frac{\text{w} + \epsilon}{\epsilon\,(1 + \text{w})} |
660
|
|
|
|
661
|
|
|
""" |
662
|
|
|
pottemp = potential_temperature(pressure, temperature) |
663
|
|
|
return virtual_temperature(pottemp, mixing, molecular_weight_ratio) |
664
|
|
|
|
665
|
|
|
|
666
|
|
|
@exporter.export |
667
|
|
|
@check_units('[pressure]', '[temperature]', '[dimensionless]', '[dimensionless]') |
668
|
|
|
def density(pressure, temperature, mixing, molecular_weight_ratio=epsilon): |
669
|
|
|
r"""Calculate density. |
670
|
|
|
|
671
|
|
|
This calculation must be given an air parcel's pressure, temperature, and mixing ratio. |
672
|
|
|
The implementation uses the formula outlined in [Hobbs2006]_ pg.67. |
673
|
|
|
|
674
|
|
|
Parameters |
675
|
|
|
---------- |
676
|
|
|
temperature: `pint.Quantity` |
677
|
|
|
The temperature |
678
|
|
|
pressure: `pint.Quantity` |
679
|
|
|
Total atmospheric pressure |
680
|
|
|
mixing : `pint.Quantity` |
681
|
|
|
dimensionless mass mixing ratio |
682
|
|
|
molecular_weight_ratio : `pint.Quantity` or float, optional |
683
|
|
|
The ratio of the molecular weight of the constituent gas to that assumed |
684
|
|
|
for air. Defaults to the ratio for water vapor to dry air. |
685
|
|
|
(:math:`\epsilon\approx0.622`). |
686
|
|
|
|
687
|
|
|
Returns |
688
|
|
|
------- |
689
|
|
|
`pint.Quantity` |
690
|
|
|
The corresponding density of the parcel |
691
|
|
|
|
692
|
|
|
Notes |
693
|
|
|
----- |
694
|
|
|
.. math:: \rho = \frac{p}{R_dT_v} |
695
|
|
|
|
696
|
|
|
""" |
697
|
|
|
virttemp = virtual_temperature(temperature, mixing, molecular_weight_ratio) |
698
|
|
|
return (pressure / (Rd * virttemp)).to(units.kilogram / units.meter ** 3) |
699
|
|
|
|
700
|
|
|
|
701
|
|
|
@exporter.export |
702
|
|
|
@check_units('[temperature]', '[temperature]', '[pressure]') |
703
|
|
|
def relative_humidity_wet_psychrometric(dry_bulb_temperature, web_bulb_temperature, |
704
|
|
|
pressure, **kwargs): |
705
|
|
|
r"""Calculate the relative humidity with wet bulb and dry bulb temperatures. |
706
|
|
|
|
707
|
|
|
This uses a psychrometric relationship as outlined in [WMO8-2014]_, with |
708
|
|
|
coefficients from [Fan1987]_. |
709
|
|
|
|
710
|
|
|
Parameters |
711
|
|
|
---------- |
712
|
|
|
dry_bulb_temperature: `pint.Quantity` |
713
|
|
|
Dry bulb temperature |
714
|
|
|
web_bulb_temperature: `pint.Quantity` |
715
|
|
|
Wet bulb temperature |
716
|
|
|
pressure: `pint.Quantity` |
717
|
|
|
Total atmospheric pressure |
718
|
|
|
|
719
|
|
|
Returns |
720
|
|
|
------- |
721
|
|
|
`pint.Quantity` |
722
|
|
|
Relative humidity |
723
|
|
|
|
724
|
|
|
Notes |
725
|
|
|
----- |
726
|
|
|
.. math:: RH = 100 \frac{e}{e_s} |
727
|
|
|
|
728
|
|
|
* :math:`RH` is relative humidity |
729
|
|
|
* :math:`e` is vapor pressure from the wet psychrometric calculation |
730
|
|
|
* :math:`e_s` is the saturation vapor pressure |
731
|
|
|
|
732
|
|
|
See Also |
733
|
|
|
-------- |
734
|
|
|
psychrometric_vapor_pressure_wet, saturation_vapor_pressure |
735
|
|
|
|
736
|
|
|
""" |
737
|
|
|
return (100 * units.percent * psychrometric_vapor_pressure_wet(dry_bulb_temperature, |
738
|
|
|
web_bulb_temperature, pressure, **kwargs) / |
739
|
|
|
saturation_vapor_pressure(dry_bulb_temperature)) |
740
|
|
|
|
741
|
|
|
|
742
|
|
|
@exporter.export |
743
|
|
|
@check_units('[temperature]', '[temperature]', '[pressure]') |
744
|
|
|
def psychrometric_vapor_pressure_wet(dry_bulb_temperature, wet_bulb_temperature, pressure, |
745
|
|
|
psychrometer_coefficient=6.21e-4 / units.kelvin): |
746
|
|
|
r"""Calculate the vapor pressure with wet bulb and dry bulb temperatures. |
747
|
|
|
|
748
|
|
|
This uses a psychrometric relationship as outlined in [WMO8-2014]_, with |
749
|
|
|
coefficients from [Fan1987]_. |
750
|
|
|
|
751
|
|
|
Parameters |
752
|
|
|
---------- |
753
|
|
|
dry_bulb_temperature: `pint.Quantity` |
754
|
|
|
Dry bulb temperature |
755
|
|
|
wet_bulb_temperature: `pint.Quantity` |
756
|
|
|
Wet bulb temperature |
757
|
|
|
pressure: `pint.Quantity` |
758
|
|
|
Total atmospheric pressure |
759
|
|
|
psychrometer_coefficient: `pint.Quantity`, optional |
760
|
|
|
Psychrometer coefficient. Defaults to 6.21e-4 K^-1. |
761
|
|
|
|
762
|
|
|
Returns |
763
|
|
|
------- |
764
|
|
|
`pint.Quantity` |
765
|
|
|
Vapor pressure |
766
|
|
|
|
767
|
|
|
Notes |
768
|
|
|
----- |
769
|
|
|
.. math:: e' = e'_w(T_w) - A p (T - T_w) |
770
|
|
|
|
771
|
|
|
* :math:`e'` is vapor pressure |
772
|
|
|
* :math:`e'_w(T_w)` is the saturation vapor pressure with respect to water at temperature |
773
|
|
|
:math:`T_w` |
774
|
|
|
* :math:`p` is the pressure of the wet bulb |
775
|
|
|
* :math:`T` is the temperature of the dry bulb |
776
|
|
|
* :math:`T_w` is the temperature of the wet bulb |
777
|
|
|
* :math:`A` is the psychrometer coefficient |
778
|
|
|
|
779
|
|
|
Psychrometer coefficient depends on the specific instrument being used and the ventilation |
780
|
|
|
of the instrument. |
781
|
|
|
|
782
|
|
|
See Also |
783
|
|
|
-------- |
784
|
|
|
saturation_vapor_pressure |
785
|
|
|
|
786
|
|
|
""" |
787
|
|
|
return (saturation_vapor_pressure(wet_bulb_temperature) - psychrometer_coefficient * |
788
|
|
|
pressure * (dry_bulb_temperature - wet_bulb_temperature).to('kelvin')) |
789
|
|
|
|
790
|
|
|
|
791
|
|
|
@exporter.export |
792
|
|
|
@check_units('[dimensionless]', '[temperature]', '[pressure]') |
793
|
|
|
def relative_humidity_from_mixing_ratio(mixing_ratio, temperature, pressure): |
794
|
|
|
r"""Calculate the relative humidity from mixing ratio, temperature, and pressure. |
795
|
|
|
|
796
|
|
|
Parameters |
797
|
|
|
---------- |
798
|
|
|
mixing_ratio: `pint.Quantity` |
799
|
|
|
Dimensionless mass mixing ratio |
800
|
|
|
temperature: `pint.Quantity` |
801
|
|
|
Air temperature |
802
|
|
|
pressure: `pint.Quantity` |
803
|
|
|
Total atmospheric pressure |
804
|
|
|
|
805
|
|
|
Returns |
806
|
|
|
------- |
807
|
|
|
`pint.Quantity` |
808
|
|
|
Relative humidity |
809
|
|
|
|
810
|
|
|
Notes |
811
|
|
|
----- |
812
|
|
|
Formula from [Hobbs1977]_ pg. 74. |
813
|
|
|
|
814
|
|
|
.. math:: RH = 100 \frac{w}{w_s} |
815
|
|
|
|
816
|
|
|
* :math:`RH` is relative humidity |
817
|
|
|
* :math:`w` is mxing ratio |
818
|
|
|
* :math:`w_s` is the saturation mixing ratio |
819
|
|
|
|
820
|
|
|
See Also |
821
|
|
|
-------- |
822
|
|
|
saturation_mixing_ratio |
823
|
|
|
|
824
|
|
|
""" |
825
|
|
|
return (100 * units.percent * |
826
|
|
|
mixing_ratio / saturation_mixing_ratio(pressure, temperature)) |
827
|
|
|
|
828
|
|
|
|
829
|
|
|
@exporter.export |
830
|
|
|
@check_units('[dimensionless]') |
831
|
|
|
def mixing_ratio_from_specific_humidity(specific_humidity): |
832
|
|
|
r"""Calculate the mixing ratio from specific humidity. |
833
|
|
|
|
834
|
|
|
Parameters |
835
|
|
|
---------- |
836
|
|
|
specific_humidity: `pint.Quantity` |
837
|
|
|
Specific humidity of air |
838
|
|
|
|
839
|
|
|
Returns |
840
|
|
|
------- |
841
|
|
|
`pint.Quantity` |
842
|
|
|
Mixing ratio |
843
|
|
|
|
844
|
|
|
Notes |
845
|
|
|
----- |
846
|
|
|
Formula from [Salby1996]_ pg. 118. |
847
|
|
|
|
848
|
|
|
.. math:: w = \frac{q}{1-q} |
849
|
|
|
|
850
|
|
|
* :math:`w` is mxing ratio |
851
|
|
|
* :math:`q` is the specific humidity |
852
|
|
|
|
853
|
|
|
See Also |
854
|
|
|
-------- |
855
|
|
|
mixing_ratio |
856
|
|
|
|
857
|
|
|
""" |
858
|
|
|
return specific_humidity / (1 - specific_humidity) |
859
|
|
|
|
860
|
|
|
|
861
|
|
|
@exporter.export |
862
|
|
|
@check_units('[dimensionless]', '[temperature]', '[pressure]') |
863
|
|
|
def relative_humidity_from_specific_humidity(specific_humidity, temperature, pressure): |
864
|
|
|
r"""Calculate the relative humidity from specific humidity, temperature, and pressure. |
865
|
|
|
|
866
|
|
|
Parameters |
867
|
|
|
---------- |
868
|
|
|
specific_humidity: `pint.Quantity` |
869
|
|
|
Specific humidity of air |
870
|
|
|
temperature: `pint.Quantity` |
871
|
|
|
Air temperature |
872
|
|
|
pressure: `pint.Quantity` |
873
|
|
|
Total atmospheric pressure |
874
|
|
|
|
875
|
|
|
Returns |
876
|
|
|
------- |
877
|
|
|
`pint.Quantity` |
878
|
|
|
Relative humidity |
879
|
|
|
|
880
|
|
|
Notes |
881
|
|
|
----- |
882
|
|
|
Formula from [Hobbs1977]_ pg. 74. and [Salby1996]_ pg. 118. |
883
|
|
|
|
884
|
|
|
.. math:: RH = 100 \frac{q}{(1-q)w_s} |
885
|
|
|
|
886
|
|
|
* :math:`RH` is relative humidity |
887
|
|
|
* :math:`q` is specific humidity |
888
|
|
|
* :math:`w_s` is the saturation mixing ratio |
889
|
|
|
|
890
|
|
|
See Also |
891
|
|
|
-------- |
892
|
|
|
relative_humidity_from_mixing_ratio |
893
|
|
|
|
894
|
|
|
""" |
895
|
|
|
return (100 * units.percent * |
896
|
|
|
mixing_ratio_from_specific_humidity(specific_humidity) / |
897
|
|
|
saturation_mixing_ratio(pressure, temperature)) |
898
|
|
|
|
899
|
|
|
|
900
|
|
|
@exporter.export |
901
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]', '[temperature]') |
902
|
|
|
def cape_cin(pressure, temperature, dewpt, parcel_profile): |
903
|
|
|
r"""Calculate CAPE and CIN. |
904
|
|
|
|
905
|
|
|
Calculate the convective available potential energy (CAPE) and convective inhibition (CIN) |
906
|
|
|
of a given upper air profile and parcel path. CIN is integrated between the surface and |
907
|
|
|
LFC, CAPE is integrated between the LFC and EL (or top of sounding). Intersection points of |
908
|
|
|
the measured temperature profile and parcel profile are linearly interpolated. |
909
|
|
|
|
910
|
|
|
Parameters |
911
|
|
|
---------- |
912
|
|
|
pressure : `pint.Quantity` |
913
|
|
|
The atmospheric pressure level(s) of interest. The first entry should be the starting |
914
|
|
|
point pressure. |
915
|
|
|
temperature : `pint.Quantity` |
916
|
|
|
The atmospheric temperature corresponding to pressure. |
917
|
|
|
dewpt : `pint.Quantity` |
918
|
|
|
The atmospheric dew point corresponding to pressure. |
919
|
|
|
parcel_profile : `pint.Quantity` |
920
|
|
|
The temperature profile of the parcel |
921
|
|
|
|
922
|
|
|
Returns |
923
|
|
|
------- |
924
|
|
|
`pint.Quantity` |
925
|
|
|
Convective available potential energy (CAPE). |
926
|
|
|
`pint.Quantity` |
927
|
|
|
Convective inhibition (CIN). |
928
|
|
|
|
929
|
|
|
Notes |
930
|
|
|
----- |
931
|
|
|
Formula adopted from [Hobbs1977]_. |
932
|
|
|
|
933
|
|
|
.. math:: \text{CAPE} = -R_d \int_{LFC}^{EL} (T_{parcel} - T_{env}) d\text{ln}(p) |
934
|
|
|
|
935
|
|
|
.. math:: \text{CIN} = -R_d \int_{SFC}^{LFC} (T_{parcel} - T_{env}) d\text{ln}(p) |
936
|
|
|
|
937
|
|
|
|
938
|
|
|
* :math:`CAPE` Convective available potential energy |
939
|
|
|
* :math:`CIN` Convective inhibition |
940
|
|
|
* :math:`LFC` Pressure of the level of free convection |
941
|
|
|
* :math:`EL` Pressure of the equilibrium level |
942
|
|
|
* :math:`SFC` Level of the surface or beginning of parcel path |
943
|
|
|
* :math:`R_d` Gas constant |
944
|
|
|
* :math:`g` Gravitational acceleration |
945
|
|
|
* :math:`T_{parcel}` Parcel temperature |
946
|
|
|
* :math:`T_{env}` Environment temperature |
947
|
|
|
* :math:`p` Atmospheric pressure |
948
|
|
|
|
949
|
|
|
See Also |
950
|
|
|
-------- |
951
|
|
|
lfc, el |
952
|
|
|
|
953
|
|
|
""" |
954
|
|
|
# Calculate LFC limit of integration |
955
|
|
|
lfc_pressure = lfc(pressure, temperature, dewpt)[0] |
956
|
|
|
|
957
|
|
|
# If there is no LFC, no need to proceed. |
958
|
|
|
if np.isnan(lfc_pressure): |
959
|
|
|
return 0 * units('J/kg'), 0 * units('J/kg') |
960
|
|
|
else: |
961
|
|
|
lfc_pressure = lfc_pressure.magnitude |
962
|
|
|
|
963
|
|
|
# Calculate the EL limit of integration |
964
|
|
|
el_pressure = el(pressure, temperature, dewpt)[0] |
965
|
|
|
|
966
|
|
|
# No EL and we use the top reading of the sounding. |
967
|
|
|
if np.isnan(el_pressure): |
968
|
|
|
el_pressure = pressure[-1].magnitude |
969
|
|
|
else: |
970
|
|
|
el_pressure = el_pressure.magnitude |
971
|
|
|
|
972
|
|
|
# Difference between the parcel path and measured temperature profiles |
973
|
|
|
y = (parcel_profile - temperature).to(units.degK) |
974
|
|
|
|
975
|
|
|
# Estimate zero crossings |
976
|
|
|
x, y = _find_append_zero_crossings(np.copy(pressure), y) |
977
|
|
|
|
978
|
|
|
# CAPE (temperature parcel < temperature environment) |
979
|
|
|
# Only use data between the LFC and EL for calculation |
980
|
|
|
p_mask = _less_or_close(x, lfc_pressure) & _greater_or_close(x, el_pressure) |
981
|
|
|
x_clipped = x[p_mask] |
982
|
|
|
y_clipped = y[p_mask] |
983
|
|
|
|
984
|
|
|
y_clipped[_less_or_close(y_clipped, 0 * units.degK)] = 0 * units.degK |
985
|
|
|
cape = (Rd * (np.trapz(y_clipped, np.log(x_clipped)) * units.degK)).to(units('J/kg')) |
986
|
|
|
|
987
|
|
|
# CIN (temperature parcel < temperature environment) |
988
|
|
|
# Only use data between the surface and LFC for calculation |
989
|
|
|
p_mask = _greater_or_close(x, lfc_pressure) |
990
|
|
|
x_clipped = x[p_mask] |
991
|
|
|
y_clipped = y[p_mask] |
992
|
|
|
|
993
|
|
|
y_clipped[_greater_or_close(y_clipped, 0 * units.degK)] = 0 * units.degK |
994
|
|
|
cin = (Rd * (np.trapz(y_clipped, np.log(x_clipped)) * units.degK)).to(units('J/kg')) |
995
|
|
|
|
996
|
|
|
return cape, cin |
997
|
|
|
|
998
|
|
|
|
999
|
|
|
def _find_append_zero_crossings(x, y): |
1000
|
|
|
r""" |
1001
|
|
|
Find and interpolate zero crossings. |
1002
|
|
|
|
1003
|
|
|
Estimate the zero crossings of an x,y series and add estimated crossings to series, |
1004
|
|
|
returning a sorted array with no duplicate values. |
1005
|
|
|
|
1006
|
|
|
Parameters |
1007
|
|
|
---------- |
1008
|
|
|
x : `pint.Quantity` |
1009
|
|
|
x values of data |
1010
|
|
|
y : `pint.Quantity` |
1011
|
|
|
y values of data |
1012
|
|
|
|
1013
|
|
|
Returns |
1014
|
|
|
------- |
1015
|
|
|
x : `pint.Quantity` |
1016
|
|
|
x values of data |
1017
|
|
|
y : `pint.Quantity` |
1018
|
|
|
y values of data |
1019
|
|
|
|
1020
|
|
|
""" |
1021
|
|
|
# Find and append crossings to the data |
1022
|
|
|
crossings = find_intersections(x[1:], y[1:], np.zeros_like(y[1:]) * y.units) |
1023
|
|
|
x = concatenate((x, crossings[0])) |
1024
|
|
|
y = concatenate((y, crossings[1])) |
1025
|
|
|
|
1026
|
|
|
# Resort so that data are in order |
1027
|
|
|
sort_idx = np.argsort(x) |
1028
|
|
|
x = x[sort_idx] |
1029
|
|
|
y = y[sort_idx] |
1030
|
|
|
|
1031
|
|
|
# Remove duplicate data points if there are any |
1032
|
|
|
keep_idx = np.ediff1d(x, to_end=[1]) > 0 |
1033
|
|
|
x = x[keep_idx] |
1034
|
|
|
y = y[keep_idx] |
1035
|
|
|
return x, y |
1036
|
|
|
|
1037
|
|
|
|
1038
|
|
|
@exporter.export |
1039
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
1040
|
|
|
def most_unstable_parcel(pressure, temperature, dewpoint, heights=None, |
1041
|
|
|
bottom=None, depth=300 * units.hPa): |
1042
|
|
|
""" |
1043
|
|
|
Determine the most unstable parcel in a layer. |
1044
|
|
|
|
1045
|
|
|
Determines the most unstable parcel of air by calculating the equivalent |
1046
|
|
|
potential temperature and finding its maximum in the specified layer. |
1047
|
|
|
|
1048
|
|
|
Parameters |
1049
|
|
|
---------- |
1050
|
|
|
pressure: `pint.Quantity` |
1051
|
|
|
Atmospheric pressure profile |
1052
|
|
|
temperature: `pint.Quantity` |
1053
|
|
|
Atmospheric temperature profile |
1054
|
|
|
dewpoint: `pint.Quantity` |
1055
|
|
|
Atmospheric dewpoint profile |
1056
|
|
|
heights: `pint.Quantity`, optional |
1057
|
|
|
Atmospheric height profile. Standard atmosphere assumed when None (the default). |
1058
|
|
|
bottom: `pint.Quantity`, optional |
1059
|
|
|
Bottom of the layer to consider for the calculation in pressure or height. |
1060
|
|
|
Defaults to using the bottom pressure or height. |
1061
|
|
|
depth: `pint.Quantity`, optional |
1062
|
|
|
Depth of the layer to consider for the calculation in pressure or height. Defaults |
1063
|
|
|
to 300 hPa. |
1064
|
|
|
|
1065
|
|
|
Returns |
1066
|
|
|
------- |
1067
|
|
|
`pint.Quantity` |
1068
|
|
|
Pressure, temperature, and dew point of most unstable parcel in the profile. |
1069
|
|
|
integer |
1070
|
|
|
Index of the most unstable parcel in the given profile |
1071
|
|
|
|
1072
|
|
|
See Also |
1073
|
|
|
-------- |
1074
|
|
|
get_layer |
1075
|
|
|
|
1076
|
|
|
""" |
1077
|
|
|
p_layer, T_layer, Td_layer = get_layer(pressure, temperature, dewpoint, bottom=bottom, |
1078
|
|
|
depth=depth, heights=heights, interpolate=False) |
1079
|
|
|
theta_e = equivalent_potential_temperature(p_layer, T_layer, Td_layer) |
1080
|
|
|
max_idx = np.argmax(theta_e) |
1081
|
|
|
return p_layer[max_idx], T_layer[max_idx], Td_layer[max_idx], max_idx |
1082
|
|
|
|
1083
|
|
|
|
1084
|
|
|
@exporter.export |
1085
|
|
|
@check_units('[temperature]', '[pressure]', '[temperature]') |
1086
|
|
|
def isentropic_interpolation(theta_levels, pressure, temperature, *args, **kwargs): |
1087
|
|
|
r"""Interpolate data in isobaric coordinates to isentropic coordinates. |
1088
|
|
|
|
1089
|
|
|
Parameters |
1090
|
|
|
---------- |
1091
|
|
|
theta_levels : array |
1092
|
|
|
One-dimensional array of desired theta surfaces |
1093
|
|
|
pressure : array |
1094
|
|
|
One-dimensional array of pressure levels |
1095
|
|
|
temperature : array |
1096
|
|
|
Array of temperature |
1097
|
|
|
args : array, optional |
1098
|
|
|
Any additional variables will be interpolated to each isentropic level. |
1099
|
|
|
|
1100
|
|
|
Returns |
1101
|
|
|
------- |
1102
|
|
|
list |
1103
|
|
|
List with pressure at each isentropic level, followed by each additional |
1104
|
|
|
argument interpolated to isentropic coordinates. |
1105
|
|
|
|
1106
|
|
|
Other Parameters |
1107
|
|
|
---------------- |
1108
|
|
|
axis : int, optional |
1109
|
|
|
The axis corresponding to the vertical in the temperature array, defaults to 0. |
1110
|
|
|
tmpk_out : bool, optional |
1111
|
|
|
If true, will calculate temperature and output as the last item in the output list. |
1112
|
|
|
Defaults to False. |
1113
|
|
|
max_iters : int, optional |
1114
|
|
|
The maximum number of iterations to use in calculation, defaults to 50. |
1115
|
|
|
eps : float, optional |
1116
|
|
|
The desired absolute error in the calculated value, defaults to 1e-6. |
1117
|
|
|
|
1118
|
|
|
Notes |
1119
|
|
|
----- |
1120
|
|
|
Input variable arrays must have the same number of vertical levels as the pressure levels |
1121
|
|
|
array. Pressure is calculated on isentropic surfaces by assuming that temperature varies |
1122
|
|
|
linearly with the natural log of pressure. Linear interpolation is then used in the |
1123
|
|
|
vertical to find the pressure at each isentropic level. Interpolation method from |
1124
|
|
|
[Ziv1994]_. Any additional arguments are assumed to vary linearly with temperature and will |
1125
|
|
|
be linearly interpolated to the new isentropic levels. |
1126
|
|
|
|
1127
|
|
|
See Also |
1128
|
|
|
-------- |
1129
|
|
|
potential_temperature |
1130
|
|
|
|
1131
|
|
|
""" |
1132
|
|
|
# iteration function to be used later |
1133
|
|
|
# Calculates theta from linearly interpolated temperature and solves for pressure |
1134
|
|
|
def _isen_iter(iter_log_p, isentlevs_nd, ka, a, b, pok): |
1135
|
|
|
exner = pok * np.exp(-ka * iter_log_p) |
1136
|
|
|
t = a * iter_log_p + b |
1137
|
|
|
# Newton-Raphson iteration |
1138
|
|
|
f = isentlevs_nd - t * exner |
1139
|
|
|
fp = exner * (ka * t - a) |
1140
|
|
|
return iter_log_p - (f / fp) |
1141
|
|
|
|
1142
|
|
|
# Change when Python 2.7 no longer supported |
1143
|
|
|
# Pull out keyword arguments |
1144
|
|
|
tmpk_out = kwargs.pop('tmpk_out', False) |
1145
|
|
|
max_iters = kwargs.pop('max_iters', 50) |
1146
|
|
|
eps = kwargs.pop('eps', 1e-6) |
1147
|
|
|
axis = kwargs.pop('axis', 0) |
1148
|
|
|
|
1149
|
|
|
# Get dimensions in temperature |
1150
|
|
|
ndim = temperature.ndim |
1151
|
|
|
|
1152
|
|
|
# Convert units |
1153
|
|
|
pres = pressure.to('hPa') |
1154
|
|
|
temperature = temperature.to('kelvin') |
1155
|
|
|
|
1156
|
|
|
slices = [np.newaxis] * ndim |
1157
|
|
|
slices[axis] = slice(None) |
1158
|
|
|
pres = pres[slices] |
1159
|
|
|
pres = np.broadcast_to(pres, temperature.shape) * pres.units |
1160
|
|
|
|
1161
|
|
|
# Sort input data |
1162
|
|
|
sort_pres = np.argsort(pres.m, axis=axis) |
1163
|
|
|
sort_pres = np.swapaxes(np.swapaxes(sort_pres, 0, axis)[::-1], 0, axis) |
1164
|
|
|
sorter = broadcast_indices(pres, sort_pres, ndim, axis) |
1165
|
|
|
levs = pres[sorter] |
1166
|
|
|
theta_levels = np.asanyarray(theta_levels.to('kelvin')).reshape(-1) |
1167
|
|
|
sort_isentlevs = np.argsort(theta_levels) |
1168
|
|
|
tmpk = temperature[sorter] |
1169
|
|
|
isentlevels = theta_levels[sort_isentlevs] |
1170
|
|
|
|
1171
|
|
|
# Make the desired isentropic levels the same shape as temperature |
1172
|
|
|
isentlevs_nd = isentlevels |
1173
|
|
|
isentlevs_nd = isentlevs_nd[slices] |
1174
|
|
|
shape = list(temperature.shape) |
1175
|
|
|
shape[axis] = isentlevels.size |
1176
|
|
|
isentlevs_nd = np.broadcast_to(isentlevs_nd, shape) |
1177
|
|
|
|
1178
|
|
|
# exponent to Poisson's Equation, which is imported above |
1179
|
|
|
ka = kappa.to('dimensionless').m |
1180
|
|
|
|
1181
|
|
|
# calculate theta for each point |
1182
|
|
|
pres_theta = potential_temperature(levs, tmpk) |
1183
|
|
|
|
1184
|
|
|
# Raise error if input theta level is larger than pres_theta max |
1185
|
|
|
if np.max(pres_theta.m) < np.max(theta_levels): |
1186
|
|
|
raise ValueError('Input theta level out of data bounds') |
1187
|
|
|
|
1188
|
|
|
# Find log of pressure to implement assumption of linear temperature dependence on |
1189
|
|
|
# ln(p) |
1190
|
|
|
log_p = np.log(levs.m) |
1191
|
|
|
|
1192
|
|
|
# Calculations for interpolation routine |
1193
|
|
|
pok = P0 ** ka |
1194
|
|
|
|
1195
|
|
|
# index values for each point for the pressure level nearest to the desired theta level |
1196
|
|
|
minv = np.apply_along_axis(np.searchsorted, axis, pres_theta.m, theta_levels) |
1197
|
|
|
|
1198
|
|
|
# Create index values for broadcasting arrays |
1199
|
|
|
above = broadcast_indices(tmpk, minv, ndim, axis) |
1200
|
|
|
below = broadcast_indices(tmpk, minv - 1, ndim, axis) |
1201
|
|
|
|
1202
|
|
|
# calculate constants for the interpolation |
1203
|
|
|
a = (tmpk.m[above] - tmpk.m[below]) / (log_p[above] - log_p[below]) |
1204
|
|
|
b = tmpk.m[above] - a * log_p[above] |
1205
|
|
|
|
1206
|
|
|
# calculate first guess for interpolation |
1207
|
|
|
first_guess = 0.5 * (log_p[above] + log_p[below]) |
1208
|
|
|
|
1209
|
|
|
# iterative interpolation using scipy.optimize.fixed_point and _isen_iter defined above |
1210
|
|
|
log_p_solved = so.fixed_point(_isen_iter, first_guess, args=(isentlevs_nd, ka, a, b, |
1211
|
|
|
pok.m), |
1212
|
|
|
xtol=eps, maxiter=max_iters) |
1213
|
|
|
|
1214
|
|
|
# get back pressure and assign nan for values with pressure greater than 1000 hPa |
1215
|
|
|
isentprs = np.exp(log_p_solved) |
1216
|
|
|
isentprs[isentprs > np.max(pressure.m)] = np.nan |
1217
|
|
|
|
1218
|
|
|
# create list for storing output data |
1219
|
|
|
ret = [] |
1220
|
|
|
ret.append(isentprs * units.hPa) |
1221
|
|
|
|
1222
|
|
|
# if tmpk_out = true, calculate temperature and output as last item in list |
1223
|
|
|
if tmpk_out: |
1224
|
|
|
ret.append((isentlevs_nd / ((P0.m / isentprs) ** ka)) * units.kelvin) |
1225
|
|
|
|
1226
|
|
|
# check to see if any additional arguments were given, if so, interpolate to |
1227
|
|
|
# new isentropic levels |
1228
|
|
|
try: |
1229
|
|
|
args[0] |
1230
|
|
|
except IndexError: |
1231
|
|
|
return ret |
1232
|
|
|
else: |
1233
|
|
|
# do an interpolation for each additional argument |
1234
|
|
|
for arr in args: |
1235
|
|
|
var = arr[sorter] |
1236
|
|
|
# interpolate to isentropic levels and add to temporary output array |
1237
|
|
|
arg_out = interp(isentlevels, pres_theta.m, var, axis=axis) |
1238
|
|
|
ret.append(arg_out) |
1239
|
|
|
|
1240
|
|
|
# output values as a list |
1241
|
|
|
return ret |
1242
|
|
|
|
1243
|
|
|
|
1244
|
|
|
@exporter.export |
1245
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
1246
|
|
|
def surface_based_cape_cin(pressure, temperature, dewpoint): |
1247
|
|
|
r"""Calculate surface-based CAPE and CIN. |
1248
|
|
|
|
1249
|
|
|
Calculate the convective available potential energy (CAPE) and convective inhibition (CIN) |
1250
|
|
|
of a given upper air profile for a surface-based parcel. CIN is integrated |
1251
|
|
|
between the surface and LFC, CAPE is integrated between the LFC and EL (or top of |
1252
|
|
|
sounding). Intersection points of the measured temperature profile and parcel profile are |
1253
|
|
|
linearly interpolated. |
1254
|
|
|
|
1255
|
|
|
Parameters |
1256
|
|
|
---------- |
1257
|
|
|
pressure : `pint.Quantity` |
1258
|
|
|
Atmospheric pressure profile. The first entry should be the starting |
1259
|
|
|
(surface) observation. |
1260
|
|
|
temperature : `pint.Quantity` |
1261
|
|
|
Temperature profile |
1262
|
|
|
dewpoint : `pint.Quantity` |
1263
|
|
|
Dewpoint profile |
1264
|
|
|
|
1265
|
|
|
Returns |
1266
|
|
|
------- |
1267
|
|
|
`pint.Quantity` |
1268
|
|
|
Surface based Convective Available Potential Energy (CAPE). |
1269
|
|
|
`pint.Quantity` |
1270
|
|
|
Surface based Convective INhibition (CIN). |
1271
|
|
|
|
1272
|
|
|
See Also |
1273
|
|
|
-------- |
1274
|
|
|
cape_cin, parcel_profile |
1275
|
|
|
|
1276
|
|
|
""" |
1277
|
|
|
profile = parcel_profile(pressure, temperature[0], dewpoint[0]) |
1278
|
|
|
return cape_cin(pressure, temperature, dewpoint, profile) |
1279
|
|
|
|
1280
|
|
|
|
1281
|
|
|
@exporter.export |
1282
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
1283
|
|
|
def most_unstable_cape_cin(pressure, temperature, dewpoint, **kwargs): |
1284
|
|
|
r"""Calculate most unstable CAPE/CIN. |
1285
|
|
|
|
1286
|
|
|
Calculate the convective available potential energy (CAPE) and convective inhibition (CIN) |
1287
|
|
|
of a given upper air profile and most unstable parcel path. CIN is integrated between the |
1288
|
|
|
surface and LFC, CAPE is integrated between the LFC and EL (or top of sounding). |
1289
|
|
|
Intersection points of the measured temperature profile and parcel profile are linearly |
1290
|
|
|
interpolated. |
1291
|
|
|
|
1292
|
|
|
Parameters |
1293
|
|
|
---------- |
1294
|
|
|
pressure : `pint.Quantity` |
1295
|
|
|
Pressure profile |
1296
|
|
|
temperature : `pint.Quantity` |
1297
|
|
|
Temperature profile |
1298
|
|
|
dewpoint : `pint.Quantity` |
1299
|
|
|
Dewpoint profile |
1300
|
|
|
|
1301
|
|
|
Returns |
1302
|
|
|
------- |
1303
|
|
|
`pint.Quantity` |
1304
|
|
|
Most unstable Convective Available Potential Energy (CAPE). |
1305
|
|
|
`pint.Quantity` |
1306
|
|
|
Most unstable Convective INhibition (CIN). |
1307
|
|
|
|
1308
|
|
|
See Also |
1309
|
|
|
-------- |
1310
|
|
|
cape_cin, most_unstable_parcel, parcel_profile |
1311
|
|
|
|
1312
|
|
|
""" |
1313
|
|
|
_, parcel_temperature, parcel_dewpoint, parcel_idx = most_unstable_parcel(pressure, |
1314
|
|
|
temperature, |
1315
|
|
|
dewpoint, |
1316
|
|
|
**kwargs) |
1317
|
|
|
mu_profile = parcel_profile(pressure[parcel_idx:], parcel_temperature, parcel_dewpoint) |
1318
|
|
|
return cape_cin(pressure[parcel_idx:], temperature[parcel_idx:], |
1319
|
|
|
dewpoint[parcel_idx:], mu_profile) |
1320
|
|
|
|