Completed
Pull Request — master (#487)
by
unknown
58s
created

precipitable_water()   B

Complexity

Conditions 1

Size

Total Lines 38

Duplication

Lines 0
Ratio 0 %

Importance

Changes 1
Bugs 0 Features 1
Metric Value
cc 1
c 1
b 0
f 1
dl 0
loc 38
rs 8.8571
1
# Copyright (c) 2008-2017 MetPy Developers.
2
# Distributed under the terms of the BSD 3-Clause License.
3
# SPDX-License-Identifier: BSD-3-Clause
4
"""Contains calculation of various derived indicies."""
5
import numpy as np
6
7
from .thermo import mixing_ratio, saturation_vapor_pressure
8
from .tools import get_layer
9
from ..constants import g, rho_l
10
from ..package_tools import Exporter
11
from ..units import check_units, units
12
13
exporter = Exporter(globals())
14
15
16
@exporter.export
17
@check_units('[temperature]', '[pressure]', '[pressure]')
18
def precipitable_water(dewpt, p, top=400 * units('hPa')):
19
    r"""Calculate precipitable water through the depth of a sounding.
20
21
    Default layer depth is sfc-400 hPa. Formula used is:
22
23
    .. math:: \frac{1}{pg} \int\limits_0^d x \,dp
24
25
    from [Tsonis2008]_, p. 170.
26
27
    Parameters
28
    ----------
29
    dewpt : array-like
30
        Atmospheric dewpoint profile
31
    p : array-like
32
        Atmospheric pressure profile
33
    top: `pint.Quantity`
34
        The top of the layer, specified in pressure.
35
36
    Returns
37
    -------
38
    `pint.Quantity`
39
        The precipitable water in the layer, in inches
40
41
    """
42
    sort_inds = np.argsort(p[::-1])
43
    p = p[sort_inds]
44
    dewpt = dewpt[sort_inds]
45
46
    pres_layer, dewpt_layer = get_layer(p, dewpt, depth=p[0] - top)
47
48
    w = mixing_ratio(saturation_vapor_pressure(dewpt_layer), pres_layer)
49
    # Since pressure is in decreasing order, pw will be the negative of what we want.
50
    # Thus the *-1
51
    pw = -1. * (np.trapz(w.magnitude, pres_layer.magnitude) * (w.units * pres_layer.units) /
52
                (g * rho_l))
53
    return pw.to('millimeters')
54