Completed
Pull Request — master (#355)
by
unknown
01:55
created

test_interpolate_nan_log()   A

Complexity

Conditions 1

Size

Total Lines 8

Duplication

Lines 0
Ratio 0 %

Importance

Changes 1
Bugs 0 Features 0
Metric Value
cc 1
c 1
b 0
f 0
dl 0
loc 8
rs 9.4285
1
# Copyright (c) 2008-2015 MetPy Developers.
2
# Distributed under the terms of the BSD 3-Clause License.
3
# SPDX-License-Identifier: BSD-3-Clause
4
"""Tests for `calc.tools` module."""
5
6
import numpy as np
7
8
from metpy.calc import (find_intersections, interpolate_nans, nearest_intersection_idx,
9
                        resample_nn_1d)
10
from metpy.testing import assert_array_almost_equal, assert_array_equal
11
12
13
def test_resample_nn():
14
    """Test 1d nearest neighbor functionality."""
15
    a = np.arange(5.)
16
    b = np.array([2, 3.8])
17
    truth = np.array([2, 4])
18
19
    assert_array_equal(truth, resample_nn_1d(a, b))
20
21
22
def test_nearest_intersection_idx():
23
    """Test nearest index to intersection functionality."""
24
    x = np.linspace(5, 30, 17)
25
    y1 = 3 * x**2
26
    y2 = 100 * x - 650
27
    truth = np.array([2, 12])
28
29
    assert_array_equal(truth, nearest_intersection_idx(y1, y2))
30
31
32
def test_find_intersections():
33
    """Test finding the intersection of two curves functionality."""
34
    x = np.linspace(5, 30, 17)
35
    y1 = 3 * x**2
36
    y2 = 100 * x - 650
37
    # Truth is what we will get with this sampling,
38
    # not the mathematical intersection
39
    truth = np.array([[8.88, 24.44],
40
                      [238.84, 1794.53]])
41
42
    assert_array_almost_equal(truth, find_intersections(x, y1, y2), 2)
43
44
45
def test_interpolate_nan_linear():
46
    """Test linear interpolation of arrays with NaNs in the y-coordinate."""
47
    x = np.linspace(0, 20, 15)
48
    y = 5 * x + 3
49
    nan_indexes = [1, 5, 11, 12]
50
    y_with_nan = y.copy()
51
    y_with_nan[nan_indexes] = np.nan
52
    assert_array_almost_equal(y, interpolate_nans(x, y_with_nan), 2)
53
54
55
def test_interpolate_nan_log():
56
    """Test log interpolation of arrays with NaNs in the y-coordinate."""
57
    x = np.logspace(1, 5, 15)
58
    y = 5 * np.log(x) + 3
59
    nan_indexes = [1, 5, 11, 12]
60
    y_with_nan = y.copy()
61
    y_with_nan[nan_indexes] = np.nan
62
    assert_array_almost_equal(y, interpolate_nans(x, y_with_nan, kind='log'), 2)
63