Completed
Pull Request — master (#515)
by
unknown
01:05
created

mean_wind_pressure_weighted()   B

Complexity

Conditions 1

Size

Total Lines 43

Duplication

Lines 0
Ratio 0 %

Importance

Changes 1
Bugs 0 Features 0
Metric Value
cc 1
c 1
b 0
f 0
dl 0
loc 43
rs 8.8571
1
# Copyright (c) 2008-2017 MetPy Developers.
2
# Distributed under the terms of the BSD 3-Clause License.
3
# SPDX-License-Identifier: BSD-3-Clause
4
"""Contains calculation of various derived indicies."""
5
import numpy as np
6
7
from .thermo import mixing_ratio, saturation_vapor_pressure
8
from .tools import get_layer
9
from ..constants import g, rho_l
10
from ..package_tools import Exporter
11
from ..units import check_units, units
12
13
exporter = Exporter(globals())
14
15
16
@exporter.export
17
@check_units('[temperature]', '[pressure]', '[pressure]')
18
def precipitable_water(dewpt, p, top=400 * units('hPa')):
19
    r"""Calculate precipitable water through the depth of a sounding.
20
21
    Default layer depth is sfc-400 hPa. Formula used is:
22
23
    .. math:: \frac{1}{pg} \int\limits_0^d x \,dp
24
25
    from [Tsonis2008]_, p. 170.
26
27
    Parameters
28
    ----------
29
    dewpt : array-like
30
        Atmospheric dewpoint profile
31
    p : array-like
32
        Atmospheric pressure profile
33
    top: `pint.Quantity`
34
        The top of the layer, specified in pressure.
35
36
    Returns
37
    -------
38
    `pint.Quantity`
39
        The precipitable water in the layer, in inches
40
41
    """
42
    sort_inds = np.argsort(p[::-1])
43
    p = p[sort_inds]
44
    dewpt = dewpt[sort_inds]
45
46
    pres_layer, dewpt_layer = get_layer(p, dewpt, depth=p[0] - top)
47
48
    w = mixing_ratio(saturation_vapor_pressure(dewpt_layer), pres_layer)
49
    # Since pressure is in decreasing order, pw will be the negative of what we want.
50
    # Thus the *-1
51
    pw = -1. * (np.trapz(w.magnitude, pres_layer.magnitude) * (w.units * pres_layer.units) /
52
                (g * rho_l))
53
    return pw.to('millimeters')
54
55
56
@exporter.export
57
@check_units('[speed]', '[speed]', '[pressure]', '[length]')
58
def mean_wind_pressure_weighted(u, v, p, hgt=None, depth=None, bottom=None):
59
    r"""Calculate pressure-weighted mean wind through a layer.
60
61
    Layer top and bottom specified in height or pressure.
62
63
    Parameters
64
    ----------
65
    u : `pint.Quantity`
66
        U-component of wind.
67
    v : `pint.Quantity`
68
        V-component of wind.
69
    p : `pint.Quantity`
70
        Atmospheric pressure profile
71
    hgt : `pint.Quantity`
72
        Heights from sounding
73
    depth: `pint.Quantity`
74
        The depth of the layer in meters or hPa.
75
    bottom: `pint.Quantity`
76
        The bottom of the layer in either the provided height coordinate
77
        or in pressure. Don't provide in meters AGL unless the provided
78
        height coordinate is meters AGL. Default is the first observation,
79
        assumed to be the surface.
80
81
    Returns
82
    -------
83
    `pint.Quantity`
84
        u_mean: u-component of layer mean wind, in m/s
85
    `pint.Quantity`
86
        v_mean: v-component of layer mean wind, in m/s
87
88
    """
89
    u = u.to('meters/second')
90
    v = v.to('meters/second')
91
    layer_p, layer_u, layer_v = get_layer(p, u, v, heights=hgt, bottom=bottom, depth=depth)
92
93
    u_mean = (np.trapz(layer_u * layer_p, x=layer_p) /
94
              np.trapz(layer_p, x=layer_p) * units('m/s'))
95
    v_mean = (np.trapz(layer_v * layer_p, x=layer_p) /
96
              np.trapz(layer_p, x=layer_p) * units('m/s'))
97
98
    return u_mean, v_mean
99