| 
                    1
                 | 
                                    
                                                     | 
                
                 | 
                # Copyright (c) 2008-2016 MetPy Developers.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    2
                 | 
                                    
                                                     | 
                
                 | 
                # Distributed under the terms of the BSD 3-Clause License.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    3
                 | 
                                    
                                                     | 
                
                 | 
                # SPDX-License-Identifier: BSD-3-Clause  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    4
                 | 
                                    
                                                     | 
                
                 | 
                """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    5
                 | 
                                    
                                                     | 
                
                 | 
                ==================================================  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    6
                 | 
                                    
                                                     | 
                
                 | 
                Inverse Distance Verification: Cressman and Barnes  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    7
                 | 
                                    
                                                     | 
                
                 | 
                ==================================================  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    8
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    9
                 | 
                                    
                                                     | 
                
                 | 
                Compare inverse distance interpolation methods  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    10
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    11
                 | 
                                    
                                                     | 
                
                 | 
                Two popular interpolation schemes that use inverse distance weighting of observations are the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    12
                 | 
                                    
                                                     | 
                
                 | 
                Barnes and Cressman analyses. The Cressman analysis is relatively straightforward and uses  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    13
                 | 
                                    
                                                     | 
                
                 | 
                the ratio between distance of an observation from a grid cell and the maximum allowable  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    14
                 | 
                                    
                                                     | 
                
                 | 
                distance to calculate the relative importance of an observation for calculating an  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    15
                 | 
                                    
                                                     | 
                
                 | 
                interpolation value.  Barnes uses the inverse exponential ratio of each distance between  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    16
                 | 
                                    
                                                     | 
                
                 | 
                an observation and a grid cell and the average spacing of the observations over the domain.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    17
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    18
                 | 
                                    
                                                     | 
                
                 | 
                Algorithmically:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    19
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    20
                 | 
                                    
                                                     | 
                
                 | 
                1. A KDTree data structure is built using the locations of each observation.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    21
                 | 
                                    
                                                     | 
                
                 | 
                2. All observations within a maximum allowable distance of a particular grid cell are found in  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    22
                 | 
                                    
                                                     | 
                
                 | 
                   O(log n) time.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    23
                 | 
                                    
                                                     | 
                
                 | 
                3. Using the weighting rules for Cressman or Barnes analyses, the observations are given a  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    24
                 | 
                                    
                                                     | 
                
                 | 
                   proportional value, primarily based on their distance from the grid cell.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    25
                 | 
                                    
                                                     | 
                
                 | 
                4. The sum of these proportional values is calculated and this value is used as the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    26
                 | 
                                    
                                                     | 
                
                 | 
                   interpolated value.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    27
                 | 
                                    
                                                     | 
                
                 | 
                5. Steps 2 through 4 are repeated for each grid cell.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    28
                 | 
                                    
                                                     | 
                
                 | 
                """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    29
                 | 
                                    
                                                     | 
                
                 | 
                import matplotlib.pyplot as plt  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    30
                 | 
                                    
                                                     | 
                
                 | 
                import numpy as np  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    31
                 | 
                                    
                                                     | 
                
                 | 
                from scipy.spatial import cKDTree  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    32
                 | 
                                    
                                                     | 
                
                 | 
                from scipy.spatial.distance import cdist  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    33
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    34
                 | 
                                    
                                                     | 
                
                 | 
                from metpy.gridding.gridding_functions import calc_kappa  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    35
                 | 
                                    
                                                     | 
                
                 | 
                from metpy.gridding.interpolation import barnes_point, cressman_point  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    36
                 | 
                                    
                                                     | 
                
                 | 
                from metpy.gridding.triangles import dist_2  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    37
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    38
                 | 
                                    
                                                     | 
                
                 | 
                plt.rcParams['figure.figsize'] = (15, 10)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    39
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    40
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    41
                 | 
                                    
                                                     | 
                
                 | 
                def draw_circle(x, y, r, m, label):  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    42
                 | 
                                    
                                                     | 
                
                 | 
                    nx = x + r * np.cos(np.deg2rad(list(range(360))))  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    43
                 | 
                                    
                                                     | 
                
                 | 
                    ny = y + r * np.sin(np.deg2rad(list(range(360))))  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    44
                 | 
                                    
                                                     | 
                
                 | 
                    plt.plot(nx, ny, m, label=label)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    45
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    46
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    47
                 | 
                                    
                                                     | 
                
                 | 
                ###########################################  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    48
                 | 
                                    
                                                     | 
                
                 | 
                # Generate random x and y coordinates, and observation values proportional to x * y.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    49
                 | 
                                    
                                                     | 
                
                 | 
                #  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    50
                 | 
                                    
                                                     | 
                
                 | 
                # Set up two test grid locations at (30, 30) and (60, 60).  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    51
                 | 
                                    
                                                     | 
                
                 | 
                np.random.seed(100)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    52
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    53
                 | 
                                    
                                                     | 
                
                 | 
                pts = np.random.randint(0, 100, (10, 2))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    54
                 | 
                                    
                                                     | 
                
                 | 
                xp = pts[:, 0]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    55
                 | 
                                    
                                                     | 
                
                 | 
                yp = pts[:, 1]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    56
                 | 
                                    
                                                     | 
                
                 | 
                zp = xp * xp / 1000  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    57
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    58
                 | 
                                    
                                                     | 
                
                 | 
                sim_gridx = [30, 60]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    59
                 | 
                                    
                                                     | 
                
                 | 
                sim_gridy = [30, 60]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    60
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    61
                 | 
                                    
                                                     | 
                
                 | 
                ###########################################  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    62
                 | 
                                    
                                                     | 
                
                 | 
                # Set up a cKDTree object and query all of the observations within "radius" of each grid point.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    63
                 | 
                                    
                                                     | 
                
                 | 
                #  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    64
                 | 
                                    
                                                     | 
                
                 | 
                # The variable ``indices`` represents the index of each matched coordinate within the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    65
                 | 
                                    
                                                     | 
                
                 | 
                # cKDTree's ``data`` list.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    66
                 | 
                                    
                                                     | 
                
                 | 
                grid_points = np.array(list(zip(sim_gridx, sim_gridy)))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    67
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    68
                 | 
                                    
                                                     | 
                
                 | 
                radius = 40  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    69
                 | 
                                    
                                                     | 
                
                 | 
                obs_tree = cKDTree(list(zip(xp, yp)))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    70
                 | 
                                    
                                                     | 
                
                 | 
                indices = obs_tree.query_ball_point(grid_points, r=radius)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    71
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    72
                 | 
                                    
                                                     | 
                
                 | 
                ###########################################  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    73
                 | 
                                    
                                                     | 
                
                 | 
                # For grid 0, we will use Cressman to interpolate its value.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    74
                 | 
                                    
                                                     | 
                
                 | 
                x1, y1 = obs_tree.data[indices[0]].T  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    75
                 | 
                                    
                                                     | 
                
                 | 
                cress_dist = dist_2(sim_gridx[0], sim_gridy[0], x1, y1)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    76
                 | 
                                    
                                                     | 
                
                 | 
                cress_obs = zp[indices[0]]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    77
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    78
                 | 
                                    
                                                     | 
                
                 | 
                cress_val = cressman_point(cress_dist, cress_obs, radius)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    79
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    80
                 | 
                                    
                                                     | 
                
                 | 
                ###########################################  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    81
                 | 
                                    
                                                     | 
                
                 | 
                # For grid 1, we will use barnes to interpolate its value.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    82
                 | 
                                    
                                                     | 
                
                 | 
                #  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    83
                 | 
                                    
                                                     | 
                
                 | 
                # We need to calculate kappa--the average distance between observations over the domain.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    84
                 | 
                                    
                                                     | 
                
                 | 
                x2, y2 = obs_tree.data[indices[1]].T  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    85
                 | 
                                    
                                                     | 
                
                 | 
                barnes_dist = dist_2(sim_gridx[1], sim_gridy[1], x2, y2)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    86
                 | 
                                    
                                                     | 
                
                 | 
                barnes_obs = zp[indices[1]]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    87
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    88
                 | 
                                    
                                                     | 
                
                 | 
                ave_spacing = np.mean((cdist(list(zip(xp, yp)), list(zip(xp, yp)))))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    89
                 | 
                                    
                                                     | 
                
                 | 
                kappa = calc_kappa(ave_spacing)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    90
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    91
                 | 
                                    
                                                     | 
                
                 | 
                barnes_val = barnes_point(barnes_dist, barnes_obs, kappa)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    92
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    93
                 | 
                                    
                                                     | 
                
                 | 
                ###########################################  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    94
                 | 
                                    
                                                     | 
                
                 | 
                # Plot all of the affiliated information and interpolation values.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    95
                 | 
                                    
                                                     | 
                
                 | 
                for i, zval in enumerate(zp):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    96
                 | 
                                    
                                                     | 
                
                 | 
                    plt.plot(pts[i, 0], pts[i, 1], '.')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    97
                 | 
                                    
                                                     | 
                
                 | 
                    plt.annotate(str(zval) + ' F', xy=(pts[i, 0] + 2, pts[i, 1]))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    98
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    99
                 | 
                                    
                                                     | 
                
                 | 
                plt.plot(sim_gridx, sim_gridy, '+', markersize=10)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    100
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    101
                 | 
                                    
                                                     | 
                
                 | 
                plt.plot(x1, y1, 'ko', fillstyle='none', markersize=10, label='grid 0 matches')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    102
                 | 
                                    
                                                     | 
                
                 | 
                plt.plot(x2, y2, 'ks', fillstyle='none', markersize=10, label='grid 1 matches')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    103
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    104
                 | 
                                    
                                                     | 
                
                 | 
                draw_circle(sim_gridx[0], sim_gridy[0], m='k-', r=radius, label='grid 0 radius')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    105
                 | 
                                    
                                                     | 
                
                 | 
                draw_circle(sim_gridx[1], sim_gridy[1], m='b-', r=radius, label='grid 1 radius')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    106
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    107
                 | 
                                    
                                                     | 
                
                 | 
                plt.annotate('grid 0: cressman {:.3f}'.format(cress_val), xy=(sim_gridx[0] + 2, sim_gridy[0])) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    108
                 | 
                                    
                                                     | 
                
                 | 
                plt.annotate('grid 1: barnes {:.3f}'.format(barnes_val), xy=(sim_gridx[1] + 2, sim_gridy[1])) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    109
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    110
                 | 
                                    
                                                     | 
                
                 | 
                plt.axes().set_aspect('equal', 'datalim') | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    111
                 | 
                                    
                                                     | 
                
                 | 
                plt.legend()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    112
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    113
                 | 
                                    
                                                     | 
                
                 | 
                ###########################################  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    114
                 | 
                                    
                                                     | 
                
                 | 
                # For each point, we will do a manual check of the interpolation values by doing a step by  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    115
                 | 
                                    
                                                     | 
                
                 | 
                # step and visual breakdown.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    116
                 | 
                                    
                                                     | 
                
                 | 
                #  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    117
                 | 
                                    
                                                     | 
                
                 | 
                # Plot the grid point, observations within radius of the grid point, their locations, and  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    118
                 | 
                                    
                                                     | 
                
                 | 
                # their distances from the grid point.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    119
                 | 
                                    
                                                     | 
                
                 | 
                plt.annotate('grid 0: ({}, {})'.format(sim_gridx[0], sim_gridy[0]), | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    120
                 | 
                                    
                                                     | 
                
                 | 
                             xy=(sim_gridx[0] + 2, sim_gridy[0]))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    121
                 | 
                                    
                                                     | 
                
                 | 
                plt.plot(sim_gridx[0], sim_gridy[0], '+', markersize=10)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    122
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    123
                 | 
                                    
                                                     | 
                
                 | 
                mx, my = obs_tree.data[indices[0]].T  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    124
                 | 
                                    
                                                     | 
                
                 | 
                mz = zp[indices[0]]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    125
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    126
                 | 
                                    
                                                     | 
                
                 | 
                for x, y, z in zip(mx, my, mz):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    127
                 | 
                                    
                                                     | 
                
                 | 
                    d = np.sqrt((sim_gridx[0] - x)**2 + (y - sim_gridy[0])**2)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    128
                 | 
                                    
                                                     | 
                
                 | 
                    plt.plot([sim_gridx[0], x], [sim_gridy[0], y], '--')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    129
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    130
                 | 
                                    
                                                     | 
                
                 | 
                    xave = np.mean([sim_gridx[0], x])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    131
                 | 
                                    
                                                     | 
                
                 | 
                    yave = np.mean([sim_gridy[0], y])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    132
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    133
                 | 
                                    
                                                     | 
                
                 | 
                    plt.annotate('distance: {}'.format(d), xy=(xave, yave)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    134
                 | 
                                    
                                                     | 
                
                 | 
                    plt.annotate('({}, {}) : {} F'.format(x, y, z), xy=(x, y)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    135
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    136
                 | 
                                    
                                                     | 
                
                 | 
                plt.xlim(0, 80)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    137
                 | 
                                    
                                                     | 
                
                 | 
                plt.ylim(0, 80)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    138
                 | 
                                    
                                                     | 
                
                 | 
                plt.axes().set_aspect('equal', 'datalim') | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    139
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    140
                 | 
                                    
                                                     | 
                
                 | 
                ###########################################  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    141
                 | 
                                    
                                                     | 
                
                 | 
                # Step through the cressman calculations.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    142
                 | 
                                    
                                                     | 
                
                 | 
                dists = np.array([22.803508502, 7.21110255093, 31.304951685, 33.5410196625])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    143
                 | 
                                    
                                                     | 
                
                 | 
                values = np.array([0.064, 1.156, 3.364, 0.225])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    144
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    145
                 | 
                                    
                                                     | 
                
                 | 
                cres_weights = (radius * radius - dists * dists) / (radius * radius + dists * dists)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    146
                 | 
                                    
                                                     | 
                
                 | 
                total_weights = np.sum(cres_weights)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    147
                 | 
                                    
                                                     | 
                
                 | 
                proportion = cres_weights / total_weights  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    148
                 | 
                                    
                                                     | 
                
                 | 
                value = values * proportion  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    149
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    150
                 | 
                                    
                                                     | 
                
                 | 
                val = cressman_point(cress_dist, cress_obs, radius)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    151
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    152
                 | 
                                    
                                                     | 
                
                 | 
                print('Manual cressman value for grid 1:\t', np.sum(value)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    153
                 | 
                                    
                                                     | 
                
                 | 
                print('Metpy cressman value for grid 1:\t', val) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    154
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    155
                 | 
                                    
                                                     | 
                
                 | 
                ###########################################  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    156
                 | 
                                    
                                                     | 
                
                 | 
                # Now repeat for grid 1, except use barnes interpolation.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    157
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    158
                 | 
                                    
                                                     | 
                
                 | 
                plt.annotate('grid 1: ({}, {})'.format(sim_gridx[1], sim_gridy[1]), | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    159
                 | 
                                    
                                                     | 
                
                 | 
                             xy=(sim_gridx[1] + 2, sim_gridy[1]))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    160
                 | 
                                    
                                                     | 
                
                 | 
                plt.plot(sim_gridx[1], sim_gridy[1], '+', markersize=10)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    161
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    162
                 | 
                                    
                                                     | 
                
                 | 
                mx, my = obs_tree.data[indices[1]].T  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    163
                 | 
                                    
                                                     | 
                
                 | 
                mz = zp[indices[1]]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    164
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    165
                 | 
                                    
                                                     | 
                
                 | 
                for x, y, z in zip(mx, my, mz):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    166
                 | 
                                    
                                                     | 
                
                 | 
                    d = np.sqrt((sim_gridx[1] - x)**2 + (y - sim_gridy[1])**2)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    167
                 | 
                                    
                                                     | 
                
                 | 
                    plt.plot([sim_gridx[1], x], [sim_gridy[1], y], '--')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    168
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    169
                 | 
                                    
                                                     | 
                
                 | 
                    xave = np.mean([sim_gridx[1], x])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    170
                 | 
                                    
                                                     | 
                
                 | 
                    yave = np.mean([sim_gridy[1], y])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    171
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    172
                 | 
                                    
                                                     | 
                
                 | 
                    plt.annotate('distance: {}'.format(d), xy=(xave, yave)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    173
                 | 
                                    
                                                     | 
                
                 | 
                    plt.annotate('({}, {}) : {} F'.format(x, y, z), xy=(x, y)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    174
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    175
                 | 
                                    
                                                     | 
                
                 | 
                plt.xlim(40, 80)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    176
                 | 
                                    
                                                     | 
                
                 | 
                plt.ylim(40, 100)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    177
                 | 
                                    
                                                     | 
                
                 | 
                plt.axes().set_aspect('equal', 'datalim') | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    178
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    179
                 | 
                                    
                                                     | 
                
                 | 
                ###########################################  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    180
                 | 
                                    
                                                     | 
                
                 | 
                # Step through barnes calculations.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    181
                 | 
                                    
                                                     | 
                
                 | 
                dists = np.array([9.21954445729, 22.4722050542, 27.892651362, 38.8329756779])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    182
                 | 
                                    
                                                     | 
                
                 | 
                values = np.array([2.809, 6.241, 4.489, 2.704])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    183
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    184
                 | 
                                    
                                                     | 
                
                 | 
                weights = np.exp(-dists**2 / kappa)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    185
                 | 
                                    
                                                     | 
                
                 | 
                total_weights = np.sum(weights)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    186
                 | 
                                    
                                                     | 
                
                 | 
                value = np.sum(values * (weights / total_weights))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    187
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    188
                 | 
                                    
                                                     | 
                
                 | 
                print('Manual barnes value:\t', value) | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    189
                 | 
                                    
                                                     | 
                
                 | 
                print('Metpy barnes value:\t', barnes_point(barnes_dist, barnes_obs, kappa)) | 
            
            
                                                        
            
                                    
            
            
                | 
                    190
                 | 
                                    
                                                     | 
                
                 | 
                 |