1
|
|
|
# Copyright (c) 2008-2015 MetPy Developers. |
2
|
|
|
# Distributed under the terms of the BSD 3-Clause License. |
3
|
|
|
# SPDX-License-Identifier: BSD-3-Clause |
4
|
|
|
"""Tests for the `turbulence` module.""" |
5
|
|
|
|
6
|
|
|
import numpy as np |
7
|
|
|
from numpy.testing import assert_almost_equal, assert_array_equal |
8
|
|
|
import pytest |
9
|
|
|
|
10
|
|
|
from metpy.calc.turbulence import friction_velocity, get_perturbation, kinematic_flux, tke |
11
|
|
|
|
12
|
|
|
|
13
|
|
|
# |
14
|
|
|
# TKE Tests |
15
|
|
|
# |
16
|
|
|
@pytest.fixture() |
17
|
|
|
def uvw_and_known_tke(): |
18
|
|
|
"""Provide a set of u,v,w with a known tke value.""" |
19
|
|
|
u = np.array([-2, -1, 0, 1, 2]) |
20
|
|
|
v = -u |
21
|
|
|
w = 2 * u |
22
|
|
|
# 0.5 * sqrt(2 + 2 + 8) |
23
|
|
|
e_true = np.sqrt(12) / 2. |
24
|
|
|
return u, v, w, e_true |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
def test_no_tke_1d(): |
28
|
|
|
"""Test tke calculation where the expected value is 0.""" |
29
|
|
|
observations = 5 |
30
|
|
|
# given all the values are the same, there should not be any tke |
31
|
|
|
u = np.ones(observations) |
32
|
|
|
v = np.ones(observations) |
33
|
|
|
w = np.ones(observations) |
34
|
|
|
e_zero = 0 |
35
|
|
|
assert_array_equal(e_zero, tke(u, v, w)) |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
def test_no_tke_2d_axis_last(): |
39
|
|
|
"""Test 0 tke calculation with 2D arrays; calculation axis is last.""" |
40
|
|
|
observations = 5 |
41
|
|
|
instruments = 2 |
42
|
|
|
# given all the values are the same, there should not be any tke |
43
|
|
|
u = np.ones((instruments, observations)) |
44
|
|
|
v = np.ones((instruments, observations)) |
45
|
|
|
w = np.ones((instruments, observations)) |
46
|
|
|
e_zero = np.zeros(instruments) |
47
|
|
|
assert_array_equal(e_zero, tke(u, v, w, axis=-1)) |
48
|
|
|
|
49
|
|
|
|
50
|
|
|
def test_no_tke_2d_axis_first(): |
51
|
|
|
"""Test 0 tke calculation with 2D arrays; calculation axis is first.""" |
52
|
|
|
observations = 5 |
53
|
|
|
instruments = 2 |
54
|
|
|
# given all the values are the same, there should not be any tke |
55
|
|
|
u = np.ones((observations, instruments)) |
56
|
|
|
v = np.ones((observations, instruments)) |
57
|
|
|
w = np.ones((observations, instruments)) |
58
|
|
|
e_zero = np.zeros(instruments) |
59
|
|
|
assert_array_equal(e_zero, tke(u, v, w, axis=0)) |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
def test_known_tke(uvw_and_known_tke): |
63
|
|
|
"""Test basic behavior of tke with known values.""" |
64
|
|
|
u, v, w, e_true = uvw_and_known_tke |
65
|
|
|
assert_array_equal(e_true, tke(u, v, w)) |
66
|
|
|
|
67
|
|
|
|
68
|
|
|
def test_known_tke_2d_axis_last(uvw_and_known_tke): |
69
|
|
|
"""Test array with shape (3, 5) [pretend time axis is -1].""" |
70
|
|
|
u, v, w, e_true = uvw_and_known_tke |
71
|
|
|
u = np.array([u, u, u]) |
72
|
|
|
v = np.array([v, v, v]) |
73
|
|
|
w = np.array([w, w, w]) |
74
|
|
|
e_true = e_true * np.ones(3) |
75
|
|
|
assert_array_equal(e_true, tke(u, v, w, axis=-1)) |
76
|
|
|
|
77
|
|
|
|
78
|
|
|
def test_known_tke_2d_axis_first(uvw_and_known_tke): |
79
|
|
|
"""Test array with shape (5, 3) [pretend time axis is 0].""" |
80
|
|
|
u, v, w, e_true = uvw_and_known_tke |
81
|
|
|
u = np.array([u, u, u]).transpose() |
82
|
|
|
v = np.array([v, v, v]).transpose() |
83
|
|
|
w = np.array([w, w, w]).transpose() |
84
|
|
|
e_true = e_true * np.ones(3).transpose() |
85
|
|
|
assert_array_equal(e_true, tke(u, v, w, axis=0)) |
86
|
|
|
assert_array_equal(e_true, tke(u, v, w, axis=0, perturbation=True)) |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
# |
90
|
|
|
# Perturbation tests |
91
|
|
|
# |
92
|
|
|
@pytest.fixture() |
93
|
|
|
def pert_zero_mean(): |
94
|
|
|
"""Return time series with zero-mean and perturbations.""" |
95
|
|
|
ts = np.array([-2, -1, 0, 1, 2]) |
96
|
|
|
pert_true = ts.copy() |
97
|
|
|
return ts, pert_true |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
@pytest.fixture() |
101
|
|
|
def pert_nonzero_mean(): |
102
|
|
|
"""Return time seres with non-zero-mean and perturbations.""" |
103
|
|
|
ts = np.array([-2, 0, 2, 4, 6]) |
104
|
|
|
# ts.mean() = 2 |
105
|
|
|
pert_true = np.array([-4, -2, 0, 2, 4]) |
106
|
|
|
return ts, pert_true |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
def test_no_perturbation_1d(): |
110
|
|
|
"""Test with uniform data in 1D.""" |
111
|
|
|
observations = 5 |
112
|
|
|
# given all the values are the same, there should not be perturbations |
113
|
|
|
ts = np.ones(observations) |
114
|
|
|
pert_zero = 0 |
115
|
|
|
assert_array_equal(pert_zero, get_perturbation(ts)) |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
def test_no_perturbation_2d_axis_last(): |
119
|
|
|
"""Test with uniform data in 2D along the last axis.""" |
120
|
|
|
observations = 5 |
121
|
|
|
instruments = 2 |
122
|
|
|
# given all the values are the same, there should not be perturbations |
123
|
|
|
ts = np.ones((instruments, observations)) |
124
|
|
|
pert_zero = np.zeros((instruments, observations)) |
125
|
|
|
assert_array_equal(pert_zero, get_perturbation(ts, axis=-1)) |
126
|
|
|
|
127
|
|
|
|
128
|
|
|
def test_no_perturbation_2d_axis_first(): |
129
|
|
|
"""Test with uniform data in 2D along the first axis.""" |
130
|
|
|
observations = 5 |
131
|
|
|
instruments = 2 |
132
|
|
|
# given all the values are the same, there should not be perturbations |
133
|
|
|
ts = np.ones((observations, instruments)) |
134
|
|
|
pert_zero = np.zeros((observations, instruments)) |
135
|
|
|
assert_array_equal(pert_zero, get_perturbation(ts, axis=0)) |
136
|
|
|
|
137
|
|
|
|
138
|
|
|
def test_known_perturbation_zero_mean_1d(pert_zero_mean): |
139
|
|
|
"""Test with zero-mean data in 1D.""" |
140
|
|
|
ts, pert_known = pert_zero_mean |
141
|
|
|
assert_array_equal(pert_known, get_perturbation(ts)) |
142
|
|
|
|
143
|
|
|
|
144
|
|
|
def test_known_perturbation_zero_mean_2d_axis_last(pert_zero_mean): |
145
|
|
|
"""Test with zero-mean data in 2D along the last axis.""" |
146
|
|
|
ts, pert_known = pert_zero_mean |
147
|
|
|
ts = np.array([ts, ts, ts]) |
148
|
|
|
pert_known = np.array([pert_known, pert_known, pert_known]) |
149
|
|
|
assert_array_equal(pert_known, get_perturbation(ts, axis=-1)) |
150
|
|
|
|
151
|
|
|
|
152
|
|
|
def test_known_perturbation_zero_mean_2d_axis_first(pert_zero_mean): |
153
|
|
|
"""Test with zero-mean data in 2D along the first axis.""" |
154
|
|
|
ts, pert_known = pert_zero_mean |
155
|
|
|
ts = np.array([ts, ts, ts]).transpose() |
156
|
|
|
pert_known = np.array([pert_known, pert_known, pert_known]).transpose() |
157
|
|
|
assert_array_equal(pert_known, get_perturbation(ts, axis=0)) |
158
|
|
|
|
159
|
|
|
|
160
|
|
|
def test_known_perturbation_nonzero_mean_1d(pert_nonzero_mean): |
161
|
|
|
"""Test with non-zero-mean data in 1D.""" |
162
|
|
|
ts, pert_known = pert_nonzero_mean |
163
|
|
|
assert_array_equal(pert_known, get_perturbation(ts)) |
164
|
|
|
|
165
|
|
|
|
166
|
|
|
def test_known_perturbation_nonzero_mean_2d_axis_last(pert_nonzero_mean): |
167
|
|
|
"""Test with non-zero-mean data in 2D along the last axis.""" |
168
|
|
|
ts, pert_known = pert_nonzero_mean |
169
|
|
|
ts = np.array([ts, ts, ts]) |
170
|
|
|
pert_known = np.array([pert_known, pert_known, pert_known]) |
171
|
|
|
assert_array_equal(pert_known, get_perturbation(ts, axis=-1)) |
172
|
|
|
|
173
|
|
|
|
174
|
|
|
def test_known_perturbation_nonzero_mean_2d_axis_first(pert_nonzero_mean): |
175
|
|
|
"""Test with non-zero-mean data in 2D along the first axis.""" |
176
|
|
|
ts, pert_known = pert_nonzero_mean |
177
|
|
|
ts = np.array([ts, ts, ts]).transpose() |
178
|
|
|
pert_known = np.array([pert_known, pert_known, pert_known]).transpose() |
179
|
|
|
assert_array_equal(pert_known, get_perturbation(ts, axis=0)) |
180
|
|
|
|
181
|
|
|
|
182
|
|
|
# |
183
|
|
|
# Kinematic Flux Tests |
184
|
|
|
# |
185
|
|
|
@pytest.fixture() |
186
|
|
|
def uvw_and_known_kf_zero_mean(): |
187
|
|
|
"""Return components and kinematic flux for zero-mean time series.""" |
188
|
|
|
u = np.array([-2, -1, 0, 1, 2]) |
189
|
|
|
v = -u |
190
|
|
|
w = 2 * u |
191
|
|
|
kf_true = {'uv': -2, 'uw': 4, 'vw': -4} |
192
|
|
|
return u, v, w, kf_true |
193
|
|
|
|
194
|
|
|
|
195
|
|
|
@pytest.fixture() |
196
|
|
|
def uvw_and_known_kf_nonzero_mean(): |
197
|
|
|
"""Return components and kinematic flux for non-zero-mean time series.""" |
198
|
|
|
u = np.array([-2, -1, 0, 1, 5]) |
199
|
|
|
v = -u |
200
|
|
|
w = 2 * u |
201
|
|
|
kf_true = {'uv': -5.84, 'uw': 11.68, 'vw': -11.68} |
202
|
|
|
return u, v, w, kf_true |
203
|
|
|
|
204
|
|
|
|
205
|
|
|
def test_kf_1d_zero_mean(uvw_and_known_kf_zero_mean): |
206
|
|
|
"""Test kinematic flux calculation in 1D with zero-mean time series.""" |
207
|
|
|
u, v, w, kf_true = uvw_and_known_kf_zero_mean |
208
|
|
|
assert_array_equal(kinematic_flux(u, v, perturbation=False), |
209
|
|
|
kf_true['uv']) |
210
|
|
|
assert_array_equal(kinematic_flux(u, w, perturbation=False), |
211
|
|
|
kf_true['uw']) |
212
|
|
|
assert_array_equal(kinematic_flux(v, w, perturbation=False), |
213
|
|
|
kf_true['vw']) |
214
|
|
|
|
215
|
|
|
# given u, v, and w have a zero mean, the kf computed with |
216
|
|
|
# perturbation=True and perturbation=False should be the same |
217
|
|
|
assert_array_equal(kinematic_flux(u, v, perturbation=False), |
218
|
|
|
kinematic_flux(u, v, perturbation=True)) |
219
|
|
|
assert_array_equal(kinematic_flux(u, w, perturbation=False), |
220
|
|
|
kinematic_flux(u, w, perturbation=True)) |
221
|
|
|
assert_array_equal(kinematic_flux(v, w, perturbation=False), |
222
|
|
|
kinematic_flux(v, w, perturbation=True)) |
223
|
|
|
|
224
|
|
|
|
225
|
|
|
def test_kf_1d_nonzero_mean(uvw_and_known_kf_nonzero_mean): |
226
|
|
|
"""Test kinematic flux calculation in 1D with non-zero-mean time series.""" |
227
|
|
|
u, v, w, kf_true = uvw_and_known_kf_nonzero_mean |
228
|
|
|
assert_array_equal(kinematic_flux(u, v, perturbation=False), |
229
|
|
|
kf_true['uv']) |
230
|
|
|
assert_array_equal(kinematic_flux(u, w, perturbation=False), |
231
|
|
|
kf_true['uw']) |
232
|
|
|
assert_array_equal(kinematic_flux(v, w, perturbation=False), |
233
|
|
|
kf_true['vw']) |
234
|
|
|
|
235
|
|
|
|
236
|
|
View Code Duplication |
def test_kf_2d_axis_last_zero_mean(uvw_and_known_kf_zero_mean): |
|
|
|
|
237
|
|
|
"""Test kinematic flux calculation in 2D with zero-mean time series along last axis.""" |
238
|
|
|
u, v, w, kf_true = uvw_and_known_kf_zero_mean |
239
|
|
|
u = np.array([u, u, u]) |
240
|
|
|
v = np.array([v, v, v]) |
241
|
|
|
w = np.array([w, w, w]) |
242
|
|
|
for key in kf_true.keys(): |
243
|
|
|
tmp = kf_true[key] |
244
|
|
|
kf_true[key] = np.array([tmp, tmp, tmp]) |
245
|
|
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=-1), |
246
|
|
|
kf_true['uv']) |
247
|
|
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=-1), |
248
|
|
|
kf_true['uw']) |
249
|
|
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=-1), |
250
|
|
|
kf_true['vw']) |
251
|
|
|
# given u, v, and w have a zero mean, the kf computed with |
252
|
|
|
# perturbation=True and perturbation=False should be the same |
253
|
|
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=-1), |
254
|
|
|
kinematic_flux(u, v, perturbation=True, axis=-1)) |
255
|
|
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=-1), |
256
|
|
|
kinematic_flux(u, w, perturbation=True, axis=-1)) |
257
|
|
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=-1), |
258
|
|
|
kinematic_flux(v, w, perturbation=True, axis=-1)) |
259
|
|
|
|
260
|
|
|
|
261
|
|
View Code Duplication |
def test_kf_2d_axis_last_nonzero_mean(uvw_and_known_kf_nonzero_mean): |
|
|
|
|
262
|
|
|
"""Test kinematic flux calculation in 2D with non-zero-mean time series along last axis.""" |
263
|
|
|
u, v, w, kf_true = uvw_and_known_kf_nonzero_mean |
264
|
|
|
u = np.array([u, u, u]) |
265
|
|
|
v = np.array([v, v, v]) |
266
|
|
|
w = np.array([w, w, w]) |
267
|
|
|
for key in kf_true.keys(): |
268
|
|
|
tmp = kf_true[key] |
269
|
|
|
kf_true[key] = np.array([tmp, tmp, tmp]) |
270
|
|
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=-1), |
271
|
|
|
kf_true['uv']) |
272
|
|
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=-1), |
273
|
|
|
kf_true['uw']) |
274
|
|
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=-1), |
275
|
|
|
kf_true['vw']) |
276
|
|
|
|
277
|
|
|
|
278
|
|
View Code Duplication |
def test_kf_2d_axis_first_zero_mean(uvw_and_known_kf_zero_mean): |
|
|
|
|
279
|
|
|
"""Test kinematic flux calculation in 2D with zero-mean time series along first axis.""" |
280
|
|
|
u, v, w, kf_true = uvw_and_known_kf_zero_mean |
281
|
|
|
u = np.array([u, u, u]).transpose() |
282
|
|
|
v = np.array([v, v, v]).transpose() |
283
|
|
|
w = np.array([w, w, w]).transpose() |
284
|
|
|
for key in kf_true.keys(): |
285
|
|
|
tmp = kf_true[key] |
286
|
|
|
kf_true[key] = np.array([tmp, tmp, tmp]).transpose() |
287
|
|
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=0), |
288
|
|
|
kf_true['uv']) |
289
|
|
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=0), |
290
|
|
|
kf_true['uw']) |
291
|
|
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=0), |
292
|
|
|
kf_true['vw']) |
293
|
|
|
# given u, v, and w have a zero mean, the kf computed with |
294
|
|
|
# perturbation=True and perturbation=False should be the same |
295
|
|
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=0), |
296
|
|
|
kinematic_flux(u, v, perturbation=True, axis=0)) |
297
|
|
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=0), |
298
|
|
|
kinematic_flux(u, w, perturbation=True, axis=0)) |
299
|
|
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=0), |
300
|
|
|
kinematic_flux(v, w, perturbation=True, axis=0)) |
301
|
|
|
|
302
|
|
|
|
303
|
|
View Code Duplication |
def test_kf_2d_axis_first_nonzero_mean(uvw_and_known_kf_nonzero_mean): |
|
|
|
|
304
|
|
|
"""Test kinematic flux in 2D with non-zero-mean time series along first axis.""" |
305
|
|
|
u, v, w, kf_true = uvw_and_known_kf_nonzero_mean |
306
|
|
|
u = np.array([u, u, u]).transpose() |
307
|
|
|
v = np.array([v, v, v]).transpose() |
308
|
|
|
w = np.array([w, w, w]).transpose() |
309
|
|
|
for key in kf_true.keys(): |
310
|
|
|
tmp = kf_true[key] |
311
|
|
|
kf_true[key] = np.array([tmp, tmp, tmp]).transpose() |
312
|
|
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=0), |
313
|
|
|
kf_true['uv']) |
314
|
|
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=0), |
315
|
|
|
kf_true['uw']) |
316
|
|
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=0), |
317
|
|
|
kf_true['vw']) |
318
|
|
|
|
319
|
|
|
|
320
|
|
|
# |
321
|
|
|
# Friction Velocity Tests |
322
|
|
|
# |
323
|
|
|
@pytest.fixture() |
324
|
|
|
def uvw_and_known_u_star_zero_mean(): |
325
|
|
|
"""Return components and friction velocity for a zero-mean time series.""" |
326
|
|
|
u = np.array([-2, -1, 0, 1, 2]) |
327
|
|
|
v = -u |
328
|
|
|
w = 2 * u |
329
|
|
|
u_star_true = {'uw': 2.0, 'uwvw': 2.3784142300054421} |
330
|
|
|
return u, v, w, u_star_true |
331
|
|
|
|
332
|
|
|
|
333
|
|
|
@pytest.fixture() |
334
|
|
|
def uvw_and_known_u_star_nonzero_mean(): |
335
|
|
|
"""Return components and friction velocity for a non-zero-mean time series.""" |
336
|
|
|
u = np.array([-2, -1, 0, 1, 5]) |
337
|
|
|
v = -u |
338
|
|
|
w = 2 * u |
339
|
|
|
u_star_true = {'uw': 3.4176014981270124, 'uwvw': 4.0642360178166017} |
340
|
|
|
return u, v, w, u_star_true |
341
|
|
|
|
342
|
|
|
|
343
|
|
|
def test_u_star_1d_zero_mean(uvw_and_known_u_star_zero_mean): |
344
|
|
|
"""Test friction velocity in 1D with a zero-mean time series.""" |
345
|
|
|
u, v, w, u_star_true = uvw_and_known_u_star_zero_mean |
346
|
|
|
assert_almost_equal(friction_velocity(u, w, perturbation=False), |
347
|
|
|
u_star_true['uw']) |
348
|
|
|
assert_almost_equal(friction_velocity(u, w, v=v, perturbation=False), |
349
|
|
|
u_star_true['uwvw']) |
350
|
|
|
|
351
|
|
|
|
352
|
|
|
def test_u_star_1d_nonzero_mean(uvw_and_known_u_star_nonzero_mean): |
353
|
|
|
"""Test friction velocity in 1D with a non-zero-mean time series.""" |
354
|
|
|
u, v, w, u_star_true = uvw_and_known_u_star_nonzero_mean |
355
|
|
|
assert_almost_equal(friction_velocity(u, w, perturbation=False), |
356
|
|
|
u_star_true['uw']) |
357
|
|
|
assert_almost_equal(friction_velocity(u, w, v=v, perturbation=False), |
358
|
|
|
u_star_true['uwvw']) |
359
|
|
|
|
360
|
|
|
|
361
|
|
View Code Duplication |
def test_u_star_2d_axis_last_zero_mean(uvw_and_known_u_star_zero_mean): |
|
|
|
|
362
|
|
|
"""Test friction velocity in 2D with a zero-mean time series along the last axis.""" |
363
|
|
|
u, v, w, u_star_true = uvw_and_known_u_star_zero_mean |
364
|
|
|
u = np.array([u, u, u]) |
365
|
|
|
v = np.array([v, v, v]) |
366
|
|
|
w = np.array([w, w, w]) |
367
|
|
|
for key in u_star_true.keys(): |
368
|
|
|
tmp = u_star_true[key] |
369
|
|
|
u_star_true[key] = np.array([tmp, tmp, tmp]) |
370
|
|
|
assert_almost_equal(friction_velocity(u, w, perturbation=False, |
371
|
|
|
axis=-1), u_star_true['uw']) |
372
|
|
|
assert_almost_equal(friction_velocity(u, w, v=v, perturbation=False, |
373
|
|
|
axis=-1), u_star_true['uwvw']) |
374
|
|
|
|
375
|
|
|
|
376
|
|
View Code Duplication |
def test_u_star_2d_axis_last_nonzero_mean(uvw_and_known_u_star_nonzero_mean): |
|
|
|
|
377
|
|
|
"""Test friction velocity in 2D with a non-zero-mean time series along the last axis.""" |
378
|
|
|
u, v, w, u_star_true = uvw_and_known_u_star_nonzero_mean |
379
|
|
|
u = np.array([u, u, u]) |
380
|
|
|
v = np.array([v, v, v]) |
381
|
|
|
w = np.array([w, w, w]) |
382
|
|
|
for key in u_star_true.keys(): |
383
|
|
|
tmp = u_star_true[key] |
384
|
|
|
u_star_true[key] = np.array([tmp, tmp, tmp]) |
385
|
|
|
assert_almost_equal(friction_velocity(u, w, perturbation=False, |
386
|
|
|
axis=-1), u_star_true['uw']) |
387
|
|
|
assert_almost_equal(friction_velocity(u, w, v=v, perturbation=False, |
388
|
|
|
axis=-1), u_star_true['uwvw']) |
389
|
|
|
|
390
|
|
|
|
391
|
|
View Code Duplication |
def test_u_star_2d_axis_first_zero_mean(uvw_and_known_u_star_zero_mean): |
|
|
|
|
392
|
|
|
"""Test friction velocity in 2D with a zero-mean time series along the first axis.""" |
393
|
|
|
u, v, w, u_star_true = uvw_and_known_u_star_zero_mean |
394
|
|
|
u = np.array([u, u, u]).transpose() |
395
|
|
|
v = np.array([v, v, v]).transpose() |
396
|
|
|
w = np.array([w, w, w]).transpose() |
397
|
|
|
for key in u_star_true.keys(): |
398
|
|
|
tmp = u_star_true[key] |
399
|
|
|
u_star_true[key] = np.array([tmp, tmp, tmp]).transpose() |
400
|
|
|
assert_almost_equal(friction_velocity(u, w, perturbation=False, |
401
|
|
|
axis=0), u_star_true['uw']) |
402
|
|
|
assert_almost_equal(friction_velocity(u, w, v=v, perturbation=False, |
403
|
|
|
axis=0), u_star_true['uwvw']) |
404
|
|
|
|
405
|
|
|
|
406
|
|
View Code Duplication |
def test_u_star_2d_axis_first_nonzero_mean(uvw_and_known_u_star_nonzero_mean): |
|
|
|
|
407
|
|
|
"""Test friction velocity in 2D with a non-zero-mean time series along the first axis.""" |
408
|
|
|
u, v, w, u_star_true = uvw_and_known_u_star_nonzero_mean |
409
|
|
|
u = np.array([u, u, u]).transpose() |
410
|
|
|
v = np.array([v, v, v]).transpose() |
411
|
|
|
w = np.array([w, w, w]).transpose() |
412
|
|
|
for key in u_star_true.keys(): |
413
|
|
|
tmp = u_star_true[key] |
414
|
|
|
u_star_true[key] = np.array([tmp, tmp, tmp]).transpose() |
415
|
|
|
assert_almost_equal(friction_velocity(u, w, perturbation=False, |
416
|
|
|
axis=0), u_star_true['uw']) |
417
|
|
|
assert_almost_equal(friction_velocity(u, w, v=v, perturbation=False, |
418
|
|
|
axis=0), u_star_true['uwvw']) |
419
|
|
|
|