Completed
Pull Request — master (#536)
by
unknown
01:10
created

bunkers_storm_motion()   A

Complexity

Conditions 1

Size

Total Lines 59

Duplication

Lines 0
Ratio 0 %

Importance

Changes 1
Bugs 0 Features 0
Metric Value
cc 1
c 1
b 0
f 0
dl 0
loc 59
rs 9.597

How to fix   Long Method   

Long Method

Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.

For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.

Commonly applied refactorings include:

1
# Copyright (c) 2008-2017 MetPy Developers.
2
# Distributed under the terms of the BSD 3-Clause License.
3
# SPDX-License-Identifier: BSD-3-Clause
4
"""Contains calculation of various derived indices."""
5
import numpy as np
6
7
from .thermo import mixing_ratio, saturation_vapor_pressure
8
from .tools import get_layer
9
from ..constants import g, rho_l
10
from ..package_tools import Exporter
11
from ..units import check_units, concatenate, units
12
13
exporter = Exporter(globals())
14
15
16
@exporter.export
17
@check_units('[temperature]', '[pressure]', '[pressure]')
18
def precipitable_water(dewpt, pressure, top=400 * units('hPa')):
19
    r"""Calculate precipitable water through the depth of a sounding.
20
21
    Default layer depth is sfc-400 hPa. Formula used is:
22
23
    .. math:: \frac{1}{pg} \int\limits_0^d x \,dp
24
25
    from [Tsonis2008]_, p. 170.
26
27
    Parameters
28
    ----------
29
    dewpt : `pint.Quantity`
30
        Atmospheric dewpoint profile
31
    pressure : `pint.Quantity`
32
        Atmospheric pressure profile
33
    top: `pint.Quantity`, optional
34
        The top of the layer, specified in pressure. Defaults to 400 hPa.
35
36
    Returns
37
    -------
38
    `pint.Quantity`
39
        The precipitable water in the layer
40
41
    """
42
    sort_inds = np.argsort(pressure[::-1])
43
    pressure = pressure[sort_inds]
44
    dewpt = dewpt[sort_inds]
45
46
    pres_layer, dewpt_layer = get_layer(pressure, dewpt, depth=pressure[0] - top)
47
48
    w = mixing_ratio(saturation_vapor_pressure(dewpt_layer), pres_layer)
49
    # Since pressure is in decreasing order, pw will be the negative of what we want.
50
    # Thus the *-1
51
    pw = -1. * (np.trapz(w.magnitude, pres_layer.magnitude) * (w.units * pres_layer.units) /
52
                (g * rho_l))
53
    return pw.to('millimeters')
54
55
56
@exporter.export
57
@check_units('[pressure]')
58
def mean_pressure_weighted(pressure, *args, **kwargs):
59
    r"""Calculate pressure-weighted mean of an arbitrary variable through a layer.
60
61
    Layer top and bottom specified in height or pressure.
62
63
    Parameters
64
    ----------
65
    pressure : `pint.Quantity`
66
        Atmospheric pressure profile
67
    *args : `pint.Quantity`
68
        Parameters for which the pressure-weighted mean is to be calculated.
69
    heights : `pint.Quantity`, optional
70
        Heights from sounding. Standard atmosphere heights assumed (if needed)
71
        if no heights are given.
72
    bottom: `pint.Quantity`, optional
73
        The bottom of the layer in either the provided height coordinate
74
        or in pressure. Don't provide in meters AGL unless the provided
75
        height coordinate is meters AGL. Default is the first observation,
76
        assumed to be the surface.
77
    depth: `pint.Quantity`, optional
78
        The depth of the layer in meters or hPa.
79
80
    Returns
81
    -------
82
    `pint.Quantity`
83
        u_mean: u-component of layer mean wind.
84
    `pint.Quantity`
85
        v_mean: v-component of layer mean wind.
86
87
    """
88
    heights = kwargs.pop('heights', None)
89
    bottom = kwargs.pop('bottom', None)
90
    depth = kwargs.pop('depth', None)
91
    ret = []  # Returned variable means in layer
92
    layer_arg = get_layer(pressure, *args, heights=heights,
93
                          bottom=bottom, depth=depth)
94
    layer_p = layer_arg[0]
95
    layer_arg = layer_arg[1:]
96
    # Taking the integral of the weights (pressure) to feed into the weighting
97
    # function. Said integral works out to this function:
98
    pres_int = 0.5 * (layer_p[-1].magnitude**2 - layer_p[0].magnitude**2)
99
    for i, datavar in enumerate(args):
100
        arg_mean = np.trapz(layer_arg[i] * layer_p, x=layer_p) / pres_int
101
        ret.append(arg_mean * datavar.units)
102
103
    return ret
104
105
106
@exporter.export
107
@check_units('[pressure]', '[speed]', '[speed]', '[length]')
108
def bunkers_storm_motion(pressure, u, v, heights):
109
    r"""Calculate the Bunkers right-mover and left-mover storm motions and sfc-6km mean flow.
110
111
    Uses the storm motion calculation from [Bunkers et al, 2000]_.
112
113
    Parameters
114
    ----------
115
    pressure : array-like
116
        Pressure from sounding
117
    u : array-like
118
        U component of the wind
119
    v : array-like
120
        V component of the wind
121
    heights : array-like
122
        Heights from sounding
123
124
    Returns
125
    -------
126
    right_mover: `pint.Quantity`
127
        U and v component of Bunkers RM storm motion
128
    left_mover: `pint.Quantity`
129
        U and v component of Bunkers LM storm motion
130
    wind_mean: `pint.Quantity`
131
        U and v component of sfc-6km mean flow
132
133
    """
134
    ums = u.to('m/s')
135
    vms = v.to('m/s')
136
137
    # mean wind from sfc-6km
138
    wind_mean = concatenate(mean_pressure_weighted(pressure, ums, vms, heights=heights,
139
                                      depth=6000 * units('meter')))
140
141
    # mean wind from sfc-500m
142
    wind_500m = concatenate(mean_pressure_weighted(pressure, ums, vms, heights=heights,
143
                                      depth=500 * units('meter')))
144
145
    # mean wind from 5.5-6km
146
    wind_5500m = concatenate(mean_pressure_weighted(pressure, ums, vms, heights=heights,
147
                                        depth=500 * units('meter'),
148
                                        bottom=heights[0] + 5500 * units('meter')))
149
150
    # Calculate the shear vector from sfc-500m to 5.5-6km
151
    shear = wind_5500m - wind_500m
152
153
    # Take the cross product of the wind shear and k, and divide by the vector magnitude and
154
    # multiply by the deviaton empirically calculated in Bunkers (2000) (7.5 m/s)
155
    shear_cross = concatenate([shear[1], -shear[0]])
156
    rdev = shear_cross * (7.5 * units('m/s') / np.hypot(*shear))
157
158
    # Add the deviations to the layer average wind to get the RM motion
159
    right_mover = wind_mean + rdev
160
161
    # Subtract the deviations to get the LM motion
162
    left_mover = wind_mean - rdev
163
164
    return right_mover, left_mover, wind_mean
165
166
167
@exporter.export
168
@check_units('[pressure]', '[speed]', '[speed]')
169
def bulk_shear(pressure, u, v, heights=None, bottom=None, depth=None):
170
    r"""Calculate bulk shear through a layer.
171
172
    Layer top and bottom specified in meters or pressure.
173
174
    Parameters
175
    ----------
176
    pressure : `pint.Quantity`
177
        Atmospheric pressure profile
178
    u : `pint.Quantity`
179
        U-component of wind.
180
    v : `pint.Quantity`
181
        V-component of wind.
182
    height : `pint.Quantity`
183
        Heights from sounding
184
    depth: `pint.Quantity`
185
        The depth of the layer in meters or hPa
186
    bottom: `pint.Quantity`
187
        The bottom of the layer in meters or hPa.
188
        If in meters, must be in the same coordinates as the given
189
        heights (i.e., don't use meters AGL unless given heights
190
        are in meters AGL.) Default is the surface (1st observation.)
191
192
    Returns
193
    -------
194
    u_shr: `pint.Quantity'
195
        u-component of layer bulk shear, in m/s
196
    v_shr: `pint.Quantity'
197
        v-component of layer bulk shear, in m/s
198
    shr_mag: `pint.Quantity'
199
        magnitude of layer bulk shear, in m/s
200
201
    """
202
    _, u_layer, v_layer = get_layer(pressure, u, v, heights=heights,
203
                                    bottom=bottom, depth=depth)
204
205
    u_shr = u_layer[-1] - u_layer[0]
206
    v_shr = v_layer[-1] - v_layer[0]
207
208
    shr_mag = np.sqrt((u_shr ** 2) + (v_shr ** 2))
209
210
    return u_shr, v_shr, shr_mag
211