Completed
Pull Request — master (#536)
by
unknown
01:18
created

bulk_shear()   B

Complexity

Conditions 1

Size

Total Lines 44

Duplication

Lines 0
Ratio 0 %

Importance

Changes 1
Bugs 0 Features 0
Metric Value
cc 1
c 1
b 0
f 0
dl 0
loc 44
rs 8.8571
1
# Copyright (c) 2008-2017 MetPy Developers.
2
# Distributed under the terms of the BSD 3-Clause License.
3
# SPDX-License-Identifier: BSD-3-Clause
4
"""Contains calculation of various derived indices."""
5
import numpy as np
6
7
from .thermo import mixing_ratio, saturation_vapor_pressure
8
from .tools import get_layer
9
from ..constants import g, rho_l
10
from ..package_tools import Exporter
11
from ..units import check_units, concatenate, units
12
13
exporter = Exporter(globals())
14
15
16
@exporter.export
17
@check_units('[temperature]', '[pressure]', '[pressure]')
18
def precipitable_water(dewpt, pressure, top=400 * units('hPa')):
19
    r"""Calculate precipitable water through the depth of a sounding.
20
21
    Default layer depth is sfc-400 hPa. Formula used is:
22
23
    .. math:: \frac{1}{pg} \int\limits_0^d x \,dp
24
25
    from [Tsonis2008]_, p. 170.
26
27
    Parameters
28
    ----------
29
    dewpt : `pint.Quantity`
30
        Atmospheric dewpoint profile
31
    pressure : `pint.Quantity`
32
        Atmospheric pressure profile
33
    top: `pint.Quantity`, optional
34
        The top of the layer, specified in pressure. Defaults to 400 hPa.
35
36
    Returns
37
    -------
38
    `pint.Quantity`
39
        The precipitable water in the layer
40
41
    """
42
    sort_inds = np.argsort(pressure[::-1])
43
    pressure = pressure[sort_inds]
44
    dewpt = dewpt[sort_inds]
45
46
    pres_layer, dewpt_layer = get_layer(pressure, dewpt, depth=pressure[0] - top)
47
48
    w = mixing_ratio(saturation_vapor_pressure(dewpt_layer), pres_layer)
49
    # Since pressure is in decreasing order, pw will be the negative of what we want.
50
    # Thus the *-1
51
    pw = -1. * (np.trapz(w.magnitude, pres_layer.magnitude) * (w.units * pres_layer.units) /
52
                (g * rho_l))
53
    return pw.to('millimeters')
54
55
56
@exporter.export
57
@check_units('[pressure]')
58
def mean_pressure_weighted(pressure, *args, **kwargs):
59
    r"""Calculate pressure-weighted mean of an arbitrary variable through a layer.
60
61
    Layer top and bottom specified in height or pressure.
62
63
    Parameters
64
    ----------
65
    pressure : `pint.Quantity`
66
        Atmospheric pressure profile
67
    *args : `pint.Quantity`
68
        Parameters for which the pressure-weighted mean is to be calculated.
69
    heights : `pint.Quantity`, optional
70
        Heights from sounding. Standard atmosphere heights assumed (if needed)
71
        if no heights are given.
72
    bottom: `pint.Quantity`, optional
73
        The bottom of the layer in either the provided height coordinate
74
        or in pressure. Don't provide in meters AGL unless the provided
75
        height coordinate is meters AGL. Default is the first observation,
76
        assumed to be the surface.
77
    depth: `pint.Quantity`, optional
78
        The depth of the layer in meters or hPa.
79
80
    Returns
81
    -------
82
    `pint.Quantity`
83
        u_mean: u-component of layer mean wind.
84
    `pint.Quantity`
85
        v_mean: v-component of layer mean wind.
86
87
    """
88
    heights = kwargs.pop('heights', None)
89
    bottom = kwargs.pop('bottom', None)
90
    depth = kwargs.pop('depth', None)
91
    ret = []  # Returned variable means in layer
92
    layer_arg = get_layer(pressure, *args, heights=heights,
93
                          bottom=bottom, depth=depth)
94
    layer_p = layer_arg[0]
95
    layer_arg = layer_arg[1:]
96
    # Taking the integral of the weights (pressure) to feed into the weighting
97
    # function. Said integral works out to this function:
98
    pres_int = 0.5 * (layer_p[-1].magnitude**2 - layer_p[0].magnitude**2)
99
    for i, datavar in enumerate(args):
100
        arg_mean = np.trapz(layer_arg[i] * layer_p, x=layer_p) / pres_int
101
        ret.append(arg_mean * datavar.units)
102
103
    return ret
104
105
106
@exporter.export
107
@check_units('[pressure]', '[speed]', '[speed]', '[length]')
108
def bunkers_storm_motion(pressure, u, v, heights):
109
    r"""Calculate the Bunkers right-mover and left-mover storm motions and sfc-6km mean flow.
110
111
    Uses the storm motion calculation from [Bunkers et al, 2000]_.
112
113
    Parameters
114
    ----------
115
    pressure : array-like
116
        Pressure from sounding
117
    u : array-like
118
        U component of the wind
119
    v : array-like
120
        V component of the wind
121
    heights : array-like
122
        Heights from sounding
123
124
    Returns
125
    -------
126
    right_mover: `pint.Quantity`
127
        U and v component of Bunkers RM storm motion
128
    left_mover: `pint.Quantity`
129
        U and v component of Bunkers LM storm motion
130
    wind_mean: `pint.Quantity`
131
        U and v component of sfc-6km mean flow
132
133
    """
134
    ums = u.to('m/s')
135
    vms = v.to('m/s')
136
137
    # mean wind from sfc-6km
138
    wind_mean = concatenate(mean_pressure_weighted(pressure, ums, vms, heights=heights,
139
                                                   depth=6000 * units('meter')))
140
141
    # mean wind from sfc-500m
142
    wind_500m = concatenate(mean_pressure_weighted(pressure, ums, vms, heights=heights,
143
                                                   depth=500 * units('meter')))
144
145
    # mean wind from 5.5-6km
146
    wind_5500m = concatenate(mean_pressure_weighted(pressure, ums, vms, heights=heights,
147
                                                    depth=500 * units('meter'),
148
                                                    bottom=heights[0] +
149
                                                    5500 * units('meter')))
150
151
    # Calculate the shear vector from sfc-500m to 5.5-6km
152
    shear = wind_5500m - wind_500m
153
154
    # Take the cross product of the wind shear and k, and divide by the vector magnitude and
155
    # multiply by the deviaton empirically calculated in Bunkers (2000) (7.5 m/s)
156
    shear_cross = concatenate([shear[1], -shear[0]])
157
    rdev = shear_cross * (7.5 * units('m/s') / np.hypot(*shear))
158
159
    # Add the deviations to the layer average wind to get the RM motion
160
    right_mover = wind_mean + rdev
161
162
    # Subtract the deviations to get the LM motion
163
    left_mover = wind_mean - rdev
164
165
    return right_mover, left_mover, wind_mean
166
167
168
@exporter.export
169
@check_units('[pressure]', '[speed]', '[speed]')
170
def bulk_shear(pressure, u, v, heights=None, bottom=None, depth=None):
171
    r"""Calculate bulk shear through a layer.
172
173
    Layer top and bottom specified in meters or pressure.
174
175
    Parameters
176
    ----------
177
    pressure : `pint.Quantity`
178
        Atmospheric pressure profile
179
    u : `pint.Quantity`
180
        U-component of wind.
181
    v : `pint.Quantity`
182
        V-component of wind.
183
    height : `pint.Quantity`
184
        Heights from sounding
185
    depth: `pint.Quantity`
186
        The depth of the layer in meters or hPa
187
    bottom: `pint.Quantity`
188
        The bottom of the layer in meters or hPa.
189
        If in meters, must be in the same coordinates as the given
190
        heights (i.e., don't use meters AGL unless given heights
191
        are in meters AGL.) Default is the surface (1st observation.)
192
193
    Returns
194
    -------
195
    u_shr: `pint.Quantity'
196
        u-component of layer bulk shear, in m/s
197
    v_shr: `pint.Quantity'
198
        v-component of layer bulk shear, in m/s
199
    shr_mag: `pint.Quantity'
200
        magnitude of layer bulk shear, in m/s
201
202
    """
203
    _, u_layer, v_layer = get_layer(pressure, u, v, heights=heights,
204
                                    bottom=bottom, depth=depth)
205
206
    u_shr = u_layer[-1] - u_layer[0]
207
    v_shr = v_layer[-1] - v_layer[0]
208
209
    shr_mag = np.sqrt((u_shr ** 2) + (v_shr ** 2))
210
211
    return u_shr, v_shr, shr_mag
212