|
1
|
|
|
# Copyright (c) 2008-2017 MetPy Developers. |
|
2
|
|
|
# Distributed under the terms of the BSD 3-Clause License. |
|
3
|
|
|
# SPDX-License-Identifier: BSD-3-Clause |
|
4
|
|
|
"""Contains a collection of generally useful calculation tools.""" |
|
5
|
|
|
|
|
6
|
|
|
import functools |
|
7
|
|
|
|
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import numpy.ma as ma |
|
10
|
|
|
from scipy.spatial import cKDTree |
|
11
|
|
|
|
|
12
|
|
|
from ..calc import (dewpoint, potential_temperature, pressure_at_height_above_pressure, |
|
13
|
|
|
saturation_mixing_ratio, vapor_pressure) |
|
14
|
|
|
from ..package_tools import Exporter |
|
15
|
|
|
from ..units import check_units, units |
|
16
|
|
|
|
|
17
|
|
|
exporter = Exporter(globals()) |
|
18
|
|
|
|
|
19
|
|
|
|
|
20
|
|
|
@exporter.export |
|
21
|
|
|
def resample_nn_1d(a, centers): |
|
22
|
|
|
"""Return one-dimensional nearest-neighbor indexes based on user-specified centers. |
|
23
|
|
|
|
|
24
|
|
|
Parameters |
|
25
|
|
|
---------- |
|
26
|
|
|
a : array-like |
|
27
|
|
|
1-dimensional array of numeric values from which to |
|
28
|
|
|
extract indexes of nearest-neighbors |
|
29
|
|
|
centers : array-like |
|
30
|
|
|
1-dimensional array of numeric values representing a subset of values to approximate |
|
31
|
|
|
|
|
32
|
|
|
Returns |
|
33
|
|
|
------- |
|
34
|
|
|
An array of indexes representing values closest to given array values |
|
35
|
|
|
|
|
36
|
|
|
""" |
|
37
|
|
|
ix = [] |
|
38
|
|
|
for center in centers: |
|
39
|
|
|
index = (np.abs(a - center)).argmin() |
|
40
|
|
|
if index not in ix: |
|
41
|
|
|
ix.append(index) |
|
42
|
|
|
return ix |
|
43
|
|
|
|
|
44
|
|
|
|
|
45
|
|
|
@exporter.export |
|
46
|
|
|
def nearest_intersection_idx(a, b): |
|
47
|
|
|
"""Determine the index of the point just before two lines with common x values. |
|
48
|
|
|
|
|
49
|
|
|
Parameters |
|
50
|
|
|
---------- |
|
51
|
|
|
a : array-like |
|
52
|
|
|
1-dimensional array of y-values for line 1 |
|
53
|
|
|
b : array-like |
|
54
|
|
|
1-dimensional array of y-values for line 2 |
|
55
|
|
|
|
|
56
|
|
|
Returns |
|
57
|
|
|
------- |
|
58
|
|
|
An array of indexes representing the index of the values |
|
59
|
|
|
just before the intersection(s) of the two lines. |
|
60
|
|
|
|
|
61
|
|
|
""" |
|
62
|
|
|
# Difference in the two y-value sets |
|
63
|
|
|
difference = a - b |
|
64
|
|
|
|
|
65
|
|
|
# Determine the point just before the intersection of the lines |
|
66
|
|
|
# Will return multiple points for multiple intersections |
|
67
|
|
|
sign_change_idx, = np.nonzero(np.diff(np.sign(difference))) |
|
68
|
|
|
|
|
69
|
|
|
return sign_change_idx |
|
70
|
|
|
|
|
71
|
|
|
|
|
72
|
|
|
@exporter.export |
|
73
|
|
|
def find_intersections(x, a, b, direction='all'): |
|
74
|
|
|
"""Calculate the best estimate of intersection. |
|
75
|
|
|
|
|
76
|
|
|
Calculates the best estimates of the intersection of two y-value |
|
77
|
|
|
data sets that share a common x-value set. |
|
78
|
|
|
|
|
79
|
|
|
Parameters |
|
80
|
|
|
---------- |
|
81
|
|
|
x : array-like |
|
82
|
|
|
1-dimensional array of numeric x-values |
|
83
|
|
|
a : array-like |
|
84
|
|
|
1-dimensional array of y-values for line 1 |
|
85
|
|
|
b : array-like |
|
86
|
|
|
1-dimensional array of y-values for line 2 |
|
87
|
|
|
direction : string |
|
88
|
|
|
specifies direction of crossing. 'all', 'increasing' (a becoming greater than b), |
|
89
|
|
|
or 'decreasing' (b becoming greater than a). |
|
90
|
|
|
|
|
91
|
|
|
Returns |
|
92
|
|
|
------- |
|
93
|
|
|
A tuple (x, y) of array-like with the x and y coordinates of the |
|
94
|
|
|
intersections of the lines. |
|
95
|
|
|
|
|
96
|
|
|
""" |
|
97
|
|
|
# Find the index of the points just before the intersection(s) |
|
98
|
|
|
nearest_idx = nearest_intersection_idx(a, b) |
|
99
|
|
|
next_idx = nearest_idx + 1 |
|
100
|
|
|
|
|
101
|
|
|
# Determine the sign of the change |
|
102
|
|
|
sign_change = np.sign(a[next_idx] - b[next_idx]) |
|
103
|
|
|
|
|
104
|
|
|
# x-values around each intersection |
|
105
|
|
|
_, x0 = _next_non_masked_element(x, nearest_idx) |
|
106
|
|
|
_, x1 = _next_non_masked_element(x, next_idx) |
|
107
|
|
|
|
|
108
|
|
|
# y-values around each intersection for the first line |
|
109
|
|
|
_, a0 = _next_non_masked_element(a, nearest_idx) |
|
110
|
|
|
_, a1 = _next_non_masked_element(a, next_idx) |
|
111
|
|
|
|
|
112
|
|
|
# y-values around each intersection for the second line |
|
113
|
|
|
_, b0 = _next_non_masked_element(b, nearest_idx) |
|
114
|
|
|
_, b1 = _next_non_masked_element(b, next_idx) |
|
115
|
|
|
|
|
116
|
|
|
# Calculate the x-intersection. This comes from finding the equations of the two lines, |
|
117
|
|
|
# one through (x0, a0) and (x1, a1) and the other through (x0, b0) and (x1, b1), |
|
118
|
|
|
# finding their intersection, and reducing with a bunch of algebra. |
|
119
|
|
|
delta_y0 = a0 - b0 |
|
120
|
|
|
delta_y1 = a1 - b1 |
|
121
|
|
|
intersect_x = (delta_y1 * x0 - delta_y0 * x1) / (delta_y1 - delta_y0) |
|
122
|
|
|
|
|
123
|
|
|
# Calculate the y-intersection of the lines. Just plug the x above into the equation |
|
124
|
|
|
# for the line through the a points. One could solve for y like x above, but this |
|
125
|
|
|
# causes weirder unit behavior and seems a little less good numerically. |
|
126
|
|
|
intersect_y = ((intersect_x - x0) / (x1 - x0)) * (a1 - a0) + a0 |
|
127
|
|
|
|
|
128
|
|
|
# Make a mask based on the direction of sign change desired |
|
129
|
|
|
if direction == 'increasing': |
|
130
|
|
|
mask = sign_change > 0 |
|
131
|
|
|
elif direction == 'decreasing': |
|
132
|
|
|
mask = sign_change < 0 |
|
133
|
|
|
elif direction == 'all': |
|
134
|
|
|
return intersect_x, intersect_y |
|
135
|
|
|
else: |
|
136
|
|
|
raise ValueError('Unknown option for direction: {0}'.format(str(direction))) |
|
137
|
|
|
return intersect_x[mask], intersect_y[mask] |
|
138
|
|
|
|
|
139
|
|
|
|
|
140
|
|
|
@exporter.export |
|
141
|
|
|
def interpolate_nans(x, y, kind='linear'): |
|
142
|
|
|
"""Interpolate NaN values in y. |
|
143
|
|
|
|
|
144
|
|
|
Interpolate NaN values in the y dimension. Works with unsorted x values. |
|
145
|
|
|
|
|
146
|
|
|
Parameters |
|
147
|
|
|
---------- |
|
148
|
|
|
x : array-like |
|
149
|
|
|
1-dimensional array of numeric x-values |
|
150
|
|
|
y : array-like |
|
151
|
|
|
1-dimensional array of numeric y-values |
|
152
|
|
|
kind : string |
|
153
|
|
|
specifies the kind of interpolation x coordinate - 'linear' or 'log' |
|
154
|
|
|
|
|
155
|
|
|
Returns |
|
156
|
|
|
------- |
|
157
|
|
|
An array of the y coordinate data with NaN values interpolated. |
|
158
|
|
|
|
|
159
|
|
|
""" |
|
160
|
|
|
x_sort_args = np.argsort(x) |
|
161
|
|
|
x = x[x_sort_args] |
|
162
|
|
|
y = y[x_sort_args] |
|
163
|
|
|
nans = np.isnan(y) |
|
164
|
|
|
if kind is 'linear': |
|
165
|
|
|
y[nans] = np.interp(x[nans], x[~nans], y[~nans]) |
|
166
|
|
|
elif kind is 'log': |
|
167
|
|
|
y[nans] = np.interp(np.log(x[nans]), np.log(x[~nans]), y[~nans]) |
|
168
|
|
|
else: |
|
169
|
|
|
raise ValueError('Unknown option for kind: {0}'.format(str(kind))) |
|
170
|
|
|
return y[x_sort_args] |
|
171
|
|
|
|
|
172
|
|
|
|
|
173
|
|
|
def _next_non_masked_element(a, idx): |
|
174
|
|
|
"""Return the next non masked element of a masked array. |
|
175
|
|
|
|
|
176
|
|
|
If an array is masked, return the next non-masked element (if the given index is masked). |
|
177
|
|
|
If no other unmasked points are after the given masked point, returns none. |
|
178
|
|
|
|
|
179
|
|
|
Parameters |
|
180
|
|
|
---------- |
|
181
|
|
|
a : array-like |
|
182
|
|
|
1-dimensional array of numeric values |
|
183
|
|
|
idx : integer |
|
184
|
|
|
index of requested element |
|
185
|
|
|
|
|
186
|
|
|
Returns |
|
187
|
|
|
------- |
|
188
|
|
|
Index of next non-masked element and next non-masked element |
|
189
|
|
|
|
|
190
|
|
|
""" |
|
191
|
|
|
try: |
|
192
|
|
|
next_idx = idx + a[idx:].mask.argmin() |
|
193
|
|
|
if ma.is_masked(a[next_idx]): |
|
194
|
|
|
return None, None |
|
195
|
|
|
else: |
|
196
|
|
|
return next_idx, a[next_idx] |
|
197
|
|
|
except (AttributeError, TypeError, IndexError): |
|
198
|
|
|
return idx, a[idx] |
|
199
|
|
|
|
|
200
|
|
|
|
|
201
|
|
|
def delete_masked_points(*arrs): |
|
202
|
|
|
"""Delete masked points from arrays. |
|
203
|
|
|
|
|
204
|
|
|
Takes arrays and removes masked points to help with calculations and plotting. |
|
205
|
|
|
|
|
206
|
|
|
Parameters |
|
207
|
|
|
---------- |
|
208
|
|
|
arrs : one or more array-like |
|
209
|
|
|
source arrays |
|
210
|
|
|
|
|
211
|
|
|
Returns |
|
212
|
|
|
------- |
|
213
|
|
|
arrs : one or more array-like |
|
214
|
|
|
arrays with masked elements removed |
|
215
|
|
|
|
|
216
|
|
|
""" |
|
217
|
|
|
if any(hasattr(a, 'mask') for a in arrs): |
|
218
|
|
|
keep = ~functools.reduce(np.logical_or, (np.ma.getmaskarray(a) for a in arrs)) |
|
219
|
|
|
return tuple(ma.asarray(a[keep]) for a in arrs) |
|
220
|
|
|
else: |
|
221
|
|
|
return arrs |
|
222
|
|
|
|
|
223
|
|
|
|
|
224
|
|
|
@exporter.export |
|
225
|
|
|
def reduce_point_density(points, radius, priority=None): |
|
226
|
|
|
r"""Return a mask to reduce the density of points in irregularly-spaced data. |
|
227
|
|
|
|
|
228
|
|
|
This function is used to down-sample a collection of scattered points (e.g. surface |
|
229
|
|
|
data), returning a mask that can be used to select the points from one or more arrays |
|
230
|
|
|
(e.g. arrays of temperature and dew point). The points selected can be controlled by |
|
231
|
|
|
providing an array of ``priority`` values (e.g. rainfall totals to ensure that |
|
232
|
|
|
stations with higher precipitation remain in the mask). |
|
233
|
|
|
|
|
234
|
|
|
Parameters |
|
235
|
|
|
---------- |
|
236
|
|
|
points : (N, K) array-like |
|
237
|
|
|
N locations of the points in K dimensional space |
|
238
|
|
|
radius : float |
|
239
|
|
|
minimum radius allowed between points |
|
240
|
|
|
priority : (N, K) array-like, optional |
|
241
|
|
|
If given, this should have the same shape as ``points``; these values will |
|
242
|
|
|
be used to control selection priority for points. |
|
243
|
|
|
|
|
244
|
|
|
Returns |
|
245
|
|
|
------- |
|
246
|
|
|
(N,) array-like of boolean values indicating whether points should be kept. This |
|
247
|
|
|
can be used directly to index numpy arrays to return only the desired points. |
|
248
|
|
|
|
|
249
|
|
|
Examples |
|
250
|
|
|
-------- |
|
251
|
|
|
>>> metpy.calc.reduce_point_density(np.array([1, 2, 3]), 1.) |
|
252
|
|
|
array([ True, False, True], dtype=bool) |
|
253
|
|
|
>>> metpy.calc.reduce_point_density(np.array([1, 2, 3]), 1., |
|
254
|
|
|
... priority=np.array([0.1, 0.9, 0.3])) |
|
255
|
|
|
array([False, True, False], dtype=bool) |
|
256
|
|
|
|
|
257
|
|
|
""" |
|
258
|
|
|
# Handle 1D input |
|
259
|
|
|
if points.ndim < 2: |
|
260
|
|
|
points = points.reshape(-1, 1) |
|
261
|
|
|
|
|
262
|
|
|
# Make a kd-tree to speed searching of data. |
|
263
|
|
|
tree = cKDTree(points) |
|
264
|
|
|
|
|
265
|
|
|
# Need to use sorted indices rather than sorting the position |
|
266
|
|
|
# so that the keep mask matches *original* order. |
|
267
|
|
|
if priority is not None: |
|
268
|
|
|
# Need to sort the locations in decreasing priority. |
|
269
|
|
|
sorted_indices = np.argsort(priority)[::-1] |
|
270
|
|
|
else: |
|
271
|
|
|
# Take advantage of iterator nature of range here to avoid making big lists |
|
272
|
|
|
sorted_indices = range(len(points)) |
|
273
|
|
|
|
|
274
|
|
|
# Keep all points initially |
|
275
|
|
|
keep = np.ones(len(points), dtype=np.bool) |
|
276
|
|
|
|
|
277
|
|
|
# Loop over all the potential points |
|
278
|
|
|
for ind in sorted_indices: |
|
279
|
|
|
# Only proceed if we haven't already excluded this point |
|
280
|
|
|
if keep[ind]: |
|
281
|
|
|
# Find the neighbors and eliminate them |
|
282
|
|
|
neighbors = tree.query_ball_point(points[ind], radius) |
|
283
|
|
|
keep[neighbors] = False |
|
284
|
|
|
|
|
285
|
|
|
# We just removed ourselves, so undo that |
|
286
|
|
|
keep[ind] = True |
|
287
|
|
|
|
|
288
|
|
|
return keep |
|
289
|
|
|
|
|
290
|
|
|
|
|
291
|
|
|
@exporter.export |
|
292
|
|
|
@check_units('[pressure]') |
|
293
|
|
|
def get_layer(p, datavar, bottom=None, depth=100 * units.hPa, interpolate=True): |
|
294
|
|
|
r"""Return an atmospheric layer from upper air data with the requested bottom and depth. |
|
295
|
|
|
|
|
296
|
|
|
This function will subset an upper air dataset to contain only the specified layer. The |
|
297
|
|
|
bottom of the layer can be specified with a pressure or height above the surface |
|
298
|
|
|
pressure. The bottom defaults to the surface pressure. The depth of the layer can be |
|
299
|
|
|
specified in terms of pressure or height above the bottom of the layer. If the top and |
|
300
|
|
|
bottom of the layer are not in the data, they are interpolated by default. |
|
301
|
|
|
|
|
302
|
|
|
Parameters |
|
303
|
|
|
---------- |
|
304
|
|
|
p : array-like |
|
305
|
|
|
Atmospheric pressure profile |
|
306
|
|
|
datavar : array-like |
|
307
|
|
|
Atmospheric variable measured at the given pressures |
|
308
|
|
|
bottom : `pint.Quantity` |
|
309
|
|
|
The bottom of the layer as a pressure or height above the surface pressure |
|
310
|
|
|
depth : `pint.Quantity` |
|
311
|
|
|
The thickness of the layer as a pressure or height above the bottom of the layer |
|
312
|
|
|
interpolate : bool |
|
313
|
|
|
Interpolate the top and bottom points if they are not in the given data |
|
314
|
|
|
|
|
315
|
|
|
Returns |
|
316
|
|
|
------- |
|
317
|
|
|
`pint.Quantity, pint.Quantity` |
|
318
|
|
|
The pressure and data variable of the layer |
|
319
|
|
|
|
|
320
|
|
|
""" |
|
321
|
|
|
# Make sure pressure and datavar are the same length |
|
322
|
|
|
if len(p) != len(datavar): |
|
323
|
|
|
raise ValueError('Pressure and data variable must have the same length.') |
|
324
|
|
|
|
|
325
|
|
|
# If no bottom is specified, use the first pressure value |
|
326
|
|
|
if not bottom: |
|
327
|
|
|
bottom_pressure = p[0] |
|
328
|
|
|
|
|
329
|
|
|
# If bottom is specified as a height (AGL), convert to pressure |
|
330
|
|
|
if bottom: |
|
331
|
|
|
if bottom.dimensionality == {'[length]': 1.0}: |
|
332
|
|
|
bottom_pressure = pressure_at_height_above_pressure(p[0], bottom) |
|
333
|
|
|
if bottom.dimensionality == {'[length]': -1.0, '[mass]': 1.0, '[time]': -2.0}: |
|
334
|
|
|
bottom_pressure = bottom |
|
335
|
|
|
|
|
336
|
|
|
# Calculate the pressure at the top of the layer |
|
337
|
|
|
if depth.dimensionality == {'[length]': 1.0}: |
|
338
|
|
|
top_pressure = pressure_at_height_above_pressure(bottom_pressure, depth) |
|
339
|
|
|
else: |
|
340
|
|
|
top_pressure = bottom_pressure - depth |
|
341
|
|
|
|
|
342
|
|
|
# Handle top or bottom values that are invalid |
|
343
|
|
|
if bottom_pressure > p[0]: |
|
344
|
|
|
raise ValueError( |
|
345
|
|
|
'Bottom of layer pressure is greater than the largest pressure in data.') |
|
346
|
|
|
if top_pressure < p[-1]: |
|
347
|
|
|
raise ValueError('Top of layer pressure is less than the lowest pressure in data.') |
|
348
|
|
|
if bottom_pressure < top_pressure: |
|
349
|
|
|
raise ValueError( |
|
350
|
|
|
'Pressure at the top of the layer is greater than that at the bottom.') |
|
351
|
|
|
|
|
352
|
|
|
# Mask the pressure values we have data for in the layer |
|
353
|
|
|
inds = (p <= bottom_pressure) & (p >= top_pressure) |
|
354
|
|
|
p_interp = p[inds] |
|
355
|
|
|
|
|
356
|
|
|
if interpolate: |
|
357
|
|
|
# If we don't have the bottom or top requested, append them |
|
358
|
|
|
if top_pressure not in p_interp: |
|
359
|
|
|
p_interp = np.sort(np.append(p_interp, top_pressure)) * units.hPa |
|
360
|
|
|
if bottom_pressure not in p_interp: |
|
361
|
|
|
p_interp = np.sort(np.append(p_interp, bottom_pressure)) * units.hPa |
|
362
|
|
|
|
|
363
|
|
|
# Interpolate for the possibly missing bottom/top pressure values |
|
364
|
|
|
sort_args = np.argsort(p) |
|
365
|
|
|
datavar_interp = np.interp(p_interp, p[sort_args], datavar[sort_args]) * units.degC |
|
366
|
|
|
p = p_interp |
|
367
|
|
|
datavar = datavar_interp |
|
368
|
|
|
else: |
|
369
|
|
|
datavar = datavar[inds] |
|
370
|
|
|
p = p_interp |
|
371
|
|
|
|
|
372
|
|
|
return p, datavar |
|
373
|
|
|
|
|
374
|
|
|
|
|
375
|
|
|
@exporter.export |
|
376
|
|
|
@check_units('[pressure]') |
|
377
|
|
|
def mixed_layer(p, datavar, bottom=None, depth=100 * units.hPa, interpolate=True): |
|
378
|
|
|
r"""Mix a variable over a layer using pressure as a mass-average. |
|
379
|
|
|
|
|
380
|
|
|
This function will integrate a data variable with respect to pressure and using the |
|
381
|
|
|
mean value theorem determine the average value. |
|
382
|
|
|
|
|
383
|
|
|
Parameters |
|
384
|
|
|
---------- |
|
385
|
|
|
p : array-like |
|
386
|
|
|
Atmospheric pressure profile |
|
387
|
|
|
datavar : array-like |
|
388
|
|
|
Atmospheric variable measured at the given pressures |
|
389
|
|
|
bottom : `pint.Quantity` |
|
390
|
|
|
The bottom of the layer as a pressure or height above the surface pressure |
|
391
|
|
|
depth : `pint.Quantity` |
|
392
|
|
|
The thickness of the layer as a pressure or height above the bottom of the layer |
|
393
|
|
|
interpolate : bool |
|
394
|
|
|
Interpolate the top and bottom points if they are not in the given data |
|
395
|
|
|
|
|
396
|
|
|
Returns |
|
397
|
|
|
------- |
|
398
|
|
|
`pint.Quantity` |
|
399
|
|
|
The mixed value of the data variable. |
|
400
|
|
|
|
|
401
|
|
|
""" |
|
402
|
|
|
p_layer, datavar_layer = get_layer(p, datavar, bottom, depth, interpolate) |
|
403
|
|
|
actual_depth = abs(p_layer[0] - p_layer[-1]) |
|
404
|
|
|
return (1. / actual_depth.m) * np.trapz(datavar_layer, p_layer) * datavar.units |
|
405
|
|
|
|
|
406
|
|
|
|
|
407
|
|
|
@exporter.export |
|
408
|
|
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
|
409
|
|
|
def mixed_parcel(p, T, Td, parcel_start_pressure=None, bottom=None, depth=100 * units.hPa, |
|
410
|
|
|
interpolate=True): |
|
411
|
|
|
r"""Calculate the properties of a parcel mixed from a layer. |
|
412
|
|
|
|
|
413
|
|
|
Determines the properties of an air parcel that is the result of complete mixing of a |
|
414
|
|
|
given atmospheric layer. |
|
415
|
|
|
|
|
416
|
|
|
Parameters |
|
417
|
|
|
---------- |
|
418
|
|
|
p : array-like |
|
419
|
|
|
Atmospheric pressure profile |
|
420
|
|
|
T : array-like |
|
421
|
|
|
Atmospheric temperature profile |
|
422
|
|
|
Td : array-like |
|
423
|
|
|
Atmospheric dewpoint profile |
|
424
|
|
|
parcel_start_pressure : `pint.Quantity` |
|
425
|
|
|
Pressure at which the mixed parcel should begin |
|
426
|
|
|
bottom : `pint.Quantity` |
|
427
|
|
|
The bottom of the layer as a pressure or height above the surface pressure |
|
428
|
|
|
depth : `pint.Quantity` |
|
429
|
|
|
The thickness of the layer as a pressure or height above the bottom of the layer |
|
430
|
|
|
interpolate : bool |
|
431
|
|
|
Interpolate the top and bottom points if they are not in the given data |
|
432
|
|
|
|
|
433
|
|
|
Returns |
|
434
|
|
|
------- |
|
435
|
|
|
`pint.Quantity, pint.Quantity, pint.Quantity` |
|
436
|
|
|
The pressure, temperature, and dewpoint of the mixed parcel. |
|
437
|
|
|
|
|
438
|
|
|
""" |
|
439
|
|
|
# If a parcel starting pressure is not provided, use the surface |
|
440
|
|
|
if not parcel_start_pressure: |
|
441
|
|
|
parcel_start_pressure = p[0] |
|
442
|
|
|
|
|
443
|
|
|
# Calculate the potential temperature and mixing ratio over the layer |
|
444
|
|
|
theta = potential_temperature(p, T) |
|
445
|
|
|
mixing_ratio = saturation_mixing_ratio(p, Td) |
|
446
|
|
|
|
|
447
|
|
|
# Mix the variables over the layer |
|
448
|
|
|
mean_theta = mixed_layer(p, theta, bottom, depth, interpolate) |
|
449
|
|
|
mean_mixing_ratio = mixed_layer(p, mixing_ratio, bottom, depth, interpolate) |
|
450
|
|
|
|
|
451
|
|
|
# Convert back to temperature |
|
452
|
|
|
mean_temperature = mean_theta / potential_temperature(parcel_start_pressure, |
|
453
|
|
|
1 * units.degK) |
|
454
|
|
|
|
|
455
|
|
|
# Convert back to dewpoint |
|
456
|
|
|
mean_vapor_pressure = vapor_pressure(parcel_start_pressure, mean_mixing_ratio) |
|
457
|
|
|
mean_dewpoint = dewpoint(mean_vapor_pressure) |
|
458
|
|
|
|
|
459
|
|
|
return parcel_start_pressure, mean_temperature.to(T.units), mean_dewpoint.to(Td.units) |
|
460
|
|
|
|
|
461
|
|
|
|
|
462
|
|
|
def log_interpolation(x, xp, fp, **kwargs): |
|
463
|
|
|
"""Interpolates data with logarithmic x-scale. |
|
464
|
|
|
|
|
465
|
|
|
Interpolation on a logarithmic x-scale for interpolating values in pressure coordinates. |
|
466
|
|
|
|
|
467
|
|
|
Parameters |
|
468
|
|
|
---------- |
|
469
|
|
|
x : array-like |
|
470
|
|
|
The x-coordinates of the interpolated values. |
|
471
|
|
|
xp : array-like |
|
472
|
|
|
The x-coordinates of the data points. |
|
473
|
|
|
fp : array-like |
|
474
|
|
|
The y-coordinates of the data points, same length as xp. |
|
475
|
|
|
|
|
476
|
|
|
Returns |
|
477
|
|
|
------- |
|
478
|
|
|
array-like |
|
479
|
|
|
The interpolated values, same shape as x. |
|
480
|
|
|
|
|
481
|
|
|
""" |
|
482
|
|
|
sort_args = np.argsort(xp) |
|
483
|
|
|
interpolated_vals = np.interp(np.log(x.m), np.log(xp.m[sort_args]), fp[sort_args], **kwargs) |
|
484
|
|
|
return interpolated_vals * fp.units |