1
|
|
|
# Copyright (c) 2008-2015 MetPy Developers. |
2
|
|
|
# Distributed under the terms of the BSD 3-Clause License. |
3
|
|
|
# SPDX-License-Identifier: BSD-3-Clause |
4
|
|
|
"""Utilities for use in making plots.""" |
5
|
|
|
|
6
|
|
|
from datetime import datetime |
7
|
|
|
import os |
8
|
|
|
|
9
|
|
|
from matplotlib.collections import LineCollection |
10
|
|
|
from matplotlib.pyplot import imread |
11
|
|
|
import numpy as np |
12
|
|
|
|
13
|
|
|
from ..units import concatenate |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
def add_timestamp(ax, time=None, x=0.99, y=-0.04, ha='right', **kwargs): |
17
|
|
|
"""Add a timestamp at plot creation time. |
18
|
|
|
|
19
|
|
|
Adds an ISO format timestamp with the time of plot creation to the plot. |
20
|
|
|
|
21
|
|
|
Parameters |
22
|
|
|
---------- |
23
|
|
|
ax : `matplotlib.axes.Axes` |
24
|
|
|
The `Axes` instance used for plotting |
25
|
|
|
time : `datetime.datetime` |
26
|
|
|
Specific time to be plotted - datetime.utcnow will be use if not specified |
27
|
|
|
x : float |
28
|
|
|
Relative x position on the axes of the timestamp |
29
|
|
|
y : float |
30
|
|
|
Relative y position on the axes of the timestamp |
31
|
|
|
ha : str |
32
|
|
|
Horizontal alignment of the time stamp string |
33
|
|
|
|
34
|
|
|
Returns |
35
|
|
|
------- |
36
|
|
|
ax : `matplotlib.axes.Axes` |
37
|
|
|
The `Axes` instance used for plotting |
38
|
|
|
|
39
|
|
|
""" |
40
|
|
|
if not time: |
41
|
|
|
time = datetime.utcnow() |
42
|
|
|
timestr = datetime.strftime(time, 'Created: %Y-%m-%dT%H:%M:%SZ') |
43
|
|
|
ax.text(x, y, timestr, ha=ha, transform=ax.transAxes, **kwargs) |
44
|
|
|
return ax |
45
|
|
|
|
46
|
|
|
|
47
|
|
|
def _add_logo(fig, x=10, y=25, zorder=100, which='metpy', size='small', **kwargs): |
48
|
|
|
"""Add the MetPy or Unidata logo to a figure. |
49
|
|
|
|
50
|
|
|
Adds an image to the figure. |
51
|
|
|
|
52
|
|
|
Parameters |
53
|
|
|
---------- |
54
|
|
|
fig : `matplotlib.figure` |
55
|
|
|
The `figure` instance used for plotting |
56
|
|
|
x : int |
57
|
|
|
x position padding in pixels |
58
|
|
|
y : float |
59
|
|
|
y position padding in pixels |
60
|
|
|
zorder : int |
61
|
|
|
The zorder of the logo |
62
|
|
|
which : str |
63
|
|
|
Which logo to plot 'metpy' or 'unidata' |
64
|
|
|
size : str |
65
|
|
|
Size of logo to be used. Can be 'small' for 75 px square or 'large' for |
66
|
|
|
150 px square. |
67
|
|
|
|
68
|
|
|
Returns |
69
|
|
|
------- |
70
|
|
|
fig : `matplotlib.figure` |
71
|
|
|
The `figure` instance used for plotting |
72
|
|
|
|
73
|
|
|
""" |
74
|
|
|
fname_suffix = {'small': '_75x75.png', |
75
|
|
|
'large': '_150x150.png'} |
76
|
|
|
fname_prefix = {'unidata': 'unidata', |
77
|
|
|
'metpy': 'metpy'} |
78
|
|
|
try: |
79
|
|
|
fname = fname_prefix[which] + fname_suffix[size] |
80
|
|
|
logo = imread(os.path.join(os.path.dirname(__file__), '_static', fname)) |
81
|
|
|
except KeyError: |
82
|
|
|
raise ValueError('Unknown logo size or selection') |
83
|
|
|
|
84
|
|
|
fig.figimage(logo, x, y, zorder=zorder, **kwargs) |
85
|
|
|
return fig |
86
|
|
|
|
87
|
|
|
|
88
|
|
|
def add_metpy_logo(fig, x=10, y=25, zorder=100, size='small', **kwargs): |
89
|
|
|
"""Add the MetPy logo to a figure. |
90
|
|
|
|
91
|
|
|
Adds an image of the MetPy logo to the figure. |
92
|
|
|
|
93
|
|
|
Parameters |
94
|
|
|
---------- |
95
|
|
|
fig : `matplotlib.figure` |
96
|
|
|
The `figure` instance used for plotting |
97
|
|
|
x : int |
98
|
|
|
x position padding in pixels |
99
|
|
|
y : float |
100
|
|
|
y position padding in pixels |
101
|
|
|
zorder : int |
102
|
|
|
The zorder of the logo |
103
|
|
|
size : str |
104
|
|
|
Size of logo to be used. Can be 'small' for 75 px square or 'large' for |
105
|
|
|
150 px square. |
106
|
|
|
|
107
|
|
|
Returns |
108
|
|
|
------- |
109
|
|
|
fig : `matplotlib.figure` |
110
|
|
|
The `figure` instance used for plotting |
111
|
|
|
|
112
|
|
|
""" |
113
|
|
|
_add_logo(fig, x=x, y=y, zorder=zorder, which='metpy', size=size, **kwargs) |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
def add_unidata_logo(fig, x=10, y=25, zorder=100, size='small', **kwargs): |
117
|
|
|
"""Add the Unidata logo to a figure. |
118
|
|
|
|
119
|
|
|
Adds an image of the MetPy logo to the figure. |
120
|
|
|
|
121
|
|
|
Parameters |
122
|
|
|
---------- |
123
|
|
|
fig : `matplotlib.figure` |
124
|
|
|
The `figure` instance used for plotting |
125
|
|
|
x : int |
126
|
|
|
x position padding in pixels |
127
|
|
|
y : float |
128
|
|
|
y position padding in pixels |
129
|
|
|
zorder : int |
130
|
|
|
The zorder of the logo |
131
|
|
|
size : str |
132
|
|
|
Size of logo to be used. Can be 'small' for 75 px square or 'large' for |
133
|
|
|
150 px square. |
134
|
|
|
|
135
|
|
|
Returns |
136
|
|
|
------- |
137
|
|
|
fig : `matplotlib.figure` |
138
|
|
|
The `figure` instance used for plotting |
139
|
|
|
|
140
|
|
|
""" |
141
|
|
|
_add_logo(fig, x=x, y=y, zorder=zorder, which='unidata', size=size, **kwargs) |
142
|
|
|
|
143
|
|
|
# Not part of public API |
144
|
|
|
def colored_line(x, y, c, **kwargs): |
145
|
|
|
"""Create a multi-colored line. |
146
|
|
|
|
147
|
|
|
Takes a set of points and turns them into a collection of lines colored by another array. |
148
|
|
|
|
149
|
|
|
Parameters |
150
|
|
|
---------- |
151
|
|
|
x : array-like |
152
|
|
|
x-axis coordinates |
153
|
|
|
y : array-like |
154
|
|
|
y-axis coordinates |
155
|
|
|
c : array-like |
156
|
|
|
values used for color-mapping |
157
|
|
|
kwargs : dict |
158
|
|
|
Other keyword arguments passed to :class:`matplotlib.collections.LineCollection` |
159
|
|
|
|
160
|
|
|
Returns |
161
|
|
|
------- |
162
|
|
|
The created :class:`matplotlib.collections.LineCollection` instance. |
163
|
|
|
|
164
|
|
|
""" |
165
|
|
|
# Mask out any NaN values |
166
|
|
|
nan_mask = ~(np.isnan(x) | np.isnan(y) | np.isnan(c)) |
167
|
|
|
x = x[nan_mask] |
168
|
|
|
y = y[nan_mask] |
169
|
|
|
c = c[nan_mask] |
170
|
|
|
|
171
|
|
|
# Paste values end to end |
172
|
|
|
points = concatenate([x, y]) |
173
|
|
|
|
174
|
|
|
# Exploit numpy's strides to present a view of these points without copying. |
175
|
|
|
# Dimensions are (segment, start/end, x/y). Since x and y are concatenated back to back, |
176
|
|
|
# moving between segments only moves one item; moving start to end is only an item; |
177
|
|
|
# The move between x any moves from one half of the array to the other |
178
|
|
|
num_pts = points.size // 2 |
179
|
|
|
final_shape = (num_pts - 1, 2, 2) |
180
|
|
|
final_strides = (points.itemsize, points.itemsize, num_pts * points.itemsize) |
181
|
|
|
segments = np.lib.stride_tricks.as_strided(points, shape=final_shape, |
182
|
|
|
strides=final_strides) |
183
|
|
|
|
184
|
|
|
# Create a LineCollection from the segments and set it to colormap based on c |
185
|
|
|
lc = LineCollection(segments, **kwargs) |
186
|
|
|
lc.set_array(c) |
187
|
|
|
return lc |
188
|
|
|
|