Completed
Pull Request — master (#545)
by
unknown
51s
created

significant_tornado()   B

Complexity

Conditions 1

Size

Total Lines 44

Duplication

Lines 0
Ratio 0 %

Importance

Changes 1
Bugs 0 Features 0
Metric Value
cc 1
c 1
b 0
f 0
dl 0
loc 44
rs 8.8571
1
# Copyright (c) 2008-2017 MetPy Developers.
2
# Distributed under the terms of the BSD 3-Clause License.
3
# SPDX-License-Identifier: BSD-3-Clause
4
"""Contains calculation of various derived indices."""
5
import numpy as np
6
7
from .thermo import mixing_ratio, saturation_vapor_pressure
8
from .tools import get_layer
9
from ..constants import g, rho_l
10
from ..package_tools import Exporter
11
from ..units import check_units, concatenate, units
12
13
exporter = Exporter(globals())
14
15
16
@exporter.export
17
@check_units('[temperature]', '[pressure]', '[pressure]')
18
def precipitable_water(dewpt, pressure, top=400 * units('hPa')):
19
    r"""Calculate precipitable water through the depth of a sounding.
20
21
    Default layer depth is sfc-400 hPa. Formula used is:
22
23
    .. math:: \frac{1}{pg} \int\limits_0^d x \,dp
24
25
    from [Tsonis2008]_, p. 170.
26
27
    Parameters
28
    ----------
29
    dewpt : `pint.Quantity`
30
        Atmospheric dewpoint profile
31
    pressure : `pint.Quantity`
32
        Atmospheric pressure profile
33
    top: `pint.Quantity`, optional
34
        The top of the layer, specified in pressure. Defaults to 400 hPa.
35
36
    Returns
37
    -------
38
    `pint.Quantity`
39
        The precipitable water in the layer
40
41
    """
42
    sort_inds = np.argsort(pressure[::-1])
43
    pressure = pressure[sort_inds]
44
    dewpt = dewpt[sort_inds]
45
46
    pres_layer, dewpt_layer = get_layer(pressure, dewpt, depth=pressure[0] - top)
47
48
    w = mixing_ratio(saturation_vapor_pressure(dewpt_layer), pres_layer)
49
    # Since pressure is in decreasing order, pw will be the negative of what we want.
50
    # Thus the *-1
51
    pw = -1. * (np.trapz(w.magnitude, pres_layer.magnitude) * (w.units * pres_layer.units) /
52
                (g * rho_l))
53
    return pw.to('millimeters')
54
55
56
@exporter.export
57
@check_units('[pressure]')
58
def mean_pressure_weighted(pressure, *args, **kwargs):
59
    r"""Calculate pressure-weighted mean of an arbitrary variable through a layer.
60
61
    Layer top and bottom specified in height or pressure.
62
63
    Parameters
64
    ----------
65
    pressure : `pint.Quantity`
66
        Atmospheric pressure profile
67
    *args : `pint.Quantity`
68
        Parameters for which the pressure-weighted mean is to be calculated.
69
    heights : `pint.Quantity`, optional
70
        Heights from sounding. Standard atmosphere heights assumed (if needed)
71
        if no heights are given.
72
    bottom: `pint.Quantity`, optional
73
        The bottom of the layer in either the provided height coordinate
74
        or in pressure. Don't provide in meters AGL unless the provided
75
        height coordinate is meters AGL. Default is the first observation,
76
        assumed to be the surface.
77
    depth: `pint.Quantity`, optional
78
        The depth of the layer in meters or hPa.
79
80
    Returns
81
    -------
82
    `pint.Quantity`
83
        u_mean: u-component of layer mean wind.
84
    `pint.Quantity`
85
        v_mean: v-component of layer mean wind.
86
87
    """
88
    heights = kwargs.pop('heights', None)
89
    bottom = kwargs.pop('bottom', None)
90
    depth = kwargs.pop('depth', None)
91
    ret = []  # Returned variable means in layer
92
    layer_arg = get_layer(pressure, *args, heights=heights,
93
                          bottom=bottom, depth=depth)
94
    layer_p = layer_arg[0]
95
    layer_arg = layer_arg[1:]
96
    # Taking the integral of the weights (pressure) to feed into the weighting
97
    # function. Said integral works out to this function:
98
    pres_int = 0.5 * (layer_p[-1].magnitude**2 - layer_p[0].magnitude**2)
99
    for i, datavar in enumerate(args):
100
        arg_mean = np.trapz(layer_arg[i] * layer_p, x=layer_p) / pres_int
101
        ret.append(arg_mean * datavar.units)
102
103
    return ret
104
105
106
@exporter.export
107
@check_units('[pressure]', '[speed]', '[speed]', '[length]')
108
def bunkers_storm_motion(pressure, u, v, heights):
109
    r"""Calculate the Bunkers right-mover and left-mover storm motions and sfc-6km mean flow.
110
111
    Uses the storm motion calculation from [Bunkers2000]_.
112
113
    Parameters
114
    ----------
115
    pressure : array-like
116
        Pressure from sounding
117
    u : array-like
118
        U component of the wind
119
    v : array-like
120
        V component of the wind
121
    heights : array-like
122
        Heights from sounding
123
124
    Returns
125
    -------
126
    right_mover: `pint.Quantity`
127
        U and v component of Bunkers RM storm motion
128
    left_mover: `pint.Quantity`
129
        U and v component of Bunkers LM storm motion
130
    wind_mean: `pint.Quantity`
131
        U and v component of sfc-6km mean flow
132
133
    """
134
    # mean wind from sfc-6km
135
    wind_mean = concatenate(mean_pressure_weighted(pressure, u, v, heights=heights,
136
                                                   depth=6000 * units('meter')))
137
138
    # mean wind from sfc-500m
139
    wind_500m = concatenate(mean_pressure_weighted(pressure, u, v, heights=heights,
140
                                                   depth=500 * units('meter')))
141
142
    # mean wind from 5.5-6km
143
    wind_5500m = concatenate(mean_pressure_weighted(pressure, u, v, heights=heights,
144
                                                    depth=500 * units('meter'),
145
                                                    bottom=heights[0] +
146
                                                    5500 * units('meter')))
147
148
    # Calculate the shear vector from sfc-500m to 5.5-6km
149
    shear = wind_5500m - wind_500m
150
151
    # Take the cross product of the wind shear and k, and divide by the vector magnitude and
152
    # multiply by the deviaton empirically calculated in Bunkers (2000) (7.5 m/s)
153
    shear_cross = concatenate([shear[1], -shear[0]])
154
    rdev = shear_cross * (7.5 * units('m/s').to(u.units) / np.hypot(*shear))
155
156
    # Add the deviations to the layer average wind to get the RM motion
157
    right_mover = wind_mean + rdev
158
159
    # Subtract the deviations to get the LM motion
160
    left_mover = wind_mean - rdev
161
162
    return right_mover, left_mover, wind_mean
163
164
165
@exporter.export
166
@check_units('[pressure]', '[speed]', '[speed]')
167
def bulk_shear(pressure, u, v, heights=None, bottom=None, depth=None):
168
    r"""Calculate bulk shear through a layer.
169
170
    Layer top and bottom specified in meters or pressure.
171
172
    Parameters
173
    ----------
174
    pressure : `pint.Quantity`
175
        Atmospheric pressure profile
176
    u : `pint.Quantity`
177
        U-component of wind.
178
    v : `pint.Quantity`
179
        V-component of wind.
180
    height : `pint.Quantity`, optional
181
        Heights from sounding
182
    depth: `pint.Quantity`, optional
183
        The depth of the layer in meters or hPa
184
    bottom: `pint.Quantity`, optional
185
        The bottom of the layer in meters or hPa.
186
        If in meters, must be in the same coordinates as the given
187
        heights (i.e., don't use meters AGL unless given heights
188
        are in meters AGL.) Default is the surface (1st observation.)
189
190
    Returns
191
    -------
192
    u_shr: `pint.Quantity`
193
        u-component of layer bulk shear
194
    v_shr: `pint.Quantity`
195
        v-component of layer bulk shear
196
197
    """
198
    _, u_layer, v_layer = get_layer(pressure, u, v, heights=heights,
199
                                    bottom=bottom, depth=depth)
200
201
    u_shr = u_layer[-1] - u_layer[0]
202
    v_shr = v_layer[-1] - v_layer[0]
203
204
    return u_shr, v_shr
205
206
207
@exporter.export
208
def supercell_composite(mucape, effective_storm_helicity, effective_shear):
209
    r"""Calculate the supercell composite parameter.
210
211
    The supercell composite parameter is designed to identify
212
    environments favorable for the development of supercells,
213
    and is calculated using the formula developed by
214
    [Thompson2004]_:
215
216
    SCP = (mucape / 1000 J/kg) * (effective_storm_helicity / 50 m^2/s^2) *
217
          (effective_shear / 20 m/s)
218
219
    The effective_shear term is set to zero below 10 m/s and
220
    capped at 1 when effective_shear exceeds 20 m/s.
221
222
    Parameters
223
    ----------
224
    mucape : `pint.Quantity`
225
        Most-unstable CAPE
226
    effective_storm_helicity : `pint.Quantity`
227
        Effective-layer storm-relative helicity
228
    effective_shear : `pint.Quantity`
229
        Effective bulk shear
230
231
    Returns
232
    -------
233
    array-like
234
        supercell composite
235
236
    """
237
    effective_shear = np.clip(effective_shear, None, 20 * units('m/s'))
238
    effective_shear[effective_shear < 10 * units('m/s')] = 0 * units('m/s')
239
    effective_shear = effective_shear / (20 * units('m/s'))
240
241
    return ((mucape / (1000 * units('J/kg'))) *
242
            (effective_storm_helicity / (50 * units('m^2/s^2'))) *
243
            effective_shear).to('dimensionless')
244
245
246
@exporter.export
247
def significant_tornado(sbcape, sblcl, storm_helicity_1km, shear_6km):
248
    r"""Calculate the significant tornado parameter (fixed layer).
249
250
    The significant tornado parameter is designed to identify
251
    environments favorable for the production of significant
252
    tornadoes contingent upon the development of supercells.
253
    It's calculated according to the formula used on the SPC
254
    mesoanalysis page, updated in [Thompson2004]_:
255
256
    sigtor = (sbcape / 1500 J/kg) * ((2000 m - sblcl) / 1000 m) *
257
             (storm_helicity_1km / 150 m^s/s^2) * (shear_6km6 / 20 m/s)
258
259
    The sblcl term is set to zero when the lcl is above 2000m and
260
    capped at 1 when below 1000m, and the shr6 term is set to 0
261
    when shr6 is below 12.5 m/s and maxed out at 1.5 when shr6
262
    exceeds 30 m/s.
263
264
    Parameters
265
    ----------
266
    sbcape : `pint.Quantity`
267
        Surface-based CAPE
268
    sblcl : `pint.Quantity`
269
        Surface-based lifted condensation level
270
    storm_helicity_1km : `pint.Quantity`
271
        Surface-1km storm-relative helicity
272
    shear_6km : `pint.Quantity`
273
        Surface-6km bulk shear
274
275
    Returns
276
    -------
277
    array-like
278
        significant tornado parameter
279
280
    """
281
    sblcl = np.clip(sblcl, 1000 * units('meter'), 2000 * units('meter'))
282
    sblcl[sblcl > 2000 * units('meter')] = 0 * units('meter')
283
    sblcl = (2000. * units('meter') - sblcl) / (1000. * units('meter'))
284
    shear_6km = np.clip(shear_6km, None, 30 * units('m/s'))
285
    shear_6km[shear_6km < 12.5 * units('m/s')] = 0 * units('m/s')
286
    shear_6km = shear_6km / (20 * units('m/s'))
287
288
    return ((sbcape / (1500. * units('J/kg'))) *
289
            sblcl * (storm_helicity_1km / (150. * units('m^2/s^2'))) * shear_6km)
290