1
|
|
|
# Copyright (c) 2008-2016 MetPy Developers. |
2
|
|
|
# Distributed under the terms of the BSD 3-Clause License. |
3
|
|
|
# SPDX-License-Identifier: BSD-3-Clause |
4
|
|
|
""" |
5
|
|
|
========================================= |
6
|
|
|
Wind and Sea Level Pressure Interpolation |
7
|
|
|
========================================= |
8
|
|
|
|
9
|
|
|
Interpolate sea level pressure, as well as wind component data, |
10
|
|
|
to make a consistent looking analysis, featuring contours of pressure and wind barbs. |
11
|
|
|
""" |
12
|
|
|
import cartopy |
13
|
|
|
import cartopy.crs as ccrs |
14
|
|
|
from matplotlib.colors import BoundaryNorm |
15
|
|
|
import matplotlib.pyplot as plt |
16
|
|
|
import numpy as np |
17
|
|
|
|
18
|
|
|
from metpy.calc import get_wind_components |
19
|
|
|
from metpy.cbook import get_test_data |
20
|
|
|
from metpy.gridding.gridding_functions import interpolate, remove_nan_observations |
21
|
|
|
from metpy.units import units |
22
|
|
|
|
23
|
|
|
from_proj = ccrs.Geodetic() |
24
|
|
|
to_proj = ccrs.AlbersEqualArea(central_longitude=-97., central_latitude=38.) |
25
|
|
|
|
26
|
|
|
|
27
|
|
View Code Duplication |
def station_test_data(variable_names, proj_from=None, proj_to=None): |
|
|
|
|
28
|
|
|
f = get_test_data('station_data.txt') |
29
|
|
|
|
30
|
|
|
all_data = np.loadtxt(f, skiprows=1, delimiter=',', |
31
|
|
|
usecols=(1, 2, 3, 4, 5, 6, 7, 17, 18, 19), |
32
|
|
|
dtype=np.dtype([('stid', '3S'), ('lat', 'f'), ('lon', 'f'), |
33
|
|
|
('slp', 'f'), ('air_temperature', 'f'), |
34
|
|
|
('cloud_fraction', 'f'), ('dewpoint', 'f'), |
35
|
|
|
('weather', '16S'), |
36
|
|
|
('wind_dir', 'f'), ('wind_speed', 'f')])) |
37
|
|
|
|
38
|
|
|
all_stids = [s.decode('ascii') for s in all_data['stid']] |
39
|
|
|
data = np.concatenate([all_data[all_stids.index(site)].reshape(1, ) for site in all_stids]) |
40
|
|
|
|
41
|
|
|
value = data[variable_names] |
42
|
|
|
lon = data['lon'] |
43
|
|
|
lat = data['lat'] |
44
|
|
|
|
45
|
|
|
if proj_from is not None and proj_to is not None: |
46
|
|
|
proj_points = proj_to.transform_points(proj_from, lon, lat) |
47
|
|
|
return proj_points[:, 0], proj_points[:, 1], value |
48
|
|
|
|
49
|
|
|
return lon, lat, value |
50
|
|
|
|
51
|
|
|
|
52
|
|
|
########################################### |
53
|
|
|
# Get pressure information using the sample station data |
54
|
|
|
xp, yp, pres = station_test_data(['slp'], from_proj, to_proj) |
55
|
|
|
|
56
|
|
|
########################################### |
57
|
|
|
# Remove all missing data from pressure |
58
|
|
|
pres = np.array([p[0] for p in pres]) |
59
|
|
|
|
60
|
|
|
xp, yp, pres = remove_nan_observations(xp, yp, pres) |
61
|
|
|
|
62
|
|
|
########################################### |
63
|
|
|
# Interpolate pressure as usual |
64
|
|
|
slpgridx, slpgridy, slp = interpolate(xp, yp, pres, interp_type='cressman', |
65
|
|
|
minimum_neighbors=1, search_radius=400000, hres=100000) |
66
|
|
|
|
67
|
|
|
########################################### |
68
|
|
|
# Get wind information |
69
|
|
|
x, y, wind = station_test_data(['wind_speed', 'wind_dir'], from_proj, to_proj) |
70
|
|
|
|
71
|
|
|
########################################### |
72
|
|
|
# Remove bad data from wind information |
73
|
|
|
wind_speed = np.array([w[0] for w in wind]) |
74
|
|
|
wind_dir = np.array([w[1] for w in wind]) |
75
|
|
|
|
76
|
|
|
good_indices = np.where((~np.isnan(wind_dir)) & (~np.isnan(wind_speed))) |
77
|
|
|
|
78
|
|
|
x = x[good_indices] |
79
|
|
|
y = y[good_indices] |
80
|
|
|
wind_speed = wind_speed[good_indices] |
81
|
|
|
wind_dir = wind_dir[good_indices] |
82
|
|
|
|
83
|
|
|
########################################### |
84
|
|
|
# Calculate u and v components of wind and then interpolate both. |
85
|
|
|
# |
86
|
|
|
# Both will have the same underlying grid so throw away grid returned from v interpolation. |
87
|
|
|
u, v = get_wind_components((wind_speed * units('m/s')).to('knots'), |
88
|
|
|
wind_dir * units.degree) |
89
|
|
|
|
90
|
|
|
windgridx, windgridy, uwind = interpolate(x, y, np.array(u), interp_type='cressman', |
91
|
|
|
search_radius=400000, hres=100000) |
92
|
|
|
|
93
|
|
|
_, _, vwind = interpolate(x, y, np.array(v), interp_type='cressman', search_radius=400000, |
94
|
|
|
hres=100000) |
95
|
|
|
|
96
|
|
|
########################################### |
97
|
|
|
# Get temperature information |
98
|
|
|
levels = list(range(-20, 20, 1)) |
99
|
|
|
cmap = plt.get_cmap('viridis') |
100
|
|
|
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) |
101
|
|
|
|
102
|
|
|
xt, yt, t = station_test_data('air_temperature', from_proj, to_proj) |
103
|
|
|
xt, yt, t = remove_nan_observations(xt, yt, t) |
104
|
|
|
|
105
|
|
|
tempx, tempy, temp = interpolate(xt, yt, t, interp_type='cressman', minimum_neighbors=3, |
106
|
|
|
search_radius=400000, hres=35000) |
107
|
|
|
|
108
|
|
|
temp = np.ma.masked_where(np.isnan(temp), temp) |
109
|
|
|
|
110
|
|
|
########################################### |
111
|
|
|
# Set up the map and plot the interpolated grids appropriately. |
112
|
|
|
fig = plt.figure(figsize=(20, 10)) |
113
|
|
|
view = fig.add_subplot(1, 1, 1, projection=to_proj) |
114
|
|
|
|
115
|
|
|
view.set_extent([-120, -70, 20, 50]) |
116
|
|
|
view.add_feature(cartopy.feature.NaturalEarthFeature(category='cultural', |
117
|
|
|
name='admin_1_states_provinces_lakes', |
118
|
|
|
scale='50m', facecolor='none')) |
119
|
|
|
view.add_feature(cartopy.feature.OCEAN) |
120
|
|
|
view.add_feature(cartopy.feature.COASTLINE) |
121
|
|
|
view.add_feature(cartopy.feature.BORDERS, linestyle=':') |
122
|
|
|
|
123
|
|
|
cs = view.contour(slpgridx, slpgridy, slp, colors='k', levels=list(range(990, 1034, 4))) |
124
|
|
|
plt.clabel(cs, inline=1, fontsize=12, fmt='%i') |
125
|
|
|
|
126
|
|
|
mmb = view.pcolormesh(tempx, tempy, temp, cmap=cmap, norm=norm) |
127
|
|
|
plt.colorbar(mmb, shrink=.4, pad=0.02, boundaries=levels) |
128
|
|
|
|
129
|
|
|
view.barbs(windgridx, windgridy, uwind, vwind, alpha=.4, length=5) |
130
|
|
|
|
131
|
|
|
plt.title('Surface Temperature (shaded), SLP, and Wind.') |
132
|
|
|
|
133
|
|
|
plt.show() |
134
|
|
|
|