1
|
|
|
# Copyright (c) 2016,2017 MetPy Developers. |
2
|
|
|
# Distributed under the terms of the BSD 3-Clause License. |
3
|
|
|
# SPDX-License-Identifier: BSD-3-Clause |
4
|
|
|
"""Tests for `calc.tools` module.""" |
5
|
|
|
|
6
|
|
|
import numpy as np |
7
|
|
|
import numpy.ma as ma |
8
|
|
|
import pytest |
9
|
|
|
|
10
|
|
|
from metpy.calc import (find_intersections, get_layer, get_layer_heights, |
11
|
|
|
interp, interpolate_nans, log_interp, |
12
|
|
|
nearest_intersection_idx, pressure_to_height_std, |
13
|
|
|
reduce_point_density, resample_nn_1d) |
14
|
|
|
from metpy.calc.tools import (_get_bound_pressure_height, _greater_or_close, _less_or_close, |
15
|
|
|
_next_non_masked_element, delete_masked_points) |
16
|
|
|
from metpy.testing import assert_array_almost_equal, assert_array_equal |
17
|
|
|
from metpy.units import units |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
def test_resample_nn(): |
21
|
|
|
"""Test 1d nearest neighbor functionality.""" |
22
|
|
|
a = np.arange(5.) |
23
|
|
|
b = np.array([2, 3.8]) |
24
|
|
|
truth = np.array([2, 4]) |
25
|
|
|
|
26
|
|
|
assert_array_equal(truth, resample_nn_1d(a, b)) |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
def test_nearest_intersection_idx(): |
30
|
|
|
"""Test nearest index to intersection functionality.""" |
31
|
|
|
x = np.linspace(5, 30, 17) |
32
|
|
|
y1 = 3 * x**2 |
33
|
|
|
y2 = 100 * x - 650 |
34
|
|
|
truth = np.array([2, 12]) |
35
|
|
|
|
36
|
|
|
assert_array_equal(truth, nearest_intersection_idx(y1, y2)) |
37
|
|
|
|
38
|
|
|
|
39
|
|
|
@pytest.mark.parametrize('direction, expected', [ |
40
|
|
|
('all', np.array([[8.88, 24.44], [238.84, 1794.53]])), |
41
|
|
|
('increasing', np.array([[24.44], [1794.53]])), |
42
|
|
|
('decreasing', np.array([[8.88], [238.84]])) |
43
|
|
|
]) |
44
|
|
|
def test_find_intersections(direction, expected): |
45
|
|
|
"""Test finding the intersection of two curves functionality.""" |
46
|
|
|
x = np.linspace(5, 30, 17) |
47
|
|
|
y1 = 3 * x**2 |
48
|
|
|
y2 = 100 * x - 650 |
49
|
|
|
# Note: Truth is what we will get with this sampling, not the mathematical intersection |
50
|
|
|
assert_array_almost_equal(expected, find_intersections(x, y1, y2, direction=direction), 2) |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
def test_find_intersections_no_intersections(): |
54
|
|
|
"""Test finding the intersection of two curves with no intersections.""" |
55
|
|
|
x = np.linspace(5, 30, 17) |
56
|
|
|
y1 = 3 * x + 0 |
57
|
|
|
y2 = 5 * x + 5 |
58
|
|
|
# Note: Truth is what we will get with this sampling, not the mathematical intersection |
59
|
|
|
truth = np.array([[], |
60
|
|
|
[]]) |
61
|
|
|
assert_array_equal(truth, find_intersections(x, y1, y2)) |
62
|
|
|
|
63
|
|
|
|
64
|
|
|
def test_find_intersections_invalid_direction(): |
65
|
|
|
"""Test exception if an invalid direction is given.""" |
66
|
|
|
x = np.linspace(5, 30, 17) |
67
|
|
|
y1 = 3 * x ** 2 |
68
|
|
|
y2 = 100 * x - 650 |
69
|
|
|
with pytest.raises(ValueError): |
70
|
|
|
find_intersections(x, y1, y2, direction='increaing') |
71
|
|
|
|
72
|
|
|
|
73
|
|
|
@pytest.mark.parametrize('direction, expected', [ |
74
|
|
|
('all', np.array([[0., 3.5, 4.33333333, 7., 9., 10., 11.5, 13.], np.zeros(8)])), |
75
|
|
|
('increasing', np.array([[0., 4.333, 7., 11.5], np.zeros(4)])), |
76
|
|
|
('decreasing', np.array([[3.5, 10.], np.zeros(2)])) |
77
|
|
|
]) |
78
|
|
|
def test_find_intersections_intersections_in_data_at_ends(direction, expected): |
79
|
|
|
"""Test finding intersections when intersections are in the data. |
80
|
|
|
|
81
|
|
|
Test data includes points of intersection, sequential points of intersection, intersection |
82
|
|
|
at the ends of the data, and intersections in increasing/decreasing direction. |
83
|
|
|
""" |
84
|
|
|
x = np.arange(14) |
85
|
|
|
y1 = np.array([0, 3, 2, 1, -1, 2, 2, 0, 1, 0, 0, -2, 2, 0]) |
86
|
|
|
y2 = np.zeros_like(y1) |
87
|
|
|
assert_array_almost_equal(expected, find_intersections(x, y1, y2, direction=direction), 2) |
88
|
|
|
|
89
|
|
|
|
90
|
|
|
def test_interpolate_nan_linear(): |
91
|
|
|
"""Test linear interpolation of arrays with NaNs in the y-coordinate.""" |
92
|
|
|
x = np.linspace(0, 20, 15) |
93
|
|
|
y = 5 * x + 3 |
94
|
|
|
nan_indexes = [1, 5, 11, 12] |
95
|
|
|
y_with_nan = y.copy() |
96
|
|
|
y_with_nan[nan_indexes] = np.nan |
97
|
|
|
assert_array_almost_equal(y, interpolate_nans(x, y_with_nan), 2) |
98
|
|
|
|
99
|
|
|
|
100
|
|
|
def test_interpolate_nan_log(): |
101
|
|
|
"""Test log interpolation of arrays with NaNs in the y-coordinate.""" |
102
|
|
|
x = np.logspace(1, 5, 15) |
103
|
|
|
y = 5 * np.log(x) + 3 |
104
|
|
|
nan_indexes = [1, 5, 11, 12] |
105
|
|
|
y_with_nan = y.copy() |
106
|
|
|
y_with_nan[nan_indexes] = np.nan |
107
|
|
|
assert_array_almost_equal(y, interpolate_nans(x, y_with_nan, kind='log'), 2) |
108
|
|
|
|
109
|
|
|
|
110
|
|
|
def test_interpolate_nan_invalid(): |
111
|
|
|
"""Test log interpolation with invalid parameter.""" |
112
|
|
|
x = np.logspace(1, 5, 15) |
113
|
|
|
y = 5 * np.log(x) + 3 |
114
|
|
|
with pytest.raises(ValueError): |
115
|
|
|
interpolate_nans(x, y, kind='loog') |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
@pytest.mark.parametrize('mask, expected_idx, expected_element', [ |
119
|
|
|
([False, False, False, False, False], 1, 1), |
120
|
|
|
([False, True, True, False, False], 3, 3), |
121
|
|
|
([False, True, True, True, True], None, None) |
122
|
|
|
]) |
123
|
|
View Code Duplication |
def test_non_masked_elements(mask, expected_idx, expected_element): |
|
|
|
|
124
|
|
|
"""Test with a valid element.""" |
125
|
|
|
a = ma.masked_array(np.arange(5), mask=mask) |
126
|
|
|
idx, element = _next_non_masked_element(a, 1) |
127
|
|
|
assert idx == expected_idx |
128
|
|
|
assert element == expected_element |
129
|
|
|
|
130
|
|
|
|
131
|
|
|
@pytest.fixture |
132
|
|
|
def thin_point_data(): |
133
|
|
|
r"""Provide scattered points for testing.""" |
134
|
|
|
xy = np.array([[0.8793620, 0.9005706], [0.5382446, 0.8766988], [0.6361267, 0.1198620], |
135
|
|
|
[0.4127191, 0.0270573], [0.1486231, 0.3121822], [0.2607670, 0.4886657], |
136
|
|
|
[0.7132257, 0.2827587], [0.4371954, 0.5660840], [0.1318544, 0.6468250], |
137
|
|
|
[0.6230519, 0.0682618], [0.5069460, 0.2326285], [0.1324301, 0.5609478], |
138
|
|
View Code Duplication |
[0.7975495, 0.2109974], [0.7513574, 0.9870045], [0.9305814, 0.0685815], |
|
|
|
|
139
|
|
|
[0.5271641, 0.7276889], [0.8116574, 0.4795037], [0.7017868, 0.5875983], |
140
|
|
|
[0.5591604, 0.5579290], [0.1284860, 0.0968003], [0.2857064, 0.3862123]]) |
141
|
|
|
return xy |
142
|
|
|
|
143
|
|
|
|
144
|
|
|
@pytest.mark.parametrize('radius, truth', |
145
|
|
|
[(2.0, np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
146
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=np.bool)), |
147
|
|
|
(1.0, np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
148
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 0], dtype=np.bool)), |
149
|
|
|
(0.3, np.array([1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, |
150
|
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0], dtype=np.bool)), |
151
|
|
|
(0.1, np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, |
152
|
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=np.bool)) |
153
|
|
|
]) |
154
|
|
|
def test_reduce_point_density(thin_point_data, radius, truth): |
155
|
|
|
r"""Test that reduce_point_density works.""" |
156
|
|
|
assert_array_equal(reduce_point_density(thin_point_data, radius=radius), truth) |
157
|
|
|
|
158
|
|
|
|
159
|
|
|
@pytest.mark.parametrize('radius, truth', |
160
|
|
|
[(2.0, np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
161
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1], dtype=np.bool)), |
162
|
|
|
(0.7, np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
163
|
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 1], dtype=np.bool)), |
164
|
|
|
(0.3, np.array([1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, |
165
|
|
|
0, 0, 0, 1, 0, 0, 0, 1, 0, 1], dtype=np.bool)), |
166
|
|
|
(0.1, np.array([1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, |
167
|
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=np.bool)) |
168
|
|
|
]) |
169
|
|
|
def test_reduce_point_density_priority(thin_point_data, radius, truth): |
170
|
|
|
r"""Test that reduce_point_density works properly with priority.""" |
171
|
|
|
key = np.array([8, 6, 2, 8, 6, 4, 4, 8, 8, 6, 3, 4, 3, 0, 7, 4, 3, 2, 3, 3, 9]) |
172
|
|
|
assert_array_equal(reduce_point_density(thin_point_data, radius, key), truth) |
173
|
|
|
|
174
|
|
|
|
175
|
|
|
def test_reduce_point_density_1d(): |
176
|
|
|
r"""Test that reduce_point_density works with 1D points.""" |
177
|
|
|
x = np.array([1, 3, 4, 8, 9, 10]) |
178
|
|
|
assert_array_equal(reduce_point_density(x, 2.5), |
179
|
|
|
np.array([1, 0, 1, 1, 0, 0], dtype=np.bool)) |
180
|
|
|
|
181
|
|
|
|
182
|
|
|
def test_delete_masked_points(): |
183
|
|
|
"""Test deleting masked points.""" |
184
|
|
|
a = ma.masked_array(np.arange(5), mask=[False, True, False, False, False]) |
185
|
|
|
b = ma.masked_array(np.arange(5), mask=[False, False, False, True, False]) |
186
|
|
|
expected = np.array([0, 2, 4]) |
187
|
|
|
a, b = delete_masked_points(a, b) |
188
|
|
|
assert_array_equal(a, expected) |
189
|
|
|
assert_array_equal(b, expected) |
190
|
|
|
|
191
|
|
|
|
192
|
|
|
def test_log_interp(): |
193
|
|
|
"""Test interpolating with log x-scale.""" |
194
|
|
|
x_log = np.array([1e3, 1e4, 1e5, 1e6]) |
195
|
|
|
y_log = np.log(x_log) * 2 + 3 |
196
|
|
|
x_interp = np.array([5e3, 5e4, 5e5]) |
197
|
|
|
y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548]) |
198
|
|
|
y_interp = log_interp(x_interp, x_log, y_log) |
199
|
|
|
assert_array_almost_equal(y_interp, y_interp_truth, 7) |
200
|
|
|
|
201
|
|
|
|
202
|
|
|
def test_log_interp_units(): |
203
|
|
|
"""Test interpolating with log x-scale with units.""" |
204
|
|
|
x_log = np.array([1e3, 1e4, 1e5, 1e6]) * units.hPa |
205
|
|
|
y_log = (np.log(x_log.m) * 2 + 3) * units.degC |
206
|
|
|
x_interp = np.array([5e5, 5e6, 5e7]) * units.Pa |
207
|
|
|
y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548]) * units.degC |
208
|
|
|
y_interp = log_interp(x_interp, x_log, y_log) |
209
|
|
|
assert_array_almost_equal(y_interp, y_interp_truth, 7) |
210
|
|
|
|
211
|
|
|
|
212
|
|
|
@pytest.fixture |
213
|
|
|
def get_bounds_data(): |
214
|
|
|
"""Provide pressure and height data for testing layer bounds calculation.""" |
215
|
|
|
pressures = np.linspace(1000, 100, 10) * units.hPa |
216
|
|
|
heights = pressure_to_height_std(pressures) |
217
|
|
|
return pressures, heights |
218
|
|
|
|
219
|
|
|
|
220
|
|
|
@pytest.mark.parametrize('pressure, bound, hgts, interp, expected', [ |
221
|
|
|
(get_bounds_data()[0], 900 * units.hPa, None, True, |
222
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
223
|
|
|
(get_bounds_data()[0], 900 * units.hPa, None, False, |
224
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
225
|
|
|
(get_bounds_data()[0], 870 * units.hPa, None, True, |
226
|
|
|
(870 * units.hPa, 1.2665298 * units.kilometer)), |
227
|
|
|
(get_bounds_data()[0], 870 * units.hPa, None, False, |
228
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
229
|
|
|
(get_bounds_data()[0], 0.9880028 * units.kilometer, None, True, |
230
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
231
|
|
|
(get_bounds_data()[0], 0.9880028 * units.kilometer, None, False, |
232
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
233
|
|
|
(get_bounds_data()[0], 1.2665298 * units.kilometer, None, True, |
234
|
|
|
(870 * units.hPa, 1.2665298 * units.kilometer)), |
235
|
|
|
(get_bounds_data()[0], 1.2665298 * units.kilometer, None, False, |
236
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
237
|
|
|
(get_bounds_data()[0], 900 * units.hPa, get_bounds_data()[1], True, |
238
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
239
|
|
|
(get_bounds_data()[0], 900 * units.hPa, get_bounds_data()[1], False, |
240
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
241
|
|
|
(get_bounds_data()[0], 870 * units.hPa, get_bounds_data()[1], True, |
242
|
|
|
(870 * units.hPa, 1.2643214 * units.kilometer)), |
243
|
|
|
(get_bounds_data()[0], 870 * units.hPa, get_bounds_data()[1], False, |
244
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
245
|
|
|
(get_bounds_data()[0], 0.9880028 * units.kilometer, get_bounds_data()[1], True, |
246
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
247
|
|
|
(get_bounds_data()[0], 0.9880028 * units.kilometer, get_bounds_data()[1], False, |
248
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
249
|
|
|
(get_bounds_data()[0], 1.2665298 * units.kilometer, get_bounds_data()[1], True, |
250
|
|
|
(870.9869087 * units.hPa, 1.2665298 * units.kilometer)), |
251
|
|
|
(get_bounds_data()[0], 1.2665298 * units.kilometer, get_bounds_data()[1], False, |
252
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)), |
253
|
|
|
(get_bounds_data()[0], 0.98800289 * units.kilometer, get_bounds_data()[1], True, |
254
|
|
|
(900 * units.hPa, 0.9880028 * units.kilometer)) |
255
|
|
|
]) |
256
|
|
|
def test_get_bound_pressure_height(pressure, bound, hgts, interp, expected): |
257
|
|
|
"""Test getting bounds in layers with various parameter combinations.""" |
258
|
|
|
bounds = _get_bound_pressure_height(pressure, bound, heights=hgts, interpolate=interp) |
259
|
|
|
assert_array_almost_equal(bounds[0], expected[0], 5) |
260
|
|
|
assert_array_almost_equal(bounds[1], expected[1], 5) |
261
|
|
|
|
262
|
|
|
|
263
|
|
|
def test_get_bound_invalid_bound_units(): |
264
|
|
|
"""Test that value error is raised with invalid bound units.""" |
265
|
|
|
p = np.arange(900, 300, -100) * units.hPa |
266
|
|
|
with pytest.raises(ValueError): |
267
|
|
|
_get_bound_pressure_height(p, 100 * units.degC) |
268
|
|
|
|
269
|
|
|
|
270
|
|
|
def test_get_bound_pressure_out_of_range(): |
271
|
|
|
"""Test when bound is out of data range in pressure.""" |
272
|
|
|
p = np.arange(900, 300, -100) * units.hPa |
273
|
|
|
with pytest.raises(ValueError): |
274
|
|
|
_get_bound_pressure_height(p, 100 * units.hPa) |
275
|
|
|
with pytest.raises(ValueError): |
276
|
|
|
_get_bound_pressure_height(p, 1000 * units.hPa) |
277
|
|
|
|
278
|
|
|
|
279
|
|
|
def test_get_bound_height_out_of_range(): |
280
|
|
|
"""Test when bound is out of data range in height.""" |
281
|
|
|
p = np.arange(900, 300, -100) * units.hPa |
282
|
|
|
h = np.arange(1, 7) * units.kilometer |
283
|
|
|
with pytest.raises(ValueError): |
284
|
|
|
_get_bound_pressure_height(p, 8 * units.kilometer, heights=h) |
285
|
|
|
with pytest.raises(ValueError): |
286
|
|
|
_get_bound_pressure_height(p, 100 * units.meter, heights=h) |
287
|
|
|
|
288
|
|
|
|
289
|
|
|
def test_get_layer_float32(): |
290
|
|
|
"""Test that get_layer works properly with float32 data.""" |
291
|
|
|
p = np.asarray([940.85083008, 923.78851318, 911.42022705, 896.07220459, |
292
|
|
|
876.89404297, 781.63330078], np.float32) * units('hPa') |
293
|
|
|
hgt = np.asarray([563.671875, 700.93817139, 806.88098145, 938.51745605, |
294
|
|
|
1105.25854492, 2075.04443359], dtype=np.float32) * units.meter |
295
|
|
|
|
296
|
|
|
true_p_layer = np.asarray([940.85083008, 923.78851318, 911.42022705, 896.07220459, |
297
|
|
|
876.89404297, 831.86472819], np.float32) * units('hPa') |
298
|
|
|
true_hgt_layer = np.asarray([563.671875, 700.93817139, 806.88098145, 938.51745605, |
299
|
|
|
1105.25854492, 1549.8079], dtype=np.float32) * units.meter |
300
|
|
|
|
301
|
|
|
p_layer, hgt_layer = get_layer(p, hgt, heights=hgt, depth=1000. * units.meter) |
302
|
|
|
assert_array_almost_equal(p_layer, true_p_layer, 4) |
303
|
|
|
assert_array_almost_equal(hgt_layer, true_hgt_layer, 4) |
304
|
|
|
|
305
|
|
|
|
306
|
|
|
def test_get_layer_ragged_data(): |
307
|
|
|
"""Tests that error is raised for unequal length pressure and data arrays.""" |
308
|
|
|
p = np.arange(10) * units.hPa |
309
|
|
|
y = np.arange(9) * units.degC |
310
|
|
|
with pytest.raises(ValueError): |
311
|
|
|
get_layer(p, y) |
312
|
|
|
|
313
|
|
|
|
314
|
|
|
def test_get_layer_invalid_depth_units(): |
315
|
|
|
"""Tests that error is raised when depth has invalid units.""" |
316
|
|
|
p = np.arange(10) * units.hPa |
317
|
|
|
y = np.arange(9) * units.degC |
318
|
|
|
with pytest.raises(ValueError): |
319
|
|
|
get_layer(p, y, depth=400 * units.degC) |
320
|
|
|
|
321
|
|
|
|
322
|
|
|
@pytest.fixture |
323
|
|
View Code Duplication |
def layer_test_data(): |
|
|
|
|
324
|
|
|
"""Provide test data for testing of layer bounds.""" |
325
|
|
|
pressure = np.arange(1000, 10, -100) * units.hPa |
326
|
|
|
temperature = np.linspace(25, -50, len(pressure)) * units.degC |
327
|
|
|
return pressure, temperature |
328
|
|
|
|
329
|
|
|
|
330
|
|
|
@pytest.mark.parametrize('pressure, variable, heights, bottom, depth, interp, expected', [ |
331
|
|
|
(layer_test_data()[0], layer_test_data()[1], None, None, 150 * units.hPa, True, |
332
|
|
|
(np.array([1000, 900, 850]) * units.hPa, |
333
|
|
View Code Duplication |
np.array([25.0, 16.666666, 12.62262]) * units.degC)), |
|
|
|
|
334
|
|
|
(layer_test_data()[0], layer_test_data()[1], None, None, 150 * units.hPa, False, |
335
|
|
|
(np.array([1000, 900]) * units.hPa, np.array([25.0, 16.666666]) * units.degC)), |
336
|
|
|
(layer_test_data()[0], layer_test_data()[1], None, 2 * units.km, 3 * units.km, True, |
337
|
|
|
(np.array([794.85264282, 700., 600., 540.01696548]) * units.hPa, |
338
|
|
|
np.array([7.93049516, 0., -8.33333333, -13.14758845]) * units.degC)) |
339
|
|
|
]) |
340
|
|
|
def test_get_layer(pressure, variable, heights, bottom, depth, interp, expected): |
341
|
|
|
"""Tests get_layer functionality.""" |
342
|
|
|
p_layer, y_layer = get_layer(pressure, variable, heights=heights, bottom=bottom, |
343
|
|
View Code Duplication |
depth=depth, interpolate=interp) |
|
|
|
|
344
|
|
|
assert_array_almost_equal(p_layer, expected[0], 5) |
345
|
|
|
assert_array_almost_equal(y_layer, expected[1], 5) |
346
|
|
|
|
347
|
|
|
|
348
|
|
|
def test_log_interp_2d(): |
349
|
|
|
"""Test interpolating with log x-scale in 2 dimensions.""" |
350
|
|
|
x_log = np.array([[1e3, 1e4, 1e5, 1e6], [1e3, 1e4, 1e5, 1e6]]) |
351
|
|
|
y_log = np.log(x_log) * 2 + 3 |
352
|
|
|
x_interp = np.array([5e3, 5e4, 5e5]) |
353
|
|
|
y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548]) |
354
|
|
|
y_interp = log_interp(x_interp, x_log, y_log, axis=1) |
355
|
|
|
assert_array_almost_equal(y_interp[1], y_interp_truth, 7) |
356
|
|
|
|
357
|
|
|
|
358
|
|
|
def test_log_interp_3d(): |
359
|
|
|
"""Test interpolating with log x-scale 3 dimensions along second axis.""" |
360
|
|
|
x_log = np.ones((3, 4, 3)) * np.array([1e3, 1e4, 1e5, 1e6]).reshape(-1, 1) |
361
|
|
|
y_log = np.log(x_log) * 2 + 3 |
362
|
|
|
x_interp = np.array([5e3, 5e4, 5e5]) |
363
|
|
|
y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548]) |
364
|
|
|
y_interp = log_interp(x_interp, x_log, y_log, axis=1) |
365
|
|
|
assert_array_almost_equal(y_interp[0, :, 0], y_interp_truth, 7) |
366
|
|
|
|
367
|
|
|
|
368
|
|
|
def test_log_interp_4d(): |
369
|
|
|
"""Test interpolating with log x-scale 4 dimensions.""" |
370
|
|
|
x_log = np.ones((2, 2, 3, 4)) * np.array([1e3, 1e4, 1e5, 1e6]) |
371
|
|
|
y_log = np.log(x_log) * 2 + 3 |
372
|
|
|
x_interp = np.array([5e3, 5e4, 5e5]) |
373
|
|
|
y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548]) |
374
|
|
|
y_interp = log_interp(x_interp, x_log, y_log, axis=3) |
375
|
|
|
assert_array_almost_equal(y_interp[0, 0, 0, :], y_interp_truth, 7) |
376
|
|
|
|
377
|
|
|
|
378
|
|
|
def test_log_interp_2args(): |
379
|
|
|
"""Test interpolating with log x-scale with 2 arguments.""" |
380
|
|
|
x_log = np.array([1e3, 1e4, 1e5, 1e6]) |
381
|
|
|
y_log = np.log(x_log) * 2 + 3 |
382
|
|
|
y_log2 = np.log(x_log) * 2 + 3 |
383
|
|
|
x_interp = np.array([5e3, 5e4, 5e5]) |
384
|
|
|
y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548]) |
385
|
|
|
y_interp = log_interp(x_interp, x_log, y_log, y_log2) |
386
|
|
|
assert_array_almost_equal(y_interp[1], y_interp_truth, 7) |
387
|
|
|
assert_array_almost_equal(y_interp[0], y_interp_truth, 7) |
388
|
|
|
|
389
|
|
|
|
390
|
|
|
def test_log_interp_set_nan_above(): |
391
|
|
|
"""Test interpolating with log x-scale setting out of bounds above data to nan.""" |
392
|
|
|
x_log = np.array([1e3, 1e4, 1e5, 1e6]) |
393
|
|
|
y_log = np.log(x_log) * 2 + 3 |
394
|
|
|
x_interp = np.array([1e7]) |
395
|
|
|
y_interp_truth = np.nan |
396
|
|
|
with pytest.warns(Warning): |
397
|
|
|
y_interp = log_interp(x_interp, x_log, y_log) |
398
|
|
|
assert_array_almost_equal(y_interp, y_interp_truth, 7) |
399
|
|
|
|
400
|
|
|
|
401
|
|
|
def test_log_interp_no_extrap(): |
402
|
|
|
"""Test interpolating with log x-scale setting out of bounds value error.""" |
403
|
|
|
x_log = np.array([1e3, 1e4, 1e5, 1e6]) |
404
|
|
|
y_log = np.log(x_log) * 2 + 3 |
405
|
|
|
x_interp = np.array([1e7]) |
406
|
|
|
with pytest.raises(ValueError): |
407
|
|
|
log_interp(x_interp, x_log, y_log, fill_value=None) |
408
|
|
|
|
409
|
|
|
|
410
|
|
|
def test_log_interp_set_nan_below(): |
411
|
|
|
"""Test interpolating with log x-scale setting out of bounds below data to nan.""" |
412
|
|
|
x_log = np.array([1e3, 1e4, 1e5, 1e6]) |
413
|
|
|
y_log = np.log(x_log) * 2 + 3 |
414
|
|
|
x_interp = 1e2 |
415
|
|
|
y_interp_truth = np.nan |
416
|
|
|
with pytest.warns(Warning): |
417
|
|
|
y_interp = log_interp(x_interp, x_log, y_log) |
418
|
|
|
assert_array_almost_equal(y_interp, y_interp_truth, 7) |
419
|
|
|
|
420
|
|
|
|
421
|
|
|
def test_interp_2args(): |
422
|
|
|
"""Test interpolation with 2 arguments.""" |
423
|
|
|
x = np.array([1., 2., 3., 4.]) |
424
|
|
|
y = x |
425
|
|
|
y2 = x |
426
|
|
|
x_interp = np.array([2.5000000, 3.5000000]) |
427
|
|
|
y_interp_truth = np.array([2.5000000, 3.5000000]) |
428
|
|
|
y_interp = interp(x_interp, x, y, y2) |
429
|
|
|
assert_array_almost_equal(y_interp[0], y_interp_truth, 7) |
430
|
|
|
assert_array_almost_equal(y_interp[1], y_interp_truth, 7) |
431
|
|
|
|
432
|
|
|
|
433
|
|
|
def test_interp_decrease(): |
434
|
|
|
"""Test interpolation with decreasing interpolation points.""" |
435
|
|
|
x = np.array([1., 2., 3., 4.]) |
436
|
|
|
y = x |
437
|
|
|
x_interp = np.array([3.5000000, 2.5000000]) |
438
|
|
|
y_interp_truth = np.array([3.5000000, 2.5000000]) |
439
|
|
|
y_interp = interp(x_interp, x, y) |
440
|
|
|
assert_array_almost_equal(y_interp, y_interp_truth, 7) |
441
|
|
|
|
442
|
|
|
|
443
|
|
|
def test_interp_decrease_xp(): |
444
|
|
|
"""Test interpolation with decreasing order.""" |
445
|
|
|
x = np.array([4., 3., 2., 1.]) |
446
|
|
|
y = x |
447
|
|
|
x_interp = np.array([3.5000000, 2.5000000]) |
448
|
|
|
y_interp_truth = np.array([3.5000000, 2.5000000]) |
449
|
|
|
y_interp = interp(x_interp, x, y) |
450
|
|
|
assert_array_almost_equal(y_interp, y_interp_truth, 7) |
451
|
|
|
|
452
|
|
|
|
453
|
|
|
def test_interp_end_point(): |
454
|
|
|
"""Test interpolation with point at data endpoints.""" |
455
|
|
|
x = np.array([1., 2., 3., 4.]) |
456
|
|
|
y = x |
457
|
|
|
x_interp = np.array([1.0, 4.0]) |
458
|
|
|
y_interp_truth = np.array([1.0, 4.0]) |
459
|
|
|
y_interp = interp(x_interp, x, y) |
460
|
|
|
assert_array_almost_equal(y_interp, y_interp_truth, 7) |
461
|
|
|
|
462
|
|
|
|
463
|
|
|
def test_greater_or_close(): |
464
|
|
|
"""Test floating point greater or close to.""" |
465
|
|
|
x = np.array([0.0, 1.0, 1.49999, 1.5, 1.5000, 1.7]) |
466
|
|
|
comparison_value = 1.5 |
467
|
|
|
truth = np.array([False, False, True, True, True, True]) |
468
|
|
|
res = _greater_or_close(x, comparison_value) |
469
|
|
|
assert_array_equal(res, truth) |
470
|
|
|
|
471
|
|
|
|
472
|
|
|
def test_less_or_close(): |
473
|
|
|
"""Test floating point less or close to.""" |
474
|
|
|
x = np.array([0.0, 1.0, 1.49999, 1.5, 1.5000, 1.7]) |
475
|
|
|
comparison_value = 1.5 |
476
|
|
|
truth = np.array([True, True, True, True, True, False]) |
477
|
|
|
res = _less_or_close(x, comparison_value) |
478
|
|
|
assert_array_equal(res, truth) |
479
|
|
|
|
480
|
|
|
|
481
|
|
View Code Duplication |
def test_get_layer_heights_interpolation(): |
|
|
|
|
482
|
|
|
"""Test get_layer_heights with interpolation.""" |
483
|
|
|
heights = np.arange(10) * units.km |
484
|
|
|
data = heights.m * 2 * units.degC |
485
|
|
|
heights, data = get_layer_heights(heights, 5000 * units.m, data, bottom=1500 * units.m) |
486
|
|
|
heights_true = np.array([1.5, 2, 3, 4, 5, 6, 6.5]) * units.km |
487
|
|
|
data_true = heights_true.m * 2 * units.degC |
488
|
|
|
assert_array_almost_equal(heights_true, heights, 6) |
489
|
|
|
assert_array_almost_equal(data_true, data, 6) |
490
|
|
|
|
491
|
|
|
|
492
|
|
View Code Duplication |
def test_get_layer_heights_no_interpolation(): |
|
|
|
|
493
|
|
|
"""Test get_layer_heights without interpolation.""" |
494
|
|
|
heights = np.arange(10) * units.km |
495
|
|
|
data = heights.m * 2 * units.degC |
496
|
|
|
heights, data = get_layer_heights(heights, 5000 * units.m, data, |
497
|
|
|
bottom=1500 * units.m, interpolate=False) |
498
|
|
|
heights_true = np.array([2, 3, 4, 5, 6]) * units.km |
499
|
|
|
data_true = heights_true.m * 2 * units.degC |
500
|
|
|
assert_array_almost_equal(heights_true, heights, 6) |
501
|
|
|
assert_array_almost_equal(data_true, data, 6) |
502
|
|
|
|
503
|
|
|
|
504
|
|
View Code Duplication |
def test_get_layer_heights_agl(): |
|
|
|
|
505
|
|
|
"""Test get_layer_heights with interpolation.""" |
506
|
|
|
heights = np.arange(300, 1200, 100) * units.m |
507
|
|
|
data = heights.m * 0.1 * units.degC |
508
|
|
|
heights, data = get_layer_heights(heights, 500 * units.m, data, with_agl=True) |
509
|
|
|
heights_true = np.array([0, 0.1, 0.2, 0.3, 0.4, 0.5]) * units.km |
510
|
|
|
data_true = np.array([30, 40, 50, 60, 70, 80]) * units.degC |
511
|
|
|
assert_array_almost_equal(heights_true, heights, 6) |
512
|
|
|
assert_array_almost_equal(data_true, data, 6) |
513
|
|
|
|
514
|
|
|
|
515
|
|
View Code Duplication |
def test_get_layer_heights_agl_bottom_no_interp(): |
|
|
|
|
516
|
|
|
"""Test get_layer_heights with no interpolation and a bottom.""" |
517
|
|
|
heights = np.arange(300, 1200, 100) * units.m |
518
|
|
|
data = heights.m * 0.1 * units.degC |
519
|
|
|
heights, data = get_layer_heights(heights, 500 * units.m, data, with_agl=True, |
520
|
|
|
interpolation=False, bottom=200 * units.m) |
521
|
|
|
heights_true = np.array([0.2, 0.3, 0.4, 0.5, 0.6, 0.7]) * units.km |
522
|
|
|
data_true = np.array([50, 60, 70, 80, 90, 100]) * units.degC |
523
|
|
|
assert_array_almost_equal(heights_true, heights, 6) |
524
|
|
|
assert_array_almost_equal(data_true, data, 6) |
525
|
|
|
|