|
1
|
|
|
# Copyright (c) 2017 MetPy Developers. |
|
2
|
|
|
# Distributed under the terms of the BSD 3-Clause License. |
|
3
|
|
|
# SPDX-License-Identifier: BSD-3-Clause |
|
4
|
|
|
"""Contains calculation of various derived indices.""" |
|
5
|
|
|
import numpy as np |
|
6
|
|
|
|
|
7
|
|
|
from .thermo import mixing_ratio, saturation_vapor_pressure |
|
8
|
|
|
from .tools import get_layer |
|
9
|
|
|
from ..constants import g, rho_l |
|
10
|
|
|
from ..package_tools import Exporter |
|
11
|
|
|
from ..units import check_units, concatenate, units |
|
12
|
|
|
|
|
13
|
|
|
exporter = Exporter(globals()) |
|
14
|
|
|
|
|
15
|
|
|
|
|
16
|
|
|
@exporter.export |
|
17
|
|
|
@check_units('[temperature]', '[pressure]', '[pressure]') |
|
18
|
|
|
def precipitable_water(dewpt, pressure, bottom=None, top=None): |
|
19
|
|
|
r"""Calculate precipitable water through the depth of a sounding. |
|
20
|
|
|
|
|
21
|
|
|
Formula used is: |
|
22
|
|
|
|
|
23
|
|
|
.. math:: -\frac{1}{\rho_l g} \int\limits_{p_\text{bottom}}^{p_\text{top}} r dp |
|
24
|
|
|
|
|
25
|
|
|
from [Salby1996]_, p. 28. |
|
26
|
|
|
|
|
27
|
|
|
Parameters |
|
28
|
|
|
---------- |
|
29
|
|
|
dewpt : `pint.Quantity` |
|
30
|
|
|
Atmospheric dewpoint profile |
|
31
|
|
|
pressure : `pint.Quantity` |
|
32
|
|
|
Atmospheric pressure profile |
|
33
|
|
|
bottom: `pint.Quantity`, optional |
|
34
|
|
|
Bottom of the layer, specified in pressure. Defaults to None (highest pressure). |
|
35
|
|
|
top: `pint.Quantity`, optional |
|
36
|
|
|
The top of the layer, specified in pressure. Defaults to None (lowest pressure). |
|
37
|
|
|
|
|
38
|
|
|
Returns |
|
39
|
|
|
------- |
|
40
|
|
|
`pint.Quantity` |
|
41
|
|
|
The precipitable water in the layer |
|
42
|
|
|
|
|
43
|
|
|
""" |
|
44
|
|
|
# Sort pressure and dewpoint to be in decreasing pressure order (increasing height) |
|
45
|
|
|
sort_inds = np.argsort(pressure)[::-1] |
|
46
|
|
|
pressure = pressure[sort_inds] |
|
47
|
|
|
dewpt = dewpt[sort_inds] |
|
48
|
|
|
|
|
49
|
|
|
if top is None: |
|
50
|
|
|
top = np.nanmin(pressure) * pressure.units |
|
51
|
|
|
|
|
52
|
|
|
if bottom is None: |
|
53
|
|
|
bottom = np.nanmax(pressure) * pressure.units |
|
54
|
|
|
|
|
55
|
|
|
pres_layer, dewpt_layer = get_layer(pressure, dewpt, bottom=bottom, depth=bottom - top) |
|
56
|
|
View Code Duplication |
|
|
|
|
|
|
|
57
|
|
|
w = mixing_ratio(saturation_vapor_pressure(dewpt_layer), pres_layer) |
|
58
|
|
|
|
|
59
|
|
|
# Since pressure is in decreasing order, pw will be the opposite sign of that expected. |
|
60
|
|
|
pw = -1. * (np.trapz(w.magnitude, pres_layer.magnitude) * (w.units * pres_layer.units) / |
|
61
|
|
|
(g * rho_l)) |
|
62
|
|
|
return pw.to('millimeters') |
|
63
|
|
|
|
|
64
|
|
|
|
|
65
|
|
|
@exporter.export |
|
66
|
|
|
@check_units('[pressure]') |
|
67
|
|
|
def mean_pressure_weighted(pressure, *args, **kwargs): |
|
68
|
|
|
r"""Calculate pressure-weighted mean of an arbitrary variable through a layer. |
|
69
|
|
|
|
|
70
|
|
|
Layer top and bottom specified in height or pressure. |
|
71
|
|
|
|
|
72
|
|
|
Parameters |
|
73
|
|
|
---------- |
|
74
|
|
|
pressure : `pint.Quantity` |
|
75
|
|
|
Atmospheric pressure profile |
|
76
|
|
|
*args : `pint.Quantity` |
|
77
|
|
|
Parameters for which the pressure-weighted mean is to be calculated. |
|
78
|
|
|
heights : `pint.Quantity`, optional |
|
79
|
|
|
Heights from sounding. Standard atmosphere heights assumed (if needed) |
|
80
|
|
|
if no heights are given. |
|
81
|
|
|
bottom: `pint.Quantity`, optional |
|
82
|
|
|
The bottom of the layer in either the provided height coordinate |
|
83
|
|
|
or in pressure. Don't provide in meters AGL unless the provided |
|
84
|
|
|
height coordinate is meters AGL. Default is the first observation, |
|
85
|
|
|
assumed to be the surface. |
|
86
|
|
|
depth: `pint.Quantity`, optional |
|
87
|
|
|
The depth of the layer in meters or hPa. |
|
88
|
|
|
|
|
89
|
|
|
Returns |
|
90
|
|
|
------- |
|
91
|
|
|
`pint.Quantity` |
|
92
|
|
|
u_mean: u-component of layer mean wind. |
|
93
|
|
|
`pint.Quantity` |
|
94
|
|
|
v_mean: v-component of layer mean wind. |
|
95
|
|
|
|
|
96
|
|
|
""" |
|
97
|
|
|
heights = kwargs.pop('heights', None) |
|
98
|
|
|
bottom = kwargs.pop('bottom', None) |
|
99
|
|
|
depth = kwargs.pop('depth', None) |
|
100
|
|
|
ret = [] # Returned variable means in layer |
|
101
|
|
|
layer_arg = get_layer(pressure, *args, heights=heights, |
|
102
|
|
|
bottom=bottom, depth=depth) |
|
103
|
|
|
layer_p = layer_arg[0] |
|
104
|
|
|
layer_arg = layer_arg[1:] |
|
105
|
|
|
# Taking the integral of the weights (pressure) to feed into the weighting |
|
106
|
|
|
# function. Said integral works out to this function: |
|
107
|
|
|
pres_int = 0.5 * (layer_p[-1].magnitude**2 - layer_p[0].magnitude**2) |
|
108
|
|
|
for i, datavar in enumerate(args): |
|
109
|
|
|
arg_mean = np.trapz(layer_arg[i] * layer_p, x=layer_p) / pres_int |
|
110
|
|
|
ret.append(arg_mean * datavar.units) |
|
111
|
|
|
|
|
112
|
|
|
return ret |
|
113
|
|
|
|
|
114
|
|
|
|
|
115
|
|
|
@exporter.export |
|
116
|
|
|
@check_units('[pressure]', '[speed]', '[speed]', '[length]') |
|
117
|
|
|
def bunkers_storm_motion(pressure, u, v, heights): |
|
118
|
|
|
r"""Calculate the Bunkers right-mover and left-mover storm motions and sfc-6km mean flow. |
|
119
|
|
|
|
|
120
|
|
|
Uses the storm motion calculation from [Bunkers2000]_. |
|
121
|
|
|
|
|
122
|
|
|
Parameters |
|
123
|
|
|
---------- |
|
124
|
|
|
pressure : array-like |
|
125
|
|
|
Pressure from sounding |
|
126
|
|
|
u : array-like |
|
127
|
|
|
U component of the wind |
|
128
|
|
|
v : array-like |
|
129
|
|
|
V component of the wind |
|
130
|
|
|
heights : array-like |
|
131
|
|
|
Heights from sounding |
|
132
|
|
|
|
|
133
|
|
|
Returns |
|
134
|
|
|
------- |
|
135
|
|
|
right_mover: `pint.Quantity` |
|
136
|
|
|
U and v component of Bunkers RM storm motion |
|
137
|
|
|
left_mover: `pint.Quantity` |
|
138
|
|
|
U and v component of Bunkers LM storm motion |
|
139
|
|
|
wind_mean: `pint.Quantity` |
|
140
|
|
|
U and v component of sfc-6km mean flow |
|
141
|
|
|
|
|
142
|
|
|
""" |
|
143
|
|
|
# mean wind from sfc-6km |
|
144
|
|
|
wind_mean = concatenate(mean_pressure_weighted(pressure, u, v, heights=heights, |
|
145
|
|
|
depth=6000 * units('meter'))) |
|
146
|
|
|
|
|
147
|
|
|
# mean wind from sfc-500m |
|
148
|
|
|
wind_500m = concatenate(mean_pressure_weighted(pressure, u, v, heights=heights, |
|
149
|
|
|
depth=500 * units('meter'))) |
|
150
|
|
|
|
|
151
|
|
|
# mean wind from 5.5-6km |
|
152
|
|
|
wind_5500m = concatenate(mean_pressure_weighted(pressure, u, v, heights=heights, |
|
153
|
|
|
depth=500 * units('meter'), |
|
154
|
|
|
bottom=heights[0] + |
|
155
|
|
|
5500 * units('meter'))) |
|
156
|
|
|
|
|
157
|
|
|
# Calculate the shear vector from sfc-500m to 5.5-6km |
|
158
|
|
|
shear = wind_5500m - wind_500m |
|
159
|
|
|
|
|
160
|
|
|
# Take the cross product of the wind shear and k, and divide by the vector magnitude and |
|
161
|
|
|
# multiply by the deviaton empirically calculated in Bunkers (2000) (7.5 m/s) |
|
162
|
|
|
shear_cross = concatenate([shear[1], -shear[0]]) |
|
163
|
|
|
rdev = shear_cross * (7.5 * units('m/s').to(u.units) / np.hypot(*shear)) |
|
164
|
|
|
|
|
165
|
|
|
# Add the deviations to the layer average wind to get the RM motion |
|
166
|
|
|
right_mover = wind_mean + rdev |
|
167
|
|
|
|
|
168
|
|
|
# Subtract the deviations to get the LM motion |
|
169
|
|
|
left_mover = wind_mean - rdev |
|
170
|
|
|
|
|
171
|
|
|
return right_mover, left_mover, wind_mean |
|
172
|
|
|
|
|
173
|
|
|
|
|
174
|
|
|
@exporter.export |
|
175
|
|
|
@check_units('[pressure]', '[speed]', '[speed]') |
|
176
|
|
|
def bulk_shear(pressure, u, v, heights=None, bottom=None, depth=None): |
|
177
|
|
|
r"""Calculate bulk shear through a layer. |
|
178
|
|
|
|
|
179
|
|
|
Layer top and bottom specified in meters or pressure. |
|
180
|
|
|
|
|
181
|
|
|
Parameters |
|
182
|
|
|
---------- |
|
183
|
|
|
pressure : `pint.Quantity` |
|
184
|
|
|
Atmospheric pressure profile |
|
185
|
|
|
u : `pint.Quantity` |
|
186
|
|
|
U-component of wind. |
|
187
|
|
|
v : `pint.Quantity` |
|
188
|
|
|
V-component of wind. |
|
189
|
|
|
height : `pint.Quantity`, optional |
|
190
|
|
|
Heights from sounding |
|
191
|
|
|
depth: `pint.Quantity`, optional |
|
192
|
|
|
The depth of the layer in meters or hPa |
|
193
|
|
|
bottom: `pint.Quantity`, optional |
|
194
|
|
|
The bottom of the layer in meters or hPa. |
|
195
|
|
|
If in meters, must be in the same coordinates as the given |
|
196
|
|
|
heights (i.e., don't use meters AGL unless given heights |
|
197
|
|
|
are in meters AGL.) Default is the surface (1st observation.) |
|
198
|
|
|
|
|
199
|
|
|
Returns |
|
200
|
|
|
------- |
|
201
|
|
|
u_shr: `pint.Quantity` |
|
202
|
|
|
u-component of layer bulk shear |
|
203
|
|
|
v_shr: `pint.Quantity` |
|
204
|
|
|
v-component of layer bulk shear |
|
205
|
|
|
|
|
206
|
|
|
""" |
|
207
|
|
|
_, u_layer, v_layer = get_layer(pressure, u, v, heights=heights, |
|
208
|
|
|
bottom=bottom, depth=depth) |
|
209
|
|
|
|
|
210
|
|
|
u_shr = u_layer[-1] - u_layer[0] |
|
211
|
|
|
v_shr = v_layer[-1] - v_layer[0] |
|
212
|
|
|
|
|
213
|
|
|
return u_shr, v_shr |
|
214
|
|
|
|
|
215
|
|
|
|
|
216
|
|
|
@exporter.export |
|
217
|
|
|
def supercell_composite(mucape, effective_storm_helicity, effective_shear): |
|
218
|
|
|
r"""Calculate the supercell composite parameter. |
|
219
|
|
|
|
|
220
|
|
|
The supercell composite parameter is designed to identify |
|
221
|
|
|
environments favorable for the development of supercells, |
|
222
|
|
|
and is calculated using the formula developed by |
|
223
|
|
|
[Thompson2004]_: |
|
224
|
|
|
|
|
225
|
|
|
SCP = (mucape / 1000 J/kg) * (effective_storm_helicity / 50 m^2/s^2) * |
|
226
|
|
|
(effective_shear / 20 m/s) |
|
227
|
|
|
|
|
228
|
|
|
The effective_shear term is set to zero below 10 m/s and |
|
229
|
|
|
capped at 1 when effective_shear exceeds 20 m/s. |
|
230
|
|
|
|
|
231
|
|
|
Parameters |
|
232
|
|
|
---------- |
|
233
|
|
|
mucape : `pint.Quantity` |
|
234
|
|
|
Most-unstable CAPE |
|
235
|
|
|
effective_storm_helicity : `pint.Quantity` |
|
236
|
|
|
Effective-layer storm-relative helicity |
|
237
|
|
|
effective_shear : `pint.Quantity` |
|
238
|
|
|
Effective bulk shear |
|
239
|
|
|
|
|
240
|
|
|
Returns |
|
241
|
|
|
------- |
|
242
|
|
|
array-like |
|
243
|
|
|
supercell composite |
|
244
|
|
|
|
|
245
|
|
|
""" |
|
246
|
|
|
effective_shear = np.clip(effective_shear, None, 20 * units('m/s')) |
|
247
|
|
|
effective_shear[effective_shear < 10 * units('m/s')] = 0 * units('m/s') |
|
248
|
|
|
effective_shear = effective_shear / (20 * units('m/s')) |
|
249
|
|
|
|
|
250
|
|
|
return ((mucape / (1000 * units('J/kg'))) * |
|
251
|
|
|
(effective_storm_helicity / (50 * units('m^2/s^2'))) * |
|
252
|
|
|
effective_shear).to('dimensionless') |
|
253
|
|
|
|
|
254
|
|
|
|
|
255
|
|
|
@exporter.export |
|
256
|
|
|
def significant_tornado(sbcape, sblcl, storm_helicity_1km, shear_6km): |
|
257
|
|
|
r"""Calculate the significant tornado parameter (fixed layer). |
|
258
|
|
|
|
|
259
|
|
|
The significant tornado parameter is designed to identify |
|
260
|
|
|
environments favorable for the production of significant |
|
261
|
|
|
tornadoes contingent upon the development of supercells. |
|
262
|
|
|
It's calculated according to the formula used on the SPC |
|
263
|
|
|
mesoanalysis page, updated in [Thompson2004]_: |
|
264
|
|
|
|
|
265
|
|
|
sigtor = (sbcape / 1500 J/kg) * ((2000 m - sblcl) / 1000 m) * |
|
266
|
|
|
(storm_helicity_1km / 150 m^s/s^2) * (shear_6km6 / 20 m/s) |
|
267
|
|
|
|
|
268
|
|
|
The sblcl term is set to zero when the lcl is above 2000m and |
|
269
|
|
|
capped at 1 when below 1000m, and the shr6 term is set to 0 |
|
270
|
|
|
when shr6 is below 12.5 m/s and maxed out at 1.5 when shr6 |
|
271
|
|
|
exceeds 30 m/s. |
|
272
|
|
|
|
|
273
|
|
|
Parameters |
|
274
|
|
|
---------- |
|
275
|
|
|
sbcape : `pint.Quantity` |
|
276
|
|
|
Surface-based CAPE |
|
277
|
|
|
sblcl : `pint.Quantity` |
|
278
|
|
|
Surface-based lifted condensation level |
|
279
|
|
|
storm_helicity_1km : `pint.Quantity` |
|
280
|
|
|
Surface-1km storm-relative helicity |
|
281
|
|
|
shear_6km : `pint.Quantity` |
|
282
|
|
|
Surface-6km bulk shear |
|
283
|
|
|
|
|
284
|
|
|
Returns |
|
285
|
|
|
------- |
|
286
|
|
|
array-like |
|
287
|
|
|
significant tornado parameter |
|
288
|
|
|
|
|
289
|
|
|
""" |
|
290
|
|
|
sblcl = np.clip(sblcl, 1000 * units('meter'), 2000 * units('meter')) |
|
291
|
|
|
sblcl[sblcl > 2000 * units('meter')] = 0 * units('meter') |
|
292
|
|
|
sblcl = (2000. * units('meter') - sblcl) / (1000. * units('meter')) |
|
293
|
|
|
shear_6km = np.clip(shear_6km, None, 30 * units('m/s')) |
|
294
|
|
|
shear_6km[shear_6km < 12.5 * units('m/s')] = 0 * units('m/s') |
|
295
|
|
|
shear_6km = shear_6km / (20 * units('m/s')) |
|
296
|
|
|
|
|
297
|
|
|
return ((sbcape / (1500. * units('J/kg'))) * |
|
298
|
|
|
sblcl * (storm_helicity_1km / (150. * units('m^2/s^2'))) * shear_6km) |
|
299
|
|
|
|