|
1
|
|
|
# Copyright (c) 2008-2017 MetPy Developers. |
|
2
|
|
|
# Distributed under the terms of the BSD 3-Clause License. |
|
3
|
|
|
# SPDX-License-Identifier: BSD-3-Clause |
|
4
|
|
|
"""Contains a collection of generally useful calculation tools.""" |
|
5
|
|
|
|
|
6
|
|
|
import functools |
|
7
|
|
|
|
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import numpy.ma as ma |
|
10
|
|
|
from scipy.spatial import cKDTree |
|
11
|
|
|
|
|
12
|
|
|
from ..package_tools import Exporter |
|
13
|
|
|
|
|
14
|
|
|
exporter = Exporter(globals()) |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
@exporter.export |
|
18
|
|
|
def resample_nn_1d(a, centers): |
|
19
|
|
|
"""Return one-dimensional nearest-neighbor indexes based on user-specified centers. |
|
20
|
|
|
|
|
21
|
|
|
Parameters |
|
22
|
|
|
---------- |
|
23
|
|
|
a : array-like |
|
24
|
|
|
1-dimensional array of numeric values from which to |
|
25
|
|
|
extract indexes of nearest-neighbors |
|
26
|
|
|
centers : array-like |
|
27
|
|
|
1-dimensional array of numeric values representing a subset of values to approximate |
|
28
|
|
|
|
|
29
|
|
|
Returns |
|
30
|
|
|
------- |
|
31
|
|
|
An array of indexes representing values closest to given array values |
|
32
|
|
|
|
|
33
|
|
|
""" |
|
34
|
|
|
ix = [] |
|
35
|
|
|
for center in centers: |
|
36
|
|
|
index = (np.abs(a - center)).argmin() |
|
37
|
|
|
if index not in ix: |
|
38
|
|
|
ix.append(index) |
|
39
|
|
|
return ix |
|
40
|
|
|
|
|
41
|
|
|
|
|
42
|
|
|
@exporter.export |
|
43
|
|
|
def nearest_intersection_idx(a, b): |
|
44
|
|
|
"""Determine the index of the point just before two lines with common x values. |
|
45
|
|
|
|
|
46
|
|
|
Parameters |
|
47
|
|
|
---------- |
|
48
|
|
|
a : array-like |
|
49
|
|
|
1-dimensional array of y-values for line 1 |
|
50
|
|
|
b : array-like |
|
51
|
|
|
1-dimensional array of y-values for line 2 |
|
52
|
|
|
|
|
53
|
|
|
Returns |
|
54
|
|
|
------- |
|
55
|
|
|
An array of indexes representing the index of the values |
|
56
|
|
|
just before the intersection(s) of the two lines. |
|
57
|
|
|
|
|
58
|
|
|
""" |
|
59
|
|
|
# Difference in the two y-value sets |
|
60
|
|
|
difference = a - b |
|
61
|
|
|
|
|
62
|
|
|
# Determine the point just before the intersection of the lines |
|
63
|
|
|
# Will return multiple points for multiple intersections |
|
64
|
|
|
sign_change_idx, = np.nonzero(np.diff(np.sign(difference))) |
|
65
|
|
|
|
|
66
|
|
|
return sign_change_idx |
|
67
|
|
|
|
|
68
|
|
|
|
|
69
|
|
|
@exporter.export |
|
70
|
|
|
def find_intersections(x, a, b, direction='all'): |
|
71
|
|
|
"""Calculate the best estimate of intersection. |
|
72
|
|
|
|
|
73
|
|
|
Calculates the best estimates of the intersection of two y-value |
|
74
|
|
|
data sets that share a common x-value set. |
|
75
|
|
|
|
|
76
|
|
|
Parameters |
|
77
|
|
|
---------- |
|
78
|
|
|
x : array-like |
|
79
|
|
|
1-dimensional array of numeric x-values |
|
80
|
|
|
a : array-like |
|
81
|
|
|
1-dimensional array of y-values for line 1 |
|
82
|
|
|
b : array-like |
|
83
|
|
|
1-dimensional array of y-values for line 2 |
|
84
|
|
|
direction : string |
|
85
|
|
|
specifies direction of crossing. 'all', 'increasing' (a becoming greater than b), |
|
86
|
|
|
or 'decreasing' (b becoming greater than a). |
|
87
|
|
|
|
|
88
|
|
|
Returns |
|
89
|
|
|
------- |
|
90
|
|
|
A tuple (x, y) of array-like with the x and y coordinates of the |
|
91
|
|
|
intersections of the lines. |
|
92
|
|
|
|
|
93
|
|
|
""" |
|
94
|
|
|
# Find the index of the points just before the intersection(s) |
|
95
|
|
|
nearest_idx = nearest_intersection_idx(a, b) |
|
96
|
|
|
next_idx = nearest_idx + 1 |
|
97
|
|
|
|
|
98
|
|
|
# Determine the sign of the change |
|
99
|
|
|
sign_change = np.sign(a[next_idx] - b[next_idx]) |
|
100
|
|
|
|
|
101
|
|
|
# x-values around each intersection |
|
102
|
|
|
_, x0 = _next_non_masked_element(x, nearest_idx) |
|
103
|
|
|
_, x1 = _next_non_masked_element(x, next_idx) |
|
104
|
|
|
|
|
105
|
|
|
# y-values around each intersection for the first line |
|
106
|
|
|
_, a0 = _next_non_masked_element(a, nearest_idx) |
|
107
|
|
|
_, a1 = _next_non_masked_element(a, next_idx) |
|
108
|
|
|
|
|
109
|
|
|
# y-values around each intersection for the second line |
|
110
|
|
|
_, b0 = _next_non_masked_element(b, nearest_idx) |
|
111
|
|
|
_, b1 = _next_non_masked_element(b, next_idx) |
|
112
|
|
|
|
|
113
|
|
|
# Calculate the x-intersection. This comes from finding the equations of the two lines, |
|
114
|
|
|
# one through (x0, a0) and (x1, a1) and the other through (x0, b0) and (x1, b1), |
|
115
|
|
|
# finding their intersection, and reducing with a bunch of algebra. |
|
116
|
|
|
delta_y0 = a0 - b0 |
|
117
|
|
|
delta_y1 = a1 - b1 |
|
118
|
|
|
intersect_x = (delta_y1 * x0 - delta_y0 * x1) / (delta_y1 - delta_y0) |
|
119
|
|
|
|
|
120
|
|
|
# Calculate the y-intersection of the lines. Just plug the x above into the equation |
|
121
|
|
|
# for the line through the a points. One could solve for y like x above, but this |
|
122
|
|
|
# causes weirder unit behavior and seems a little less good numerically. |
|
123
|
|
|
intersect_y = ((intersect_x - x0) / (x1 - x0)) * (a1 - a0) + a0 |
|
124
|
|
|
|
|
125
|
|
|
# Make a mask based on the direction of sign change desired |
|
126
|
|
|
if direction == 'increasing': |
|
127
|
|
|
mask = sign_change > 0 |
|
128
|
|
|
elif direction == 'decreasing': |
|
129
|
|
|
mask = sign_change < 0 |
|
130
|
|
|
elif direction == 'all': |
|
131
|
|
|
return intersect_x, intersect_y |
|
132
|
|
|
else: |
|
133
|
|
|
raise ValueError('Unknown option for direction: {0}'.format(str(direction))) |
|
134
|
|
|
return intersect_x[mask], intersect_y[mask] |
|
135
|
|
|
|
|
136
|
|
|
|
|
137
|
|
|
@exporter.export |
|
138
|
|
|
def interpolate_nans(x, y, kind='linear'): |
|
139
|
|
|
"""Interpolate NaN values in y. |
|
140
|
|
|
|
|
141
|
|
|
Interpolate NaN values in the y dimension. Works with unsorted x values. |
|
142
|
|
|
|
|
143
|
|
|
Parameters |
|
144
|
|
|
---------- |
|
145
|
|
|
x : array-like |
|
146
|
|
|
1-dimensional array of numeric x-values |
|
147
|
|
|
y : array-like |
|
148
|
|
|
1-dimensional array of numeric y-values |
|
149
|
|
|
kind : string |
|
150
|
|
|
specifies the kind of interpolation x coordinate - 'linear' or 'log' |
|
151
|
|
|
|
|
152
|
|
|
Returns |
|
153
|
|
|
------- |
|
154
|
|
|
An array of the y coordinate data with NaN values interpolated. |
|
155
|
|
|
|
|
156
|
|
|
""" |
|
157
|
|
|
x_sort_args = np.argsort(x) |
|
158
|
|
|
x = x[x_sort_args] |
|
159
|
|
|
y = y[x_sort_args] |
|
160
|
|
|
nans = np.isnan(y) |
|
161
|
|
|
if kind is 'linear': |
|
162
|
|
|
y[nans] = np.interp(x[nans], x[~nans], y[~nans]) |
|
163
|
|
|
elif kind is 'log': |
|
164
|
|
|
y[nans] = np.interp(np.log(x[nans]), np.log(x[~nans]), y[~nans]) |
|
165
|
|
|
else: |
|
166
|
|
|
raise ValueError('Unknown option for kind: {0}'.format(str(kind))) |
|
167
|
|
|
return y[x_sort_args] |
|
168
|
|
|
|
|
169
|
|
|
|
|
170
|
|
|
def _next_non_masked_element(a, idx): |
|
171
|
|
|
"""Return the next non masked element of a masked array. |
|
172
|
|
|
|
|
173
|
|
|
If an array is masked, return the next non-masked element (if the given index is masked). |
|
174
|
|
|
If no other unmasked points are after the given masked point, returns none. |
|
175
|
|
|
|
|
176
|
|
|
Parameters |
|
177
|
|
|
---------- |
|
178
|
|
|
a : array-like |
|
179
|
|
|
1-dimensional array of numeric values |
|
180
|
|
|
idx : integer |
|
181
|
|
|
index of requested element |
|
182
|
|
|
|
|
183
|
|
|
Returns |
|
184
|
|
|
------- |
|
185
|
|
|
Index of next non-masked element and next non-masked element |
|
186
|
|
|
|
|
187
|
|
|
""" |
|
188
|
|
|
try: |
|
189
|
|
|
next_idx = idx + a[idx:].mask.argmin() |
|
190
|
|
|
if ma.is_masked(a[next_idx]): |
|
191
|
|
|
return None, None |
|
192
|
|
|
else: |
|
193
|
|
|
return next_idx, a[next_idx] |
|
194
|
|
|
except (AttributeError, TypeError, IndexError): |
|
195
|
|
|
return idx, a[idx] |
|
196
|
|
|
|
|
197
|
|
|
|
|
198
|
|
|
def delete_masked_points(*arrs): |
|
199
|
|
|
"""Delete masked points from arrays. |
|
200
|
|
|
|
|
201
|
|
|
Takes arrays and removes masked points to help with calculations and plotting. |
|
202
|
|
|
|
|
203
|
|
|
Parameters |
|
204
|
|
|
---------- |
|
205
|
|
|
arrs : one or more array-like |
|
206
|
|
|
source arrays |
|
207
|
|
|
|
|
208
|
|
|
Returns |
|
209
|
|
|
------- |
|
210
|
|
|
arrs : one or more array-like |
|
211
|
|
|
arrays with masked elements removed |
|
212
|
|
|
|
|
213
|
|
|
""" |
|
214
|
|
|
if any(hasattr(a, 'mask') for a in arrs): |
|
215
|
|
|
keep = ~functools.reduce(np.logical_or, (np.ma.getmaskarray(a) for a in arrs)) |
|
216
|
|
|
return tuple(ma.asarray(a[keep]) for a in arrs) |
|
217
|
|
|
else: |
|
218
|
|
|
return arrs |
|
219
|
|
|
|
|
220
|
|
|
|
|
221
|
|
|
@exporter.export |
|
222
|
|
|
def reduce_point_density(points, radius, priority=None): |
|
223
|
|
|
r"""Return a mask to reduce the density of points in irregularly-spaced data. |
|
224
|
|
|
|
|
225
|
|
|
This function is used to down-sample a collection of scattered points (e.g. surface |
|
226
|
|
|
data), returning a mask that can be used to select the points from one or more arrays |
|
227
|
|
|
(e.g. arrays of temperature and dew point). The points selected can be controlled by |
|
228
|
|
|
providing an array of ``priority`` values (e.g. rainfall totals to ensure that |
|
229
|
|
|
stations with higher precipitation remain in the mask). |
|
230
|
|
|
|
|
231
|
|
|
Parameters |
|
232
|
|
|
---------- |
|
233
|
|
|
points : (N, K) array-like |
|
234
|
|
|
N locations of the points in K dimensional space |
|
235
|
|
|
radius : float |
|
236
|
|
|
minimum radius allowed between points |
|
237
|
|
|
priority : (N, K) array-like, optional |
|
238
|
|
|
If given, this should have the same shape as ``points``; these values will |
|
239
|
|
|
be used to control selection priority for points. |
|
240
|
|
|
|
|
241
|
|
|
Returns |
|
242
|
|
|
------- |
|
243
|
|
|
(N,) array-like of boolean values indicating whether points should be kept. This |
|
244
|
|
|
can be used directly to index numpy arrays to return only the desired points. |
|
245
|
|
|
|
|
246
|
|
|
Examples |
|
247
|
|
|
-------- |
|
248
|
|
|
>>> metpy.calc.reduce_point_density(np.array([1, 2, 3]), 1.) |
|
249
|
|
|
array([ True, False, True], dtype=bool) |
|
250
|
|
|
>>> metpy.calc.reduce_point_density(np.array([1, 2, 3]), 1., |
|
251
|
|
|
... priority=np.array([0.1, 0.9, 0.3])) |
|
252
|
|
|
array([False, True, False], dtype=bool) |
|
253
|
|
|
|
|
254
|
|
|
""" |
|
255
|
|
|
# Handle 1D input |
|
256
|
|
|
if points.ndim < 2: |
|
257
|
|
|
points = points.reshape(-1, 1) |
|
258
|
|
|
|
|
259
|
|
|
# Make a kd-tree to speed searching of data. |
|
260
|
|
|
tree = cKDTree(points) |
|
261
|
|
|
|
|
262
|
|
|
# Need to use sorted indices rather than sorting the position |
|
263
|
|
|
# so that the keep mask matches *original* order. |
|
264
|
|
|
if priority is not None: |
|
265
|
|
|
# Need to sort the locations in decreasing priority. |
|
266
|
|
|
sorted_indices = np.argsort(priority)[::-1] |
|
267
|
|
|
else: |
|
268
|
|
|
# Take advantage of iterator nature of range here to avoid making big lists |
|
269
|
|
|
sorted_indices = range(len(points)) |
|
270
|
|
|
|
|
271
|
|
|
# Keep all points initially |
|
272
|
|
|
keep = np.ones(len(points), dtype=np.bool) |
|
273
|
|
|
|
|
274
|
|
|
# Loop over all the potential points |
|
275
|
|
|
for ind in sorted_indices: |
|
276
|
|
|
# Only proceed if we haven't already excluded this point |
|
277
|
|
|
if keep[ind]: |
|
278
|
|
|
# Find the neighbors and eliminate them |
|
279
|
|
|
neighbors = tree.query_ball_point(points[ind], radius) |
|
280
|
|
|
keep[neighbors] = False |
|
281
|
|
|
|
|
282
|
|
|
# We just removed ourselves, so undo that |
|
283
|
|
|
keep[ind] = True |
|
284
|
|
|
|
|
285
|
|
|
return keep |
|
286
|
|
|
|
|
287
|
|
|
|
|
288
|
|
|
@exporter.export |
|
289
|
|
|
def log_interp(x, xp, fp, **kwargs): |
|
290
|
|
|
r"""Interpolates data with logarithmic x-scale. |
|
291
|
|
|
|
|
292
|
|
|
Interpolation on a logarithmic x-scale for interpolation values in pressure coordintates. |
|
293
|
|
|
|
|
294
|
|
|
Parameters |
|
295
|
|
|
---------- |
|
296
|
|
|
x : array-like |
|
297
|
|
|
The x-coordinates of the interpolated values. |
|
298
|
|
|
|
|
299
|
|
|
xp : array-like |
|
300
|
|
|
The x-coordinates of the data points. |
|
301
|
|
|
|
|
302
|
|
|
fp : array-like |
|
303
|
|
|
The y-coordinates of the data points, same length as xp. |
|
304
|
|
|
|
|
305
|
|
|
Returns |
|
306
|
|
|
------- |
|
307
|
|
|
array-like |
|
308
|
|
|
The interpolated values, same shape as x. |
|
309
|
|
|
|
|
310
|
|
|
Examples |
|
311
|
|
|
-------- |
|
312
|
|
|
>>> x_log = np.array([1e3, 1e4, 1e5, 1e6]) |
|
313
|
|
|
>>> y_log = np.log(x_log) * 2 + 3 |
|
314
|
|
|
>>> x_interp = np.array([5e3, 5e4, 5e5]) |
|
315
|
|
|
>>> metpy.calc.log_interp(x_interp, x_log, y_log) |
|
316
|
|
|
array([ 20.03438638, 24.63955657, 29.24472675]) |
|
317
|
|
|
|
|
318
|
|
|
""" |
|
319
|
|
|
sort_args = np.argsort(xp) |
|
320
|
|
|
|
|
321
|
|
|
if hasattr(x, 'units'): |
|
322
|
|
|
x = x.m |
|
323
|
|
|
|
|
324
|
|
|
if hasattr(xp, 'units'): |
|
325
|
|
|
xp = xp.m |
|
326
|
|
|
|
|
327
|
|
|
interpolated_vals = np.interp(np.log(x), np.log(xp[sort_args]), fp[sort_args], **kwargs) |
|
328
|
|
|
|
|
329
|
|
|
if hasattr(fp, 'units'): |
|
330
|
|
|
interpolated_vals = interpolated_vals * fp.units |
|
331
|
|
|
|
|
332
|
|
|
return interpolated_vals |
|
333
|
|
|
|