Completed
Pull Request — master (#536)
by
unknown
01:46
created

bulk_shear()   B

Complexity

Conditions 1

Size

Total Lines 40

Duplication

Lines 0
Ratio 0 %

Importance

Changes 1
Bugs 0 Features 0
Metric Value
cc 1
c 1
b 0
f 0
dl 0
loc 40
rs 8.8571
1
# Copyright (c) 2008-2017 MetPy Developers.
2
# Distributed under the terms of the BSD 3-Clause License.
3
# SPDX-License-Identifier: BSD-3-Clause
4
"""Contains calculation of various derived indices."""
5
import numpy as np
6
7
from .thermo import mixing_ratio, saturation_vapor_pressure
8
from .tools import get_layer
9
from ..constants import g, rho_l
10
from ..package_tools import Exporter
11
from ..units import check_units, concatenate, units
12
13
exporter = Exporter(globals())
14
15
16
@exporter.export
17
@check_units('[temperature]', '[pressure]', '[pressure]')
18
def precipitable_water(dewpt, pressure, top=400 * units('hPa')):
19
    r"""Calculate precipitable water through the depth of a sounding.
20
21
    Default layer depth is sfc-400 hPa. Formula used is:
22
23
    .. math:: \frac{1}{pg} \int\limits_0^d x \,dp
24
25
    from [Tsonis2008]_, p. 170.
26
27
    Parameters
28
    ----------
29
    dewpt : `pint.Quantity`
30
        Atmospheric dewpoint profile
31
    pressure : `pint.Quantity`
32
        Atmospheric pressure profile
33
    top: `pint.Quantity`, optional
34
        The top of the layer, specified in pressure. Defaults to 400 hPa.
35
36
    Returns
37
    -------
38
    `pint.Quantity`
39
        The precipitable water in the layer
40
41
    """
42
    sort_inds = np.argsort(pressure[::-1])
43
    pressure = pressure[sort_inds]
44
    dewpt = dewpt[sort_inds]
45
46
    pres_layer, dewpt_layer = get_layer(pressure, dewpt, depth=pressure[0] - top)
47
48
    w = mixing_ratio(saturation_vapor_pressure(dewpt_layer), pres_layer)
49
    # Since pressure is in decreasing order, pw will be the negative of what we want.
50
    # Thus the *-1
51
    pw = -1. * (np.trapz(w.magnitude, pres_layer.magnitude) * (w.units * pres_layer.units) /
52
                (g * rho_l))
53
    return pw.to('millimeters')
54
55
56
@exporter.export
57
@check_units('[pressure]')
58
def mean_pressure_weighted(pressure, *args, **kwargs):
59
    r"""Calculate pressure-weighted mean of an arbitrary variable through a layer.
60
61
    Layer top and bottom specified in height or pressure.
62
63
    Parameters
64
    ----------
65
    pressure : `pint.Quantity`
66
        Atmospheric pressure profile
67
    *args : `pint.Quantity`
68
        Parameters for which the pressure-weighted mean is to be calculated.
69
    heights : `pint.Quantity`, optional
70
        Heights from sounding. Standard atmosphere heights assumed (if needed)
71
        if no heights are given.
72
    bottom: `pint.Quantity`, optional
73
        The bottom of the layer in either the provided height coordinate
74
        or in pressure. Don't provide in meters AGL unless the provided
75
        height coordinate is meters AGL. Default is the first observation,
76
        assumed to be the surface.
77
    depth: `pint.Quantity`, optional
78
        The depth of the layer in meters or hPa.
79
80
    Returns
81
    -------
82
    `pint.Quantity`
83
        u_mean: u-component of layer mean wind.
84
    `pint.Quantity`
85
        v_mean: v-component of layer mean wind.
86
87
    """
88
    heights = kwargs.pop('heights', None)
89
    bottom = kwargs.pop('bottom', None)
90
    depth = kwargs.pop('depth', None)
91
    ret = []  # Returned variable means in layer
92
    layer_arg = get_layer(pressure, *args, heights=heights,
93
                          bottom=bottom, depth=depth)
94
    layer_p = layer_arg[0]
95
    layer_arg = layer_arg[1:]
96
    # Taking the integral of the weights (pressure) to feed into the weighting
97
    # function. Said integral works out to this function:
98
    pres_int = 0.5 * (layer_p[-1].magnitude**2 - layer_p[0].magnitude**2)
99
    for i, datavar in enumerate(args):
100
        arg_mean = np.trapz(layer_arg[i] * layer_p, x=layer_p) / pres_int
101
        ret.append(arg_mean * datavar.units)
102
103
    return ret
104
105
106
@exporter.export
107
@check_units('[pressure]', '[speed]', '[speed]', '[length]')
108
def bunkers_storm_motion(pressure, u, v, heights):
109
    r"""Calculate the Bunkers right-mover and left-mover storm motions and sfc-6km mean flow.
110
111
    Uses the storm motion calculation from [Bunkers et al, 2000]_.
112
113
    Parameters
114
    ----------
115
    pressure : array-like
116
        Pressure from sounding
117
    u : array-like
118
        U component of the wind
119
    v : array-like
120
        V component of the wind
121
    heights : array-like
122
        Heights from sounding
123
124
    Returns
125
    -------
126
    right_mover: `pint.Quantity`
127
        U and v component of Bunkers RM storm motion
128
    left_mover: `pint.Quantity`
129
        U and v component of Bunkers LM storm motion
130
    wind_mean: `pint.Quantity`
131
        U and v component of sfc-6km mean flow
132
133
    """
134
    # mean wind from sfc-6km
135
    wind_mean = concatenate(mean_pressure_weighted(pressure, u, v, heights=heights,
136
                                                   depth=6000 * units('meter')))
137
138
    # mean wind from sfc-500m
139
    wind_500m = concatenate(mean_pressure_weighted(pressure, u, v, heights=heights,
140
                                                   depth=500 * units('meter')))
141
142
    # mean wind from 5.5-6km
143
    wind_5500m = concatenate(mean_pressure_weighted(pressure, u, v, heights=heights,
144
                                                    depth=500 * units('meter'),
145
                                                    bottom=heights[0] +
146
                                                    5500 * units('meter')))
147
148
    # Calculate the shear vector from sfc-500m to 5.5-6km
149
    shear = wind_5500m - wind_500m
150
151
    # Take the cross product of the wind shear and k, and divide by the vector magnitude and
152
    # multiply by the deviaton empirically calculated in Bunkers (2000) (7.5 m/s)
153
    shear_cross = concatenate([shear[1], -shear[0]])
154
    rdev = shear_cross * (7.5 * units('m/s').to(u.units) / np.hypot(*shear))
155
156
    # Add the deviations to the layer average wind to get the RM motion
157
    right_mover = wind_mean + rdev
158
159
    # Subtract the deviations to get the LM motion
160
    left_mover = wind_mean - rdev
161
162
    return right_mover, left_mover, wind_mean
163
164
165
@exporter.export
166
@check_units('[pressure]', '[speed]', '[speed]')
167
def bulk_shear(pressure, u, v, heights=None, bottom=None, depth=None):
168
    r"""Calculate bulk shear through a layer.
169
170
    Layer top and bottom specified in meters or pressure.
171
172
    Parameters
173
    ----------
174
    pressure : `pint.Quantity`
175
        Atmospheric pressure profile
176
    u : `pint.Quantity`
177
        U-component of wind.
178
    v : `pint.Quantity`
179
        V-component of wind.
180
    height : `pint.Quantity`, optional
181
        Heights from sounding
182
    depth: `pint.Quantity`, optional
183
        The depth of the layer in meters or hPa
184
    bottom: `pint.Quantity`, optional
185
        The bottom of the layer in meters or hPa.
186
        If in meters, must be in the same coordinates as the given
187
        heights (i.e., don't use meters AGL unless given heights
188
        are in meters AGL.) Default is the surface (1st observation.)
189
190
    Returns
191
    -------
192
    u_shr: `pint.Quantity`
193
        u-component of layer bulk shear
194
    v_shr: `pint.Quantity`
195
        v-component of layer bulk shear
196
197
    """
198
    _, u_layer, v_layer = get_layer(pressure, u, v, heights=heights,
199
                                    bottom=bottom, depth=depth)
200
201
    u_shr = u_layer[-1] - u_layer[0]
202
    v_shr = v_layer[-1] - v_layer[0]
203
204
    return u_shr, v_shr
205