|
@@ 246-289 (lines=44) @@
|
| 243 |
|
return x[0], y[0] |
| 244 |
|
|
| 245 |
|
|
| 246 |
|
@exporter.export |
| 247 |
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
| 248 |
|
def el(pressure, temperature, dewpt): |
| 249 |
|
r"""Calculate the equilibrium level. |
| 250 |
|
|
| 251 |
|
This works by finding the last intersection of the ideal parcel path and |
| 252 |
|
the measured environmental temperature. If there is one or fewer intersections, there is |
| 253 |
|
no equilibrium level. |
| 254 |
|
|
| 255 |
|
Parameters |
| 256 |
|
---------- |
| 257 |
|
pressure : `pint.Quantity` |
| 258 |
|
The atmospheric pressure |
| 259 |
|
temperature : `pint.Quantity` |
| 260 |
|
The temperature at the levels given by `pressure` |
| 261 |
|
dewpt : `pint.Quantity` |
| 262 |
|
The dew point at the levels given by `pressure` |
| 263 |
|
|
| 264 |
|
Returns |
| 265 |
|
------- |
| 266 |
|
`pint.Quantity, pint.Quantity` |
| 267 |
|
The EL pressure and temperature |
| 268 |
|
|
| 269 |
|
See Also |
| 270 |
|
-------- |
| 271 |
|
parcel_profile |
| 272 |
|
|
| 273 |
|
""" |
| 274 |
|
ideal_profile = parcel_profile(pressure, temperature[0], dewpt[0]).to('degC') |
| 275 |
|
x, y = find_intersections(pressure[1:], ideal_profile[1:], temperature[1:]) |
| 276 |
|
|
| 277 |
|
# If there is only one intersection, there are two possibilities: |
| 278 |
|
# the dataset does not contain the EL, or the LFC = LCL. |
| 279 |
|
if len(x) <= 1: |
| 280 |
|
if (ideal_profile[-1] < temperature[-1]) and (len(x) == 1): |
| 281 |
|
# Profile top colder than environment with one |
| 282 |
|
# intersection, EL exists and LFC = LCL |
| 283 |
|
return x[-1], y[-1] |
| 284 |
|
else: |
| 285 |
|
# The EL does not exist, either due to incomplete data |
| 286 |
|
# or no intersection occurring. |
| 287 |
|
return np.nan * pressure.units, np.nan * temperature.units |
| 288 |
|
else: |
| 289 |
|
return x[-1], y[-1] |
| 290 |
|
|
| 291 |
|
|
| 292 |
|
@exporter.export |
|
@@ 200-243 (lines=44) @@
|
| 197 |
|
return lcl_p, dewpoint(vapor_pressure(lcl_p, w)) |
| 198 |
|
|
| 199 |
|
|
| 200 |
|
@exporter.export |
| 201 |
|
@check_units('[pressure]', '[temperature]', '[temperature]') |
| 202 |
|
def lfc(pressure, temperature, dewpt): |
| 203 |
|
r"""Calculate the level of free convection (LFC). |
| 204 |
|
|
| 205 |
|
This works by finding the first intersection of the ideal parcel path and |
| 206 |
|
the measured parcel temperature. |
| 207 |
|
|
| 208 |
|
Parameters |
| 209 |
|
---------- |
| 210 |
|
pressure : `pint.Quantity` |
| 211 |
|
The atmospheric pressure |
| 212 |
|
temperature : `pint.Quantity` |
| 213 |
|
The temperature at the levels given by `pressure` |
| 214 |
|
dewpt : `pint.Quantity` |
| 215 |
|
The dew point at the levels given by `pressure` |
| 216 |
|
|
| 217 |
|
Returns |
| 218 |
|
------- |
| 219 |
|
`pint.Quantity` |
| 220 |
|
The LFC pressure and temperature |
| 221 |
|
|
| 222 |
|
See Also |
| 223 |
|
-------- |
| 224 |
|
parcel_profile |
| 225 |
|
|
| 226 |
|
""" |
| 227 |
|
ideal_profile = parcel_profile(pressure, temperature[0], dewpt[0]).to('degC') |
| 228 |
|
|
| 229 |
|
# The parcel profile and data have the same first data point, so we ignore |
| 230 |
|
# that point to get the real first intersection for the LFC calculation. |
| 231 |
|
x, y = find_intersections(pressure[1:], ideal_profile[1:], temperature[1:], |
| 232 |
|
direction='increasing') |
| 233 |
|
# Two possible cases here: LFC = LCL, or LFC doesn't exist |
| 234 |
|
if len(x) == 0: |
| 235 |
|
if np.any(ideal_profile > temperature): |
| 236 |
|
# LFC = LCL |
| 237 |
|
x, y = lcl(pressure[0], temperature[0], dewpt[0]) |
| 238 |
|
return x, y |
| 239 |
|
# LFC doesn't exist |
| 240 |
|
else: |
| 241 |
|
return np.nan * pressure.units, np.nan * temperature.units |
| 242 |
|
else: |
| 243 |
|
return x[0], y[0] |
| 244 |
|
|
| 245 |
|
|
| 246 |
|
@exporter.export |