|
@@ 212-219 (lines=8) @@
|
| 209 |
|
assert_array_almost_equal(y_interp[0, 0, :], y_interp_truth, 7) |
| 210 |
|
|
| 211 |
|
|
| 212 |
|
def test_log_interp_4d(): |
| 213 |
|
"""Test interpolating with log x-scale.""" |
| 214 |
|
x_log = np.ones((2, 2, 3, 4)) * np.array([1e3, 1e4, 1e5, 1e6]) |
| 215 |
|
y_log = np.log(x_log) * 2 + 3 |
| 216 |
|
x_interp = np.array([5e3, 5e4, 5e5]) |
| 217 |
|
y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548]) |
| 218 |
|
y_interp = log_interp(x_interp, x_log, y_log, axis=3) |
| 219 |
|
assert_array_almost_equal(y_interp[0, 0, 0, :], y_interp_truth, 7) |
| 220 |
|
|
| 221 |
|
|
| 222 |
|
def test_log_interp_2args(): |
|
@@ 202-209 (lines=8) @@
|
| 199 |
|
assert_array_almost_equal(y_interp[1], y_interp_truth, 7) |
| 200 |
|
|
| 201 |
|
|
| 202 |
|
def test_log_interp_3d(): |
| 203 |
|
"""Test interpolating with log x-scale.""" |
| 204 |
|
x_log = np.ones((3, 3, 4)) * np.array([1e3, 1e4, 1e5, 1e6]) |
| 205 |
|
y_log = np.log(x_log) * 2 + 3 |
| 206 |
|
x_interp = np.array([5e3, 5e4, 5e5]) |
| 207 |
|
y_interp_truth = np.array([20.0343863828, 24.6395565688, 29.2447267548]) |
| 208 |
|
y_interp = log_interp(x_interp, x_log, y_log, axis=2) |
| 209 |
|
assert_array_almost_equal(y_interp[0, 0, :], y_interp_truth, 7) |
| 210 |
|
|
| 211 |
|
|
| 212 |
|
def test_log_interp_4d(): |