|
@@ 278-300 (lines=23) @@
|
| 275 |
|
kf_true['vw']) |
| 276 |
|
|
| 277 |
|
|
| 278 |
|
def test_kf_2d_axis_first_zero_mean(uvw_and_known_kf_zero_mean): |
| 279 |
|
"""Test kinematic flux calculation in 2D with zero-mean time series along first axis.""" |
| 280 |
|
u, v, w, kf_true = uvw_and_known_kf_zero_mean |
| 281 |
|
u = np.array([u, u, u]).transpose() |
| 282 |
|
v = np.array([v, v, v]).transpose() |
| 283 |
|
w = np.array([w, w, w]).transpose() |
| 284 |
|
for key in kf_true.keys(): |
| 285 |
|
tmp = kf_true[key] |
| 286 |
|
kf_true[key] = np.array([tmp, tmp, tmp]).transpose() |
| 287 |
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=0), |
| 288 |
|
kf_true['uv']) |
| 289 |
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=0), |
| 290 |
|
kf_true['uw']) |
| 291 |
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=0), |
| 292 |
|
kf_true['vw']) |
| 293 |
|
# given u, v, and w have a zero mean, the kf computed with |
| 294 |
|
# perturbation=True and perturbation=False should be the same |
| 295 |
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=0), |
| 296 |
|
kinematic_flux(u, v, perturbation=True, axis=0)) |
| 297 |
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=0), |
| 298 |
|
kinematic_flux(u, w, perturbation=True, axis=0)) |
| 299 |
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=0), |
| 300 |
|
kinematic_flux(v, w, perturbation=True, axis=0)) |
| 301 |
|
|
| 302 |
|
|
| 303 |
|
def test_kf_2d_axis_first_nonzero_mean(uvw_and_known_kf_nonzero_mean): |
|
@@ 236-258 (lines=23) @@
|
| 233 |
|
kf_true['vw']) |
| 234 |
|
|
| 235 |
|
|
| 236 |
|
def test_kf_2d_axis_last_zero_mean(uvw_and_known_kf_zero_mean): |
| 237 |
|
"""Test kinematic flux calculation in 2D with zero-mean time series along last axis.""" |
| 238 |
|
u, v, w, kf_true = uvw_and_known_kf_zero_mean |
| 239 |
|
u = np.array([u, u, u]) |
| 240 |
|
v = np.array([v, v, v]) |
| 241 |
|
w = np.array([w, w, w]) |
| 242 |
|
for key in kf_true.keys(): |
| 243 |
|
tmp = kf_true[key] |
| 244 |
|
kf_true[key] = np.array([tmp, tmp, tmp]) |
| 245 |
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=-1), |
| 246 |
|
kf_true['uv']) |
| 247 |
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=-1), |
| 248 |
|
kf_true['uw']) |
| 249 |
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=-1), |
| 250 |
|
kf_true['vw']) |
| 251 |
|
# given u, v, and w have a zero mean, the kf computed with |
| 252 |
|
# perturbation=True and perturbation=False should be the same |
| 253 |
|
assert_array_equal(kinematic_flux(u, v, perturbation=False, axis=-1), |
| 254 |
|
kinematic_flux(u, v, perturbation=True, axis=-1)) |
| 255 |
|
assert_array_equal(kinematic_flux(u, w, perturbation=False, axis=-1), |
| 256 |
|
kinematic_flux(u, w, perturbation=True, axis=-1)) |
| 257 |
|
assert_array_equal(kinematic_flux(v, w, perturbation=False, axis=-1), |
| 258 |
|
kinematic_flux(v, w, perturbation=True, axis=-1)) |
| 259 |
|
|
| 260 |
|
|
| 261 |
|
def test_kf_2d_axis_last_nonzero_mean(uvw_and_known_kf_nonzero_mean): |