station_test_data()   C
last analyzed

Complexity

Conditions 7

Size

Total Lines 31

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 7
c 0
b 0
f 0
dl 0
loc 31
rs 5.5
1
# Copyright (c) 2016 MetPy Developers.
2
# Distributed under the terms of the BSD 3-Clause License.
3
# SPDX-License-Identifier: BSD-3-Clause
4
"""
5
Point Interpolation
6
===================
7
8
Compares different point interpolation approaches.
9
"""
10
import cartopy
11
import cartopy.crs as ccrs
12
from matplotlib.colors import BoundaryNorm
13
import matplotlib.pyplot as plt
14
import numpy as np
15
16
from metpy.cbook import get_test_data
17
from metpy.gridding.gridding_functions import (interpolate, remove_nan_observations,
18
                                               remove_repeat_coordinates)
19
20
21
###########################################
22
from metpy.plots import add_metpy_logo
23
24
25
def basic_map(proj):
26
    """Make our basic default map for plotting"""
27
    fig = plt.figure(figsize=(15, 10))
28
    add_metpy_logo(fig)
29
    view = fig.add_axes([0, 0, 1, 1], projection=proj)
30
    view.set_extent([-120, -70, 20, 50])
31
    view.add_feature(cartopy.feature.NaturalEarthFeature(category='cultural',
32
                                                         name='admin_1_states_provinces_lakes',
33
                                                         scale='50m', facecolor='none'))
34
    view.add_feature(cartopy.feature.OCEAN)
35
    view.add_feature(cartopy.feature.COASTLINE)
36
    view.add_feature(cartopy.feature.BORDERS, linestyle=':')
37
    return view
38
39
40
def station_test_data(variable_names, proj_from=None, proj_to=None):
41
    with get_test_data('station_data.txt') as f:
42
        all_data = np.loadtxt(f, skiprows=1, delimiter=',',
43
                              usecols=(1, 2, 3, 4, 5, 6, 7, 17, 18, 19),
44
                              dtype=np.dtype([('stid', '3S'), ('lat', 'f'), ('lon', 'f'),
45
                                              ('slp', 'f'), ('air_temperature', 'f'),
46
                                              ('cloud_fraction', 'f'), ('dewpoint', 'f'),
47
                                              ('weather', '16S'),
48
                                              ('wind_dir', 'f'), ('wind_speed', 'f')]))
49
50
    all_stids = [s.decode('ascii') for s in all_data['stid']]
51
52
    data = np.concatenate([all_data[all_stids.index(site)].reshape(1, ) for site in all_stids])
53
54
    value = data[variable_names]
55
    lon = data['lon']
56
    lat = data['lat']
57
58
    if proj_from is not None and proj_to is not None:
59
60
        try:
61
62
            proj_points = proj_to.transform_points(proj_from, lon, lat)
63
            return proj_points[:, 0], proj_points[:, 1], value
64
65
        except Exception as e:
66
67
            print(e)
68
            return None
69
70
    return lon, lat, value
71
72
73
from_proj = ccrs.Geodetic()
74
to_proj = ccrs.AlbersEqualArea(central_longitude=-97.0000, central_latitude=38.0000)
75
76
levels = list(range(-20, 20, 1))
77
cmap = plt.get_cmap('magma')
78
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
79
80
x, y, temp = station_test_data('air_temperature', from_proj, to_proj)
81
82
x, y, temp = remove_nan_observations(x, y, temp)
83
x, y, temp = remove_repeat_coordinates(x, y, temp)
84
85
###########################################
86
# Scipy.interpolate linear
87
# ------------------------
88
gx, gy, img = interpolate(x, y, temp, interp_type='linear', hres=75000)
89
img = np.ma.masked_where(np.isnan(img), img)
90
view = basic_map(to_proj)
91
mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm)
92
plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
93
94
###########################################
95
# Natural neighbor interpolation (MetPy implementation)
96
# -----------------------------------------------------
97
# `Reference <https://github.com/Unidata/MetPy/files/138653/cwp-657.pdf>`_
98
gx, gy, img = interpolate(x, y, temp, interp_type='natural_neighbor', hres=75000)
99
img = np.ma.masked_where(np.isnan(img), img)
100
view = basic_map(to_proj)
101
mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm)
102
plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
103
104
###########################################
105
# Cressman interpolation
106
# ----------------------
107
# search_radius = 100 km
108
#
109
# grid resolution = 25 km
110
#
111
# min_neighbors = 1
112
gx, gy, img = interpolate(x, y, temp, interp_type='cressman', minimum_neighbors=1, hres=75000,
113
                          search_radius=100000)
114
img = np.ma.masked_where(np.isnan(img), img)
115
view = basic_map(to_proj)
116
mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm)
117
plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
118
119
###########################################
120
# Barnes Interpolation
121
# --------------------
122
# search_radius = 100km
123
#
124
# min_neighbors = 3
125
gx, gy, img1 = interpolate(x, y, temp, interp_type='barnes', hres=75000, search_radius=100000)
126
img1 = np.ma.masked_where(np.isnan(img1), img1)
127
view = basic_map(to_proj)
128
mmb = view.pcolormesh(gx, gy, img1, cmap=cmap, norm=norm)
129
plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
130
131
###########################################
132
# Radial basis function interpolation
133
# ------------------------------------
134
# linear
135
gx, gy, img = interpolate(x, y, temp, interp_type='rbf', hres=75000, rbf_func='linear',
136
                          rbf_smooth=0)
137
img = np.ma.masked_where(np.isnan(img), img)
138
view = basic_map(to_proj)
139
mmb = view.pcolormesh(gx, gy, img, cmap=cmap, norm=norm)
140
plt.colorbar(mmb, shrink=.4, pad=0, boundaries=levels)
141
142
plt.show()
143