1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
""" |
3
|
|
|
This module operates a confocal microsope. |
4
|
|
|
|
5
|
|
|
Qudi is free software: you can redistribute it and/or modify |
6
|
|
|
it under the terms of the GNU General Public License as published by |
7
|
|
|
the Free Software Foundation, either version 3 of the License, or |
8
|
|
|
(at your option) any later version. |
9
|
|
|
|
10
|
|
|
Qudi is distributed in the hope that it will be useful, |
11
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
12
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13
|
|
|
GNU General Public License for more details. |
14
|
|
|
|
15
|
|
|
You should have received a copy of the GNU General Public License |
16
|
|
|
along with Qudi. If not, see <http://www.gnu.org/licenses/>. |
17
|
|
|
|
18
|
|
|
Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the |
19
|
|
|
top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
from qtpy import QtCore |
23
|
|
|
from collections import OrderedDict |
24
|
|
|
from copy import copy |
25
|
|
|
import time |
26
|
|
|
import datetime |
27
|
|
|
import numpy as np |
28
|
|
|
import matplotlib as mpl |
29
|
|
|
import matplotlib.pyplot as plt |
30
|
|
|
from io import BytesIO |
31
|
|
|
|
32
|
|
|
from logic.generic_logic import GenericLogic |
33
|
|
|
from core.util.mutex import Mutex |
34
|
|
|
from core.module import Connector, ConfigOption, StatusVar |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
class OldConfigFileError(Exception): |
38
|
|
|
""" Exception that is thrown when an old config file is loaded. |
39
|
|
|
""" |
40
|
|
|
def __init__(self): |
41
|
|
|
super().__init__('Old configuration file detected. Ignoring confocal history.') |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
class ConfocalHistoryEntry(QtCore.QObject): |
45
|
|
|
""" This class contains all relevant parameters of a Confocal scan. |
46
|
|
|
It provides methods to extract, restore and serialize this data. |
47
|
|
|
""" |
48
|
|
|
|
49
|
|
|
def __init__(self, confocal): |
50
|
|
|
""" Make a confocal data setting with default values. """ |
51
|
|
|
super().__init__() |
52
|
|
|
|
53
|
|
|
self.depth_scan_dir_is_xz = True |
54
|
|
|
self.depth_img_is_xz = True |
55
|
|
|
|
56
|
|
|
self.xy_line_pos = 0 |
57
|
|
|
self.depth_line_pos = 0 |
58
|
|
|
|
59
|
|
|
# Reads in the maximal scanning range. The unit of that scan range is meters! |
60
|
|
|
self.x_range = confocal._scanning_device.get_position_range()[0] |
61
|
|
|
self.y_range = confocal._scanning_device.get_position_range()[1] |
62
|
|
|
self.z_range = confocal._scanning_device.get_position_range()[2] |
63
|
|
|
|
64
|
|
|
# Sets the current position to the center of the maximal scanning range |
65
|
|
|
self.current_x = (self.x_range[0] + self.x_range[1]) / 2 |
66
|
|
|
self.current_y = (self.y_range[0] + self.y_range[1]) / 2 |
67
|
|
|
self.current_z = (self.z_range[0] + self.z_range[1]) / 2 |
68
|
|
|
self.current_a = 0.0 |
69
|
|
|
|
70
|
|
|
# Sets the size of the image to the maximal scanning range |
71
|
|
|
self.image_x_range = self.x_range |
72
|
|
|
self.image_y_range = self.y_range |
73
|
|
|
self.image_z_range = self.z_range |
74
|
|
|
|
75
|
|
|
# Default values for the resolution of the scan |
76
|
|
|
self.xy_resolution = 100 |
77
|
|
|
self.z_resolution = 50 |
78
|
|
|
|
79
|
|
|
# Initialization of internal counter for scanning |
80
|
|
|
self.xy_line_position = 0 |
81
|
|
|
self.depth_line_position = 0 |
82
|
|
|
|
83
|
|
|
# Variable to check if a scan is continuable |
84
|
|
|
self.scan_counter = 0 |
85
|
|
|
self.xy_scan_continuable = False |
86
|
|
|
self.depth_scan_continuable = False |
87
|
|
|
|
88
|
|
|
# tilt correction stuff: |
89
|
|
|
self.tilt_correction = False |
90
|
|
|
# rotation point for tilt correction |
91
|
|
|
self.tilt_reference_x = 0.5 * (self.x_range[0] + self.x_range[1]) |
92
|
|
|
self.tilt_reference_y = 0.5 * (self.y_range[0] + self.y_range[1]) |
93
|
|
|
# sample slope |
94
|
|
|
self.tilt_slope_x = 0 |
95
|
|
|
self.tilt_slope_y = 0 |
96
|
|
|
# tilt correction points |
97
|
|
|
self.point1 = np.array((0, 0, 0)) |
98
|
|
|
self.point2 = np.array((0, 0, 0)) |
99
|
|
|
self.point3 = np.array((0, 0, 0)) |
100
|
|
|
self.tilt_correction = False |
101
|
|
|
self.tilt_slope_x = 0 |
102
|
|
|
self.tilt_slope_y = 0 |
103
|
|
|
self.tilt_reference_x = 0 |
104
|
|
|
self.tilt_reference_y = 0 |
105
|
|
|
|
106
|
|
|
def restore(self, confocal): |
107
|
|
|
""" Write data back into confocal logic and pull all the necessary strings """ |
108
|
|
|
confocal._current_x = self.current_x |
109
|
|
|
confocal._current_y = self.current_y |
110
|
|
|
confocal._current_z = self.current_z |
111
|
|
|
confocal._current_a = self.current_a |
112
|
|
|
confocal.image_x_range = np.copy(self.image_x_range) |
113
|
|
|
confocal.image_y_range = np.copy(self.image_y_range) |
114
|
|
|
confocal.image_z_range = np.copy(self.image_z_range) |
115
|
|
|
confocal.xy_resolution = self.xy_resolution |
116
|
|
|
confocal.z_resolution = self.z_resolution |
117
|
|
|
confocal.depth_img_is_xz = self.depth_img_is_xz |
118
|
|
|
confocal.depth_scan_dir_is_xz = self.depth_scan_dir_is_xz |
119
|
|
|
confocal._xy_line_pos = self.xy_line_position |
120
|
|
|
confocal._depth_line_pos = self.depth_line_position |
121
|
|
|
confocal._xyscan_continuable = self.xy_scan_continuable |
122
|
|
|
confocal._zscan_continuable = self.depth_scan_continuable |
123
|
|
|
confocal._scan_counter = self.scan_counter |
124
|
|
|
confocal.point1 = np.copy(self.point1) |
125
|
|
|
confocal.point2 = np.copy(self.point2) |
126
|
|
|
confocal.point3 = np.copy(self.point3) |
127
|
|
|
confocal._scanning_device.tilt_variable_ax = self.tilt_slope_x |
128
|
|
|
confocal._scanning_device.tilt_variable_ay = self.tilt_slope_y |
129
|
|
|
confocal._scanning_device.tilt_reference_x = self.tilt_reference_x |
130
|
|
|
confocal._scanning_device.tilt_reference_y = self.tilt_reference_y |
131
|
|
|
confocal._scanning_device.tiltcorrection = self.tilt_correction |
132
|
|
|
|
133
|
|
|
confocal.initialize_image() |
134
|
|
|
try: |
135
|
|
|
if confocal.xy_image.shape == self.xy_image.shape: |
136
|
|
|
confocal.xy_image = np.copy(self.xy_image) |
137
|
|
|
except AttributeError: |
138
|
|
|
self.xy_image = np.copy(confocal.xy_image) |
139
|
|
|
|
140
|
|
|
confocal._zscan = True |
141
|
|
|
confocal.initialize_image() |
142
|
|
|
try: |
143
|
|
|
if confocal.depth_image.shape == self.depth_image.shape: |
144
|
|
|
confocal.depth_image = np.copy(self.depth_image) |
145
|
|
|
except AttributeError: |
146
|
|
|
self.depth_image = np.copy(confocal.depth_image) |
147
|
|
|
confocal._zscan = False |
148
|
|
|
|
149
|
|
|
def snapshot(self, confocal): |
150
|
|
|
""" Extract all necessary data from a confocal logic and keep it for later use """ |
151
|
|
|
self.current_x = confocal._current_x |
152
|
|
|
self.current_y = confocal._current_y |
153
|
|
|
self.current_z = confocal._current_z |
154
|
|
|
self.current_a = confocal._current_a |
155
|
|
|
self.image_x_range = np.copy(confocal.image_x_range) |
156
|
|
|
self.image_y_range = np.copy(confocal.image_y_range) |
157
|
|
|
self.image_z_range = np.copy(confocal.image_z_range) |
158
|
|
|
self.xy_resolution = confocal.xy_resolution |
159
|
|
|
self.z_resolution = confocal.z_resolution |
160
|
|
|
self.depth_scan_dir_is_xz = confocal.depth_scan_dir_is_xz |
161
|
|
|
self.depth_img_is_xz = confocal.depth_img_is_xz |
162
|
|
|
self.xy_line_position = confocal._xy_line_pos |
163
|
|
|
self.depth_line_position = confocal._depth_line_pos |
164
|
|
|
self.xy_scan_continuable = confocal._xyscan_continuable |
165
|
|
|
self.depth_scan_continuable = confocal._zscan_continuable |
166
|
|
|
self.scan_counter = confocal._scan_counter |
167
|
|
|
self.tilt_correction = confocal._scanning_device.tiltcorrection |
168
|
|
|
self.tilt_slope_x = confocal._scanning_device.tilt_variable_ax |
169
|
|
|
self.tilt_slope_y = confocal._scanning_device.tilt_variable_ay |
170
|
|
|
self.tilt_reference_x = confocal._scanning_device.tilt_reference_x |
171
|
|
|
self.tilt_reference_y = confocal._scanning_device.tilt_reference_y |
172
|
|
|
self.point1 = np.copy(confocal.point1) |
173
|
|
|
self.point2 = np.copy(confocal.point2) |
174
|
|
|
self.point3 = np.copy(confocal.point3) |
175
|
|
|
self.xy_image = np.copy(confocal.xy_image) |
176
|
|
|
self.depth_image = np.copy(confocal.depth_image) |
177
|
|
|
|
178
|
|
|
def serialize(self): |
179
|
|
|
""" Give out a dictionary that can be saved via the usual means """ |
180
|
|
|
serialized = dict() |
181
|
|
|
serialized['focus_position'] = [self.current_x, self.current_y, self.current_z, self.current_a] |
182
|
|
|
serialized['x_range'] = list(self.image_x_range) |
183
|
|
|
serialized['y_range'] = list(self.image_y_range) |
184
|
|
|
serialized['z_range'] = list(self.image_z_range) |
185
|
|
|
serialized['xy_resolution'] = self.xy_resolution |
186
|
|
|
serialized['z_resolution'] = self.z_resolution |
187
|
|
|
serialized['depth_img_is_xz'] = self.depth_img_is_xz |
188
|
|
|
serialized['depth_dir_is_xz'] = self.depth_scan_dir_is_xz |
189
|
|
|
serialized['xy_line_position'] = self.xy_line_position |
190
|
|
|
serialized['depth_line_position'] = self.depth_line_position |
191
|
|
|
serialized['xy_scan_cont'] = self.xy_scan_continuable |
192
|
|
|
serialized['depth_scan_cont'] = self.depth_scan_continuable |
193
|
|
|
serialized['scan_counter'] = self.scan_counter |
194
|
|
|
serialized['tilt_correction'] = self.tilt_correction |
195
|
|
|
serialized['tilt_point1'] = list(self.point1) |
196
|
|
|
serialized['tilt_point2'] = list(self.point2) |
197
|
|
|
serialized['tilt_point3'] = list(self.point3) |
198
|
|
|
serialized['tilt_reference'] = [self.tilt_reference_x, self.tilt_reference_y] |
199
|
|
|
serialized['tilt_slope'] = [self.tilt_slope_x, self.tilt_slope_y] |
200
|
|
|
serialized['xy_image'] = self.xy_image |
201
|
|
|
serialized['depth_image'] = self.depth_image |
202
|
|
|
return serialized |
203
|
|
|
|
204
|
|
|
def deserialize(self, serialized): |
205
|
|
|
""" Restore Confocal history object from a dict """ |
206
|
|
|
if 'focus_position' in serialized and len(serialized['focus_position']) == 4: |
207
|
|
|
self.current_x = serialized['focus_position'][0] |
208
|
|
|
self.current_y = serialized['focus_position'][1] |
209
|
|
|
self.current_z = serialized['focus_position'][2] |
210
|
|
|
self.current_a = serialized['focus_position'][3] |
211
|
|
|
if 'x_range' in serialized and len(serialized['x_range']) == 2: |
212
|
|
|
self.image_x_range = serialized['x_range'] |
213
|
|
|
if 'y_range' in serialized and len(serialized['y_range']) == 2: |
214
|
|
|
self.image_y_range = serialized['y_range'] |
215
|
|
|
if 'z_range' in serialized and len(serialized['z_range']) == 2: |
216
|
|
|
self.image_z_range = serialized['z_range'] |
217
|
|
|
if 'xy_resolution' in serialized: |
218
|
|
|
self.xy_resolution = serialized['xy_resolution'] |
219
|
|
|
if 'z_resolution' in serialized: |
220
|
|
|
self.z_resolution = serialized['z_resolution'] |
221
|
|
|
if 'depth_img_is_xz' in serialized: |
222
|
|
|
self.depth_img_is_xz = serialized['depth_img_is_xz'] |
223
|
|
|
if 'depth_dir_is_xz' in serialized: |
224
|
|
|
self.depth_scan_dir_is_xz = serialized['depth_dir_is_xz'] |
225
|
|
|
if 'tilt_correction' in serialized: |
226
|
|
|
self.tilt_correction = serialized['tilt_correction'] |
227
|
|
|
if 'tilt_reference' in serialized and len(serialized['tilt_reference']) == 2: |
228
|
|
|
self.tilt_reference_x = serialized['tilt_reference'][0] |
229
|
|
|
self.tilt_reference_y = serialized['tilt_reference'][1] |
230
|
|
|
if 'tilt_slope' in serialized and len(serialized['tilt_slope']) == 2: |
231
|
|
|
self.tilt_slope_x = serialized['tilt_slope'][0] |
232
|
|
|
self.tilt_slope_y = serialized['tilt_slope'][1] |
233
|
|
|
if 'tilt_point1' in serialized and len(serialized['tilt_point1']) == 3: |
234
|
|
|
self.point1 = np.array(serialized['tilt_point1']) |
235
|
|
|
if 'tilt_point2' in serialized and len(serialized['tilt_point2']) == 3: |
236
|
|
|
self.point2 = np.array(serialized['tilt_point2']) |
237
|
|
|
if 'tilt_point3' in serialized and len(serialized['tilt_point3']) == 3: |
238
|
|
|
self.point3 = np.array(serialized['tilt_point3']) |
239
|
|
|
if 'xy_image' in serialized: |
240
|
|
|
if isinstance(serialized['xy_image'], np.ndarray): |
241
|
|
|
self.xy_image = serialized['xy_image'] |
242
|
|
|
else: |
243
|
|
|
raise OldConfigFileError() |
244
|
|
|
if 'depth_image' in serialized: |
245
|
|
|
if isinstance(serialized['depth_image'], np.ndarray): |
246
|
|
|
self.depth_image = serialized['depth_image'].copy() |
247
|
|
|
else: |
248
|
|
|
raise OldConfigFileError() |
249
|
|
|
|
250
|
|
|
|
251
|
|
|
class ConfocalLogic(GenericLogic): |
252
|
|
|
""" |
253
|
|
|
This is the Logic class for confocal scanning. |
254
|
|
|
""" |
255
|
|
|
_modclass = 'confocallogic' |
256
|
|
|
_modtype = 'logic' |
257
|
|
|
|
258
|
|
|
# declare connectors |
259
|
|
|
confocalscanner1 = Connector(interface='ConfocalScannerInterface') |
260
|
|
|
savelogic = Connector(interface='SaveLogic') |
261
|
|
|
|
262
|
|
|
# status vars |
263
|
|
|
_clock_frequency = StatusVar('clock_frequency', 500) |
264
|
|
|
return_slowness = StatusVar(default=50) |
265
|
|
|
max_history_length = StatusVar(default=10) |
266
|
|
|
|
267
|
|
|
# signals |
268
|
|
|
signal_start_scanning = QtCore.Signal(str) |
269
|
|
|
signal_continue_scanning = QtCore.Signal(str) |
270
|
|
|
signal_stop_scanning = QtCore.Signal() |
271
|
|
|
signal_scan_lines_next = QtCore.Signal() |
272
|
|
|
signal_xy_image_updated = QtCore.Signal() |
273
|
|
|
signal_depth_image_updated = QtCore.Signal() |
274
|
|
|
signal_change_position = QtCore.Signal(str) |
275
|
|
|
signal_xy_data_saved = QtCore.Signal() |
276
|
|
|
signal_depth_data_saved = QtCore.Signal() |
277
|
|
|
signal_tilt_correction_active = QtCore.Signal(bool) |
278
|
|
|
signal_tilt_correction_update = QtCore.Signal() |
279
|
|
|
signal_draw_figure_completed = QtCore.Signal() |
280
|
|
|
signal_position_changed = QtCore.Signal() |
281
|
|
|
|
282
|
|
|
sigImageXYInitialized = QtCore.Signal() |
283
|
|
|
sigImageDepthInitialized = QtCore.Signal() |
284
|
|
|
|
285
|
|
|
signal_history_event = QtCore.Signal() |
286
|
|
|
|
287
|
|
|
def __init__(self, config, **kwargs): |
288
|
|
|
super().__init__(config=config, **kwargs) |
289
|
|
|
|
290
|
|
|
#locking for thread safety |
291
|
|
|
self.threadlock = Mutex() |
292
|
|
|
|
293
|
|
|
# counter for scan_image |
294
|
|
|
self._scan_counter = 0 |
295
|
|
|
self._zscan = False |
296
|
|
|
self.stopRequested = False |
297
|
|
|
self.depth_scan_dir_is_xz = True |
298
|
|
|
self.depth_img_is_xz = True |
299
|
|
|
self.permanent_scan = False |
300
|
|
|
|
301
|
|
|
def on_activate(self): |
302
|
|
|
""" Initialisation performed during activation of the module. |
303
|
|
|
""" |
304
|
|
|
self._scanning_device = self.confocalscanner1() |
305
|
|
|
self._save_logic = self.savelogic() |
306
|
|
|
|
307
|
|
|
# Reads in the maximal scanning range. The unit of that scan range is micrometer! |
308
|
|
|
self.x_range = self._scanning_device.get_position_range()[0] |
309
|
|
|
self.y_range = self._scanning_device.get_position_range()[1] |
310
|
|
|
self.z_range = self._scanning_device.get_position_range()[2] |
311
|
|
|
|
312
|
|
|
# restore here ... |
313
|
|
|
self.history = [] |
314
|
|
|
for i in reversed(range(1, self.max_history_length)): |
315
|
|
|
try: |
316
|
|
|
new_history_item = ConfocalHistoryEntry(self) |
317
|
|
|
new_history_item.deserialize( |
318
|
|
|
self._statusVariables['history_{0}'.format(i)]) |
319
|
|
|
self.history.append(new_history_item) |
320
|
|
|
except KeyError: |
321
|
|
|
pass |
322
|
|
|
except OldConfigFileError: |
323
|
|
|
self.log.warning( |
324
|
|
|
'Old style config file detected. History {0} ignored.'.format(i)) |
325
|
|
|
except: |
326
|
|
|
self.log.warning( |
327
|
|
|
'Restoring history {0} failed.'.format(i)) |
328
|
|
|
try: |
329
|
|
|
new_state = ConfocalHistoryEntry(self) |
330
|
|
|
new_state.deserialize(self._statusVariables['history_0']) |
331
|
|
|
new_state.restore(self) |
332
|
|
|
except: |
333
|
|
|
new_state = ConfocalHistoryEntry(self) |
334
|
|
|
new_state.restore(self) |
335
|
|
|
finally: |
336
|
|
|
self.history.append(new_state) |
337
|
|
|
|
338
|
|
|
self.history_index = len(self.history) - 1 |
339
|
|
|
|
340
|
|
|
# Sets connections between signals and functions |
341
|
|
|
self.signal_scan_lines_next.connect(self._scan_line, QtCore.Qt.QueuedConnection) |
342
|
|
|
self.signal_start_scanning.connect(self.start_scanner, QtCore.Qt.QueuedConnection) |
343
|
|
|
self.signal_continue_scanning.connect(self.continue_scanner, QtCore.Qt.QueuedConnection) |
344
|
|
|
|
345
|
|
|
self._change_position('activation') |
346
|
|
|
|
347
|
|
|
def on_deactivate(self): |
348
|
|
|
""" Reverse steps of activation |
349
|
|
|
|
350
|
|
|
@return int: error code (0:OK, -1:error) |
351
|
|
|
""" |
352
|
|
|
closing_state = ConfocalHistoryEntry(self) |
353
|
|
|
closing_state.snapshot(self) |
354
|
|
|
self.history.append(closing_state) |
355
|
|
|
histindex = 0 |
356
|
|
|
for state in reversed(self.history): |
357
|
|
|
self._statusVariables['history_{0}'.format(histindex)] = state.serialize() |
358
|
|
|
histindex += 1 |
359
|
|
|
return 0 |
360
|
|
|
|
361
|
|
|
def switch_hardware(self, to_on=False): |
362
|
|
|
""" Switches the Hardware off or on. |
363
|
|
|
|
364
|
|
|
@param to_on: True switches on, False switched off |
365
|
|
|
|
366
|
|
|
@return int: error code (0:OK, -1:error) |
367
|
|
|
""" |
368
|
|
|
if to_on: |
369
|
|
|
return self._scanning_device.activation() |
370
|
|
|
else: |
371
|
|
|
return self._scanning_device.reset_hardware() |
372
|
|
|
|
373
|
|
|
def set_clock_frequency(self, clock_frequency): |
374
|
|
|
"""Sets the frequency of the clock |
375
|
|
|
|
376
|
|
|
@param int clock_frequency: desired frequency of the clock |
377
|
|
|
|
378
|
|
|
@return int: error code (0:OK, -1:error) |
379
|
|
|
""" |
380
|
|
|
self._clock_frequency = int(clock_frequency) |
381
|
|
|
#checks if scanner is still running |
382
|
|
|
if self.module_state() == 'locked': |
383
|
|
|
return -1 |
384
|
|
|
else: |
385
|
|
|
return 0 |
386
|
|
|
|
387
|
|
|
def start_scanning(self, zscan = False, tag='logic'): |
388
|
|
|
"""Starts scanning |
389
|
|
|
|
390
|
|
|
@param bool zscan: zscan if true, xyscan if false |
391
|
|
|
|
392
|
|
|
@return int: error code (0:OK, -1:error) |
393
|
|
|
""" |
394
|
|
|
# TODO: this is dirty, but it works for now |
395
|
|
|
# while self.module_state() == 'locked': |
396
|
|
|
# time.sleep(0.01) |
397
|
|
|
self._scan_counter = 0 |
398
|
|
|
self._zscan = zscan |
399
|
|
|
if self._zscan: |
400
|
|
|
self._zscan_continuable = True |
401
|
|
|
else: |
402
|
|
|
self._xyscan_continuable = True |
403
|
|
|
|
404
|
|
|
self.signal_start_scanning.emit(tag) |
405
|
|
|
return 0 |
406
|
|
|
|
407
|
|
|
def continue_scanning(self,zscan,tag='logic'): |
408
|
|
|
"""Continue scanning |
409
|
|
|
|
410
|
|
|
@return int: error code (0:OK, -1:error) |
411
|
|
|
""" |
412
|
|
|
self._zscan = zscan |
413
|
|
|
if zscan: |
414
|
|
|
self._scan_counter = self._depth_line_pos |
415
|
|
|
else: |
416
|
|
|
self._scan_counter = self._xy_line_pos |
417
|
|
|
self.signal_continue_scanning.emit(tag) |
418
|
|
|
return 0 |
419
|
|
|
|
420
|
|
|
def stop_scanning(self): |
421
|
|
|
"""Stops the scan |
422
|
|
|
|
423
|
|
|
@return int: error code (0:OK, -1:error) |
424
|
|
|
""" |
425
|
|
|
with self.threadlock: |
426
|
|
|
if self.module_state() == 'locked': |
427
|
|
|
self.stopRequested = True |
428
|
|
|
self.signal_stop_scanning.emit() |
429
|
|
|
return 0 |
430
|
|
|
|
431
|
|
|
def initialize_image(self): |
432
|
|
|
"""Initalization of the image. |
433
|
|
|
|
434
|
|
|
@return int: error code (0:OK, -1:error) |
435
|
|
|
""" |
436
|
|
|
# x1: x-start-value, x2: x-end-value |
437
|
|
|
x1, x2 = self.image_x_range[0], self.image_x_range[1] |
438
|
|
|
# y1: x-start-value, y2: x-end-value |
439
|
|
|
y1, y2 = self.image_y_range[0], self.image_y_range[1] |
440
|
|
|
# z1: x-start-value, z2: x-end-value |
441
|
|
|
z1, z2 = self.image_z_range[0], self.image_z_range[1] |
442
|
|
|
|
443
|
|
|
# Checks if the x-start and x-end value are ok |
444
|
|
|
if x2 < x1: |
445
|
|
|
self.log.error( |
446
|
|
|
'x1 must be smaller than x2, but they are ' |
447
|
|
|
'({0:.3f},{1:.3f}).'.format(x1, x2)) |
448
|
|
|
return -1 |
449
|
|
|
|
450
|
|
|
if self._zscan: |
451
|
|
|
if self.depth_img_is_xz: |
452
|
|
|
# creates an array of evenly spaced numbers over the interval |
453
|
|
|
# x1, x2 and the spacing is equal to xy_resolution |
454
|
|
|
self._X = np.linspace(x1, x2, self.xy_resolution) |
455
|
|
|
else: |
456
|
|
|
self._Y = np.linspace(y1, y2, self.xy_resolution) |
457
|
|
|
|
458
|
|
|
# Checks if the z-start and z-end value are ok |
459
|
|
|
if z2 < z1: |
460
|
|
|
self.log.error( |
461
|
|
|
'z1 must be smaller than z2, but they are ' |
462
|
|
|
'({0:.3f},{1:.3f}).'.format(z1, z2)) |
463
|
|
|
return -1 |
464
|
|
|
# creates an array of evenly spaced numbers over the interval |
465
|
|
|
# z1, z2 and the spacing is equal to z_resolution |
466
|
|
|
self._Z = np.linspace(z1, z2, max(self.z_resolution, 2)) |
467
|
|
|
else: |
468
|
|
|
# Checks if the y-start and y-end value are ok |
469
|
|
|
if y2 < y1: |
470
|
|
|
self.log.error( |
471
|
|
|
'y1 must be smaller than y2, but they are ' |
472
|
|
|
'({0:.3f},{1:.3f}).'.format(y1, y2)) |
473
|
|
|
return -1 |
474
|
|
|
|
475
|
|
|
# prevents distorion of the image |
476
|
|
|
if (x2 - x1) >= (y2 - y1): |
477
|
|
|
self._X = np.linspace(x1, x2, max(self.xy_resolution, 2)) |
478
|
|
|
self._Y = np.linspace(y1, y2, max(int(self.xy_resolution*(y2-y1)/(x2-x1)), 2)) |
479
|
|
|
else: |
480
|
|
|
self._Y = np.linspace(y1, y2, max(self.xy_resolution, 2)) |
481
|
|
|
self._X = np.linspace(x1, x2, max(int(self.xy_resolution*(x2-x1)/(y2-y1)), 2)) |
482
|
|
|
|
483
|
|
|
self._XL = self._X |
484
|
|
|
self._YL = self._Y |
485
|
|
|
self._AL = np.zeros(self._XL.shape) |
486
|
|
|
|
487
|
|
|
# Arrays for retrace line |
488
|
|
|
self._return_XL = np.linspace(self._XL[-1], self._XL[0], self.return_slowness) |
489
|
|
|
self._return_AL = np.zeros(self._return_XL.shape) |
490
|
|
|
|
491
|
|
|
if self._zscan: |
492
|
|
|
self._image_vert_axis = self._Z |
493
|
|
|
# update image scan direction from setting |
494
|
|
|
self.depth_img_is_xz = self.depth_scan_dir_is_xz |
495
|
|
|
# depth scan is in xz plane |
496
|
|
|
if self.depth_img_is_xz: |
497
|
|
|
#self._image_horz_axis = self._X |
498
|
|
|
# creates an image where each pixel will be [x,y,z,counts] |
499
|
|
|
self.depth_image = np.zeros(( |
500
|
|
|
len(self._image_vert_axis), |
501
|
|
|
len(self._X), |
502
|
|
|
3 + len(self.get_scanner_count_channels()) |
503
|
|
|
)) |
504
|
|
|
|
505
|
|
|
self.depth_image[:, :, 0] = np.full( |
506
|
|
|
(len(self._image_vert_axis), len(self._X)), self._XL) |
507
|
|
|
|
508
|
|
|
self.depth_image[:, :, 1] = self._current_y * np.ones( |
509
|
|
|
(len(self._image_vert_axis), len(self._X))) |
510
|
|
|
|
511
|
|
|
z_value_matrix = np.full((len(self._X), len(self._image_vert_axis)), self._Z) |
512
|
|
|
self.depth_image[:, :, 2] = z_value_matrix.transpose() |
513
|
|
|
|
514
|
|
|
# depth scan is yz plane instead of xz plane |
515
|
|
|
else: |
516
|
|
|
#self._image_horz_axis = self._Y |
517
|
|
|
# creats an image where each pixel will be [x,y,z,counts] |
518
|
|
|
self.depth_image = np.zeros(( |
519
|
|
|
len(self._image_vert_axis), |
520
|
|
|
len(self._Y), |
521
|
|
|
3 + len(self.get_scanner_count_channels()) |
522
|
|
|
)) |
523
|
|
|
|
524
|
|
|
self.depth_image[:, :, 0] = self._current_x * np.ones( |
525
|
|
|
(len(self._image_vert_axis), len(self._Y))) |
526
|
|
|
|
527
|
|
|
self.depth_image[:, :, 1] = np.full( |
528
|
|
|
(len(self._image_vert_axis), len(self._Y)), self._YL) |
529
|
|
|
|
530
|
|
|
z_value_matrix = np.full((len(self._Y), len(self._image_vert_axis)), self._Z) |
531
|
|
|
self.depth_image[:, :, 2] = z_value_matrix.transpose() |
532
|
|
|
|
533
|
|
|
# now we are scanning along the y-axis, so we need a new return line along Y: |
534
|
|
|
self._return_YL = np.linspace(self._YL[-1], self._YL[0], self.return_slowness) |
535
|
|
|
self._return_AL = np.zeros(self._return_YL.shape) |
536
|
|
|
|
537
|
|
|
self.sigImageDepthInitialized.emit() |
538
|
|
|
|
539
|
|
|
# xy scan is in xy plane |
540
|
|
|
else: |
541
|
|
|
#self._image_horz_axis = self._X |
542
|
|
|
self._image_vert_axis = self._Y |
543
|
|
|
# creats an image where each pixel will be [x,y,z,counts] |
544
|
|
|
self.xy_image = np.zeros(( |
545
|
|
|
len(self._image_vert_axis), |
546
|
|
|
len(self._X), |
547
|
|
|
3 + len(self.get_scanner_count_channels()) |
548
|
|
|
)) |
549
|
|
|
|
550
|
|
|
self.xy_image[:, :, 0] = np.full( |
551
|
|
|
(len(self._image_vert_axis), len(self._X)), self._XL) |
552
|
|
|
|
553
|
|
|
y_value_matrix = np.full((len(self._X), len(self._image_vert_axis)), self._Y) |
554
|
|
|
self.xy_image[:, :, 1] = y_value_matrix.transpose() |
555
|
|
|
|
556
|
|
|
self.xy_image[:, :, 2] = self._current_z * np.ones( |
557
|
|
|
(len(self._image_vert_axis), len(self._X))) |
558
|
|
|
|
559
|
|
|
self.sigImageXYInitialized.emit() |
560
|
|
|
return 0 |
561
|
|
|
|
562
|
|
|
def start_scanner(self): |
563
|
|
|
"""Setting up the scanner device and starts the scanning procedure |
564
|
|
|
|
565
|
|
|
@return int: error code (0:OK, -1:error) |
566
|
|
|
""" |
567
|
|
|
self.module_state.lock() |
568
|
|
|
|
569
|
|
|
self._scanning_device.module_state.lock() |
570
|
|
|
if self.initialize_image() < 0: |
571
|
|
|
self._scanning_device.module_state.unlock() |
572
|
|
|
self.module_state.unlock() |
573
|
|
|
return -1 |
574
|
|
|
|
575
|
|
|
clock_status = self._scanning_device.set_up_scanner_clock( |
576
|
|
|
clock_frequency=self._clock_frequency) |
577
|
|
|
|
578
|
|
|
if clock_status < 0: |
579
|
|
|
self._scanning_device.module_state.unlock() |
580
|
|
|
self.module_state.unlock() |
581
|
|
|
self.set_position('scanner') |
582
|
|
|
return -1 |
583
|
|
|
|
584
|
|
|
scanner_status = self._scanning_device.set_up_scanner() |
585
|
|
|
|
586
|
|
|
if scanner_status < 0: |
587
|
|
|
self._scanning_device.close_scanner_clock() |
588
|
|
|
self._scanning_device.module_state.unlock() |
589
|
|
|
self.module_state.unlock() |
590
|
|
|
self.set_position('scanner') |
591
|
|
|
return -1 |
592
|
|
View Code Duplication |
|
|
|
|
|
593
|
|
|
self.signal_scan_lines_next.emit() |
594
|
|
|
return 0 |
595
|
|
|
|
596
|
|
|
def continue_scanner(self): |
597
|
|
|
"""Continue the scanning procedure |
598
|
|
|
|
599
|
|
|
@return int: error code (0:OK, -1:error) |
600
|
|
|
""" |
601
|
|
|
self.module_state.lock() |
602
|
|
|
self._scanning_device.module_state.lock() |
603
|
|
|
|
604
|
|
|
clock_status = self._scanning_device.set_up_scanner_clock( |
605
|
|
|
clock_frequency=self._clock_frequency) |
606
|
|
|
|
607
|
|
|
if clock_status < 0: |
608
|
|
|
self._scanning_device.module_state.unlock() |
609
|
|
|
self.module_state.unlock() |
610
|
|
|
self.set_position('scanner') |
611
|
|
|
return -1 |
612
|
|
|
|
613
|
|
|
scanner_status = self._scanning_device.set_up_scanner() |
614
|
|
|
|
615
|
|
|
if scanner_status < 0: |
616
|
|
|
self._scanning_device.close_scanner_clock() |
617
|
|
|
self._scanning_device.module_state.unlock() |
618
|
|
|
self.module_state.unlock() |
619
|
|
|
self.set_position('scanner') |
620
|
|
|
return -1 |
621
|
|
View Code Duplication |
|
|
|
|
|
622
|
|
|
self.signal_scan_lines_next.emit() |
623
|
|
|
return 0 |
624
|
|
|
|
625
|
|
|
def kill_scanner(self): |
626
|
|
|
"""Closing the scanner device. |
627
|
|
|
|
628
|
|
|
@return int: error code (0:OK, -1:error) |
629
|
|
|
""" |
630
|
|
|
try: |
631
|
|
|
self._scanning_device.close_scanner() |
632
|
|
|
except Exception as e: |
633
|
|
|
self.log.exception('Could not close the scanner.') |
634
|
|
|
try: |
635
|
|
|
self._scanning_device.close_scanner_clock() |
636
|
|
|
except Exception as e: |
637
|
|
|
self.log.exception('Could not close the scanner clock.') |
638
|
|
|
try: |
639
|
|
|
self._scanning_device.module_state.unlock() |
640
|
|
|
except Exception as e: |
641
|
|
|
self.log.exception('Could not unlock scanning device.') |
642
|
|
|
|
643
|
|
|
return 0 |
644
|
|
|
|
645
|
|
|
def set_position(self, tag, x=None, y=None, z=None, a=None): |
646
|
|
|
"""Forwarding the desired new position from the GUI to the scanning device. |
647
|
|
|
|
648
|
|
|
@param string tag: TODO |
649
|
|
|
|
650
|
|
|
@param float x: if defined, changes to postion in x-direction (microns) |
651
|
|
|
@param float y: if defined, changes to postion in y-direction (microns) |
652
|
|
|
@param float z: if defined, changes to postion in z-direction (microns) |
653
|
|
|
@param float a: if defined, changes to postion in a-direction (microns) |
654
|
|
|
|
655
|
|
|
@return int: error code (0:OK, -1:error) |
656
|
|
|
""" |
657
|
|
|
# Changes the respective value |
658
|
|
|
if x is not None: |
659
|
|
|
self._current_x = x |
660
|
|
|
if y is not None: |
661
|
|
|
self._current_y = y |
662
|
|
|
if z is not None: |
663
|
|
|
self._current_z = z |
664
|
|
|
if a is not None: |
665
|
|
|
self._current_a = a |
666
|
|
|
|
667
|
|
|
# Checks if the scanner is still running |
668
|
|
|
if self.module_state() == 'locked' or self._scanning_device.module_state() == 'locked': |
669
|
|
|
return -1 |
670
|
|
|
else: |
671
|
|
|
self._change_position(tag) |
672
|
|
|
self.signal_change_position.emit(tag) |
673
|
|
|
return 0 |
674
|
|
|
|
675
|
|
|
def _change_position(self, tag): |
676
|
|
|
""" Threaded method to change the hardware position. |
677
|
|
|
|
678
|
|
|
@return int: error code (0:OK, -1:error) |
679
|
|
|
""" |
680
|
|
|
ch_array = ['x', 'y', 'z', 'a'] |
681
|
|
|
pos_array = [self._current_x, self._current_y, self._current_z, self._current_a] |
682
|
|
|
pos_dict = {} |
683
|
|
|
|
684
|
|
|
for i, ch in enumerate(self.get_scanner_axes()): |
685
|
|
|
pos_dict[ch_array[i]] = pos_array[i] |
686
|
|
|
|
687
|
|
|
self._scanning_device.scanner_set_position(**pos_dict) |
688
|
|
|
return 0 |
689
|
|
|
|
690
|
|
|
def get_position(self): |
691
|
|
|
""" Get position from scanning device. |
692
|
|
|
|
693
|
|
|
@return list: with three entries x, y and z denoting the current |
694
|
|
|
position in meters |
695
|
|
|
""" |
696
|
|
|
return self._scanning_device.get_scanner_position() |
697
|
|
|
|
698
|
|
|
def get_scanner_axes(self): |
699
|
|
|
""" Get axes from scanning device. |
700
|
|
|
@return list(str): names of scanner axes |
701
|
|
|
""" |
702
|
|
|
return self._scanning_device.get_scanner_axes() |
703
|
|
|
|
704
|
|
|
def get_scanner_count_channels(self): |
705
|
|
|
""" Get lis of counting channels from scanning device. |
706
|
|
|
@return list(str): names of counter channels |
707
|
|
|
""" |
708
|
|
|
return self._scanning_device.get_scanner_count_channels() |
709
|
|
|
|
710
|
|
|
def _scan_line(self): |
711
|
|
|
"""scanning an image in either depth or xy |
712
|
|
|
|
713
|
|
|
""" |
714
|
|
|
# stops scanning |
715
|
|
|
if self.stopRequested: |
716
|
|
|
with self.threadlock: |
717
|
|
|
self.kill_scanner() |
718
|
|
|
self.stopRequested = False |
719
|
|
|
self.module_state.unlock() |
720
|
|
|
self.signal_xy_image_updated.emit() |
721
|
|
|
self.signal_depth_image_updated.emit() |
722
|
|
|
self.set_position('scanner') |
723
|
|
|
if self._zscan: |
724
|
|
|
self._depth_line_pos = self._scan_counter |
725
|
|
|
else: |
726
|
|
|
self._xy_line_pos = self._scan_counter |
727
|
|
|
# add new history entry |
728
|
|
|
new_history = ConfocalHistoryEntry(self) |
729
|
|
|
new_history.snapshot(self) |
730
|
|
|
self.history.append(new_history) |
731
|
|
|
if len(self.history) > self.max_history_length: |
732
|
|
|
self.history.pop(0) |
733
|
|
|
self.history_index = len(self.history) - 1 |
734
|
|
|
return |
735
|
|
|
|
736
|
|
|
image = self.depth_image if self._zscan else self.xy_image |
737
|
|
|
n_ch = len(self.get_scanner_axes()) |
738
|
|
|
s_ch = len(self.get_scanner_count_channels()) |
739
|
|
|
|
740
|
|
|
try: |
741
|
|
|
if self._scan_counter == 0: |
742
|
|
|
# make a line from the current cursor position to |
743
|
|
|
# the starting position of the first scan line of the scan |
744
|
|
|
rs = self.return_slowness |
745
|
|
|
lsx = np.linspace(self._current_x, image[self._scan_counter, 0, 0], rs) |
746
|
|
|
lsy = np.linspace(self._current_y, image[self._scan_counter, 0, 1], rs) |
747
|
|
|
lsz = np.linspace(self._current_z, image[self._scan_counter, 0, 2], rs) |
748
|
|
|
if n_ch <= 3: |
749
|
|
|
start_line = np.vstack([lsx, lsy, lsz][0:n_ch]) |
750
|
|
|
else: |
751
|
|
|
start_line = np.vstack( |
752
|
|
|
[lsx, lsy, lsz, np.ones(lsx.shape) * self._current_a]) |
753
|
|
|
# move to the start position of the scan, counts are thrown away |
754
|
|
|
start_line_counts = self._scanning_device.scan_line(start_line) |
755
|
|
|
if np.any(start_line_counts == -1): |
756
|
|
|
self.stopRequested = True |
757
|
|
|
self.signal_scan_lines_next.emit() |
758
|
|
|
return |
759
|
|
|
|
760
|
|
|
# adjust z of line in image to current z before building the line |
761
|
|
|
if not self._zscan: |
762
|
|
|
z_shape = image[self._scan_counter, :, 2].shape |
763
|
|
|
image[self._scan_counter, :, 2] = self._current_z * np.ones(z_shape) |
764
|
|
|
|
765
|
|
|
# make a line in the scan, _scan_counter says which one it is |
766
|
|
|
lsx = image[self._scan_counter, :, 0] |
767
|
|
|
lsy = image[self._scan_counter, :, 1] |
768
|
|
|
lsz = image[self._scan_counter, :, 2] |
769
|
|
|
if n_ch <= 3: |
770
|
|
|
line = np.vstack([lsx, lsy, lsz][0:n_ch]) |
771
|
|
|
else: |
772
|
|
|
line = np.vstack( |
773
|
|
|
[lsx, lsy, lsz, np.ones(lsx.shape) * self._current_a]) |
774
|
|
|
|
775
|
|
|
# scan the line in the scan |
776
|
|
|
line_counts = self._scanning_device.scan_line(line, pixel_clock=True) |
777
|
|
|
if np.any(line_counts == -1): |
778
|
|
|
self.stopRequested = True |
779
|
|
|
self.signal_scan_lines_next.emit() |
780
|
|
View Code Duplication |
return |
|
|
|
|
781
|
|
|
|
782
|
|
|
# make a line to go to the starting position of the next scan line |
783
|
|
|
if self.depth_img_is_xz or not self._zscan: |
784
|
|
|
if n_ch <= 3: |
785
|
|
|
return_line = np.vstack([ |
786
|
|
|
self._return_XL, |
787
|
|
|
image[self._scan_counter, 0, 1] * np.ones(self._return_XL.shape), |
788
|
|
|
image[self._scan_counter, 0, 2] * np.ones(self._return_XL.shape) |
789
|
|
|
][0:n_ch]) |
790
|
|
|
else: |
791
|
|
|
return_line = np.vstack([ |
792
|
|
|
self._return_XL, |
793
|
|
|
image[self._scan_counter, 0, 1] * np.ones(self._return_XL.shape), |
794
|
|
View Code Duplication |
image[self._scan_counter, 0, 2] * np.ones(self._return_XL.shape), |
|
|
|
|
795
|
|
|
np.ones(self._return_XL.shape) * self._current_a |
796
|
|
|
]) |
797
|
|
|
else: |
798
|
|
|
if n_ch <= 3: |
799
|
|
|
return_line = np.vstack([ |
800
|
|
|
image[self._scan_counter, 0, 1] * np.ones(self._return_YL.shape), |
801
|
|
|
self._return_YL, |
802
|
|
|
image[self._scan_counter, 0, 2] * np.ones(self._return_YL.shape) |
803
|
|
|
][0:n_ch]) |
804
|
|
|
else: |
805
|
|
|
return_line = np.vstack([ |
806
|
|
|
image[self._scan_counter, 0, 1] * np.ones(self._return_YL.shape), |
807
|
|
|
self._return_YL, |
808
|
|
|
image[self._scan_counter, 0, 2] * np.ones(self._return_YL.shape), |
809
|
|
|
np.ones(self._return_YL.shape) * self._current_a |
810
|
|
|
]) |
811
|
|
|
|
812
|
|
|
# return the scanner to the start of next line, counts are thrown away |
813
|
|
|
return_line_counts = self._scanning_device.scan_line(return_line) |
814
|
|
|
if np.any(return_line_counts == -1): |
815
|
|
|
self.stopRequested = True |
816
|
|
|
self.signal_scan_lines_next.emit() |
817
|
|
|
return |
818
|
|
|
|
819
|
|
|
# update image with counts from the line we just scanned |
820
|
|
|
if self._zscan: |
821
|
|
|
if self.depth_img_is_xz: |
822
|
|
|
self.depth_image[self._scan_counter, :, 3:3 + s_ch] = line_counts |
823
|
|
|
else: |
824
|
|
|
self.depth_image[self._scan_counter, :, 3:3 + s_ch] = line_counts |
825
|
|
|
self.signal_depth_image_updated.emit() |
826
|
|
|
else: |
827
|
|
|
self.xy_image[self._scan_counter, :, 3:3 + s_ch] = line_counts |
828
|
|
|
self.signal_xy_image_updated.emit() |
829
|
|
|
|
830
|
|
|
# next line in scan |
831
|
|
|
self._scan_counter += 1 |
832
|
|
|
|
833
|
|
|
# stop scanning when last line scan was performed and makes scan not continuable |
834
|
|
|
if self._scan_counter >= np.size(self._image_vert_axis): |
835
|
|
|
if not self.permanent_scan: |
836
|
|
|
self.stop_scanning() |
837
|
|
|
if self._zscan: |
838
|
|
|
self._zscan_continuable = False |
839
|
|
|
else: |
840
|
|
|
self._xyscan_continuable = False |
841
|
|
|
else: |
842
|
|
|
self._scan_counter = 0 |
843
|
|
|
|
844
|
|
|
self.signal_scan_lines_next.emit() |
845
|
|
|
except: |
846
|
|
|
self.log.exception('The scan went wrong, killing the scanner.') |
847
|
|
|
self.stop_scanning() |
848
|
|
|
self.signal_scan_lines_next.emit() |
849
|
|
|
|
850
|
|
|
def save_xy_data(self, colorscale_range=None, percentile_range=None): |
851
|
|
|
""" Save the current confocal xy data to file. |
852
|
|
|
|
853
|
|
|
Two files are created. The first is the imagedata, which has a text-matrix of count values |
854
|
|
|
corresponding to the pixel matrix of the image. Only count-values are saved here. |
855
|
|
|
|
856
|
|
|
The second file saves the full raw data with x, y, z, and counts at every pixel. |
857
|
|
|
|
858
|
|
|
A figure is also saved. |
859
|
|
|
|
860
|
|
|
@param: list colorscale_range (optional) The range [min, max] of the display colour scale (for the figure) |
861
|
|
|
|
862
|
|
|
@param: list percentile_range (optional) The percentile range [min, max] of the color scale |
863
|
|
|
""" |
864
|
|
|
filepath = self._save_logic.get_path_for_module('Confocal') |
865
|
|
|
timestamp = datetime.datetime.now() |
866
|
|
|
# Prepare the metadata parameters (common to both saved files): |
867
|
|
|
parameters = OrderedDict() |
868
|
|
|
|
869
|
|
|
parameters['X image min (m)'] = self.image_x_range[0] |
870
|
|
|
parameters['X image max (m)'] = self.image_x_range[1] |
871
|
|
|
parameters['X image range (m)'] = self.image_x_range[1] - self.image_x_range[0] |
872
|
|
|
|
873
|
|
|
parameters['Y image min'] = self.image_y_range[0] |
874
|
|
|
parameters['Y image max'] = self.image_y_range[1] |
875
|
|
|
parameters['Y image range'] = self.image_y_range[1] - self.image_y_range[0] |
876
|
|
|
|
877
|
|
|
parameters['XY resolution (samples per range)'] = self.xy_resolution |
878
|
|
|
parameters['XY Image at z position (m)'] = self._current_z |
879
|
|
|
|
880
|
|
|
parameters['Clock frequency of scanner (Hz)'] = self._clock_frequency |
881
|
|
|
parameters['Return Slowness (Steps during retrace line)'] = self.return_slowness |
882
|
|
|
|
883
|
|
|
# Prepare a figure to be saved |
884
|
|
|
figure_data = self.xy_image[:, :, 3] |
885
|
|
|
image_extent = [self.image_x_range[0], |
886
|
|
|
self.image_x_range[1], |
887
|
|
|
self.image_y_range[0], |
888
|
|
|
self.image_y_range[1]] |
889
|
|
|
axes = ['X', 'Y'] |
890
|
|
|
crosshair_pos = [self.get_position()[0], self.get_position()[1]] |
891
|
|
|
|
892
|
|
|
figs = {ch: self.draw_figure(data=self.xy_image[:, :, 3 + n], |
893
|
|
|
image_extent=image_extent, |
894
|
|
|
scan_axis=axes, |
895
|
|
|
cbar_range=colorscale_range, |
896
|
|
|
percentile_range=percentile_range, |
897
|
|
|
crosshair_pos=crosshair_pos) |
898
|
|
|
for n, ch in enumerate(self.get_scanner_count_channels())} |
899
|
|
|
|
900
|
|
|
# Save the image data and figure |
901
|
|
|
for n, ch in enumerate(self.get_scanner_count_channels()): |
902
|
|
|
# data for the text-array "image": |
903
|
|
|
image_data = OrderedDict() |
904
|
|
|
image_data['Confocal pure XY scan image data without axis.\n' |
905
|
|
|
'The upper left entry represents the signal at the upper left pixel position.\n' |
906
|
|
|
'A pixel-line in the image corresponds to a row ' |
907
|
|
|
'of entries where the Signal is in counts/s:'] = self.xy_image[:, :, 3 + n] |
908
|
|
|
|
909
|
|
|
filelabel = 'confocal_xy_image_{0}'.format(ch.replace('/', '')) |
910
|
|
|
self._save_logic.save_data(image_data, |
911
|
|
|
filepath=filepath, |
912
|
|
|
timestamp=timestamp, |
913
|
|
|
parameters=parameters, |
914
|
|
|
filelabel=filelabel, |
915
|
|
|
fmt='%.6e', |
916
|
|
|
delimiter='\t', |
917
|
|
|
plotfig=figs[ch]) |
918
|
|
|
|
919
|
|
|
# prepare the full raw data in an OrderedDict: |
920
|
|
|
data = OrderedDict() |
921
|
|
|
data['x position (m)'] = self.xy_image[:, :, 0].flatten() |
922
|
|
|
data['y position (m)'] = self.xy_image[:, :, 1].flatten() |
923
|
|
|
data['z position (m)'] = self.xy_image[:, :, 2].flatten() |
924
|
|
|
|
925
|
|
|
for n, ch in enumerate(self.get_scanner_count_channels()): |
926
|
|
|
data['count rate {0} (Hz)'.format(ch)] = self.xy_image[:, :, 3 + n].flatten() |
927
|
|
|
|
928
|
|
|
# Save the raw data to file |
929
|
|
|
filelabel = 'confocal_xy_data' |
930
|
|
|
self._save_logic.save_data(data, |
931
|
|
|
filepath=filepath, |
932
|
|
|
timestamp=timestamp, |
933
|
|
|
parameters=parameters, |
934
|
|
|
filelabel=filelabel, |
935
|
|
|
fmt='%.6e', |
936
|
|
|
delimiter='\t') |
937
|
|
|
|
938
|
|
|
self.log.debug('Confocal Image saved.') |
939
|
|
|
self.signal_xy_data_saved.emit() |
940
|
|
|
return |
941
|
|
|
|
942
|
|
|
def save_depth_data(self, colorscale_range=None, percentile_range=None): |
943
|
|
|
""" Save the current confocal depth data to file. |
944
|
|
|
|
945
|
|
|
Two files are created. The first is the imagedata, which has a text-matrix of count values |
946
|
|
|
corresponding to the pixel matrix of the image. Only count-values are saved here. |
947
|
|
|
|
948
|
|
|
The second file saves the full raw data with x, y, z, and counts at every pixel. |
949
|
|
|
""" |
950
|
|
|
filepath = self._save_logic.get_path_for_module('Confocal') |
951
|
|
|
timestamp = datetime.datetime.now() |
952
|
|
|
# Prepare the metadata parameters (common to both saved files): |
953
|
|
|
parameters = OrderedDict() |
954
|
|
|
|
955
|
|
|
# TODO: This needs to check whether the scan was XZ or YZ direction |
956
|
|
|
parameters['X image min (m)'] = self.image_x_range[0] |
957
|
|
|
parameters['X image max (m)'] = self.image_x_range[1] |
958
|
|
|
parameters['X image range (m)'] = self.image_x_range[1] - self.image_x_range[0] |
959
|
|
|
|
960
|
|
|
parameters['Z image min'] = self.image_z_range[0] |
961
|
|
|
parameters['Z image max'] = self.image_z_range[1] |
962
|
|
|
parameters['Z image range'] = self.image_z_range[1] - self.image_z_range[0] |
963
|
|
|
|
964
|
|
|
parameters['XY resolution (samples per range)'] = self.xy_resolution |
965
|
|
|
parameters['Z resolution (samples per range)'] = self.z_resolution |
966
|
|
|
parameters['Depth Image at y position (m)'] = self._current_y |
967
|
|
|
|
968
|
|
|
parameters['Clock frequency of scanner (Hz)'] = self._clock_frequency |
969
|
|
|
parameters['Return Slowness (Steps during retrace line)'] = self.return_slowness |
970
|
|
|
|
971
|
|
|
if self.depth_img_is_xz: |
972
|
|
|
horizontal_range = [self.image_x_range[0], self.image_x_range[1]] |
973
|
|
|
axes = ['X', 'Z'] |
974
|
|
|
crosshair_pos = [self.get_position()[0], self.get_position()[2]] |
975
|
|
|
else: |
976
|
|
|
horizontal_range = [self.image_y_range[0], self.image_y_range[1]] |
977
|
|
|
axes = ['Y', 'Z'] |
978
|
|
|
crosshair_pos = [self.get_position()[1], self.get_position()[2]] |
979
|
|
|
|
980
|
|
|
image_extent = [horizontal_range[0], |
981
|
|
|
horizontal_range[1], |
982
|
|
|
self.image_z_range[0], |
983
|
|
|
self.image_z_range[1]] |
984
|
|
|
|
985
|
|
|
figs = {ch: self.draw_figure(data=self.depth_image[:, :, 3 + n], |
986
|
|
|
image_extent=image_extent, |
987
|
|
|
scan_axis=axes, |
988
|
|
|
cbar_range=colorscale_range, |
989
|
|
|
percentile_range=percentile_range, |
990
|
|
|
crosshair_pos=crosshair_pos) |
991
|
|
|
for n, ch in enumerate(self.get_scanner_count_channels())} |
992
|
|
|
|
993
|
|
|
# Save the image data and figure |
994
|
|
|
for n, ch in enumerate(self.get_scanner_count_channels()): |
995
|
|
|
# data for the text-array "image": |
996
|
|
|
image_data = OrderedDict() |
997
|
|
|
image_data['Confocal pure depth scan image data without axis.\n' |
998
|
|
|
'The upper left entry represents the signal at the upper left pixel position.\n' |
999
|
|
|
'A pixel-line in the image corresponds to a row in ' |
1000
|
|
|
'of entries where the Signal is in counts/s:'] = self.depth_image[:, :, 3 + n] |
1001
|
|
|
|
1002
|
|
|
filelabel = 'confocal_depth_image_{0}'.format(ch.replace('/', '')) |
1003
|
|
|
self._save_logic.save_data(image_data, |
1004
|
|
|
filepath=filepath, |
1005
|
|
|
timestamp=timestamp, |
1006
|
|
|
parameters=parameters, |
1007
|
|
|
filelabel=filelabel, |
1008
|
|
|
fmt='%.6e', |
1009
|
|
|
delimiter='\t', |
1010
|
|
|
plotfig=figs[ch]) |
1011
|
|
|
|
1012
|
|
|
# prepare the full raw data in an OrderedDict: |
1013
|
|
|
data = OrderedDict() |
1014
|
|
|
data['x position (m)'] = self.depth_image[:, :, 0].flatten() |
1015
|
|
|
data['y position (m)'] = self.depth_image[:, :, 1].flatten() |
1016
|
|
|
data['z position (m)'] = self.depth_image[:, :, 2].flatten() |
1017
|
|
|
|
1018
|
|
|
for n, ch in enumerate(self.get_scanner_count_channels()): |
1019
|
|
|
data['count rate {0} (Hz)'.format(ch)] = self.depth_image[:, :, 3 + n].flatten() |
1020
|
|
|
|
1021
|
|
|
# Save the raw data to file |
1022
|
|
|
filelabel = 'confocal_depth_data' |
1023
|
|
|
self._save_logic.save_data(data, |
1024
|
|
|
filepath=filepath, |
1025
|
|
|
timestamp=timestamp, |
1026
|
|
|
parameters=parameters, |
1027
|
|
|
filelabel=filelabel, |
1028
|
|
|
fmt='%.6e', |
1029
|
|
|
delimiter='\t') |
1030
|
|
|
|
1031
|
|
|
self.log.debug('Confocal Image saved.') |
1032
|
|
|
self.signal_depth_data_saved.emit() |
1033
|
|
|
return |
1034
|
|
|
|
1035
|
|
|
def draw_figure(self, data, image_extent, scan_axis=None, cbar_range=None, percentile_range=None, crosshair_pos=None): |
1036
|
|
|
""" Create a 2-D color map figure of the scan image. |
1037
|
|
|
|
1038
|
|
|
@param: array data: The NxM array of count values from a scan with NxM pixels. |
1039
|
|
|
|
1040
|
|
|
@param: list image_extent: The scan range in the form [hor_min, hor_max, ver_min, ver_max] |
1041
|
|
|
|
1042
|
|
|
@param: list axes: Names of the horizontal and vertical axes in the image |
1043
|
|
|
|
1044
|
|
|
@param: list cbar_range: (optional) [color_scale_min, color_scale_max]. If not supplied then a default of |
1045
|
|
|
data_min to data_max will be used. |
1046
|
|
|
|
1047
|
|
|
@param: list percentile_range: (optional) Percentile range of the chosen cbar_range. |
1048
|
|
|
|
1049
|
|
|
@param: list crosshair_pos: (optional) crosshair position as [hor, vert] in the chosen image axes. |
1050
|
|
|
|
1051
|
|
|
@return: fig fig: a matplotlib figure object to be saved to file. |
1052
|
|
|
""" |
1053
|
|
|
if scan_axis is None: |
1054
|
|
|
scan_axis = ['X', 'Y'] |
1055
|
|
|
|
1056
|
|
|
# If no colorbar range was given, take full range of data |
1057
|
|
|
if cbar_range is None: |
1058
|
|
|
cbar_range = [np.min(data), np.max(data)] |
1059
|
|
|
|
1060
|
|
|
# Scale color values using SI prefix |
1061
|
|
|
prefix = ['', 'k', 'M', 'G'] |
1062
|
|
|
prefix_count = 0 |
1063
|
|
|
image_data = data |
1064
|
|
|
draw_cb_range = np.array(cbar_range) |
1065
|
|
|
image_dimension = image_extent.copy() |
1066
|
|
|
|
1067
|
|
|
while draw_cb_range[1] > 1000: |
1068
|
|
|
image_data = image_data/1000 |
1069
|
|
|
draw_cb_range = draw_cb_range/1000 |
1070
|
|
|
prefix_count = prefix_count + 1 |
1071
|
|
|
|
1072
|
|
|
c_prefix = prefix[prefix_count] |
1073
|
|
|
|
1074
|
|
|
|
1075
|
|
|
# Scale axes values using SI prefix |
1076
|
|
|
axes_prefix = ['', 'm', r'$\mathrm{\mu}$', 'n'] |
1077
|
|
|
x_prefix_count = 0 |
1078
|
|
|
y_prefix_count = 0 |
1079
|
|
|
|
1080
|
|
|
while np.abs(image_dimension[1]-image_dimension[0]) < 1: |
1081
|
|
|
image_dimension[0] = image_dimension[0] * 1000. |
1082
|
|
|
image_dimension[1] = image_dimension[1] * 1000. |
1083
|
|
|
x_prefix_count = x_prefix_count + 1 |
1084
|
|
|
|
1085
|
|
|
while np.abs(image_dimension[3] - image_dimension[2]) < 1: |
1086
|
|
|
image_dimension[2] = image_dimension[2] * 1000. |
1087
|
|
|
image_dimension[3] = image_dimension[3] * 1000. |
1088
|
|
|
y_prefix_count = y_prefix_count + 1 |
1089
|
|
|
|
1090
|
|
|
x_prefix = axes_prefix[x_prefix_count] |
1091
|
|
|
y_prefix = axes_prefix[y_prefix_count] |
1092
|
|
|
|
1093
|
|
|
# Use qudi style |
1094
|
|
|
plt.style.use(self._save_logic.mpl_qd_style) |
1095
|
|
|
|
1096
|
|
|
# Create figure |
1097
|
|
|
fig, ax = plt.subplots() |
1098
|
|
|
|
1099
|
|
|
# Create image plot |
1100
|
|
|
cfimage = ax.imshow(image_data, |
1101
|
|
|
cmap=plt.get_cmap('inferno'), # reference the right place in qd |
1102
|
|
|
origin="lower", |
1103
|
|
|
vmin=draw_cb_range[0], |
1104
|
|
|
vmax=draw_cb_range[1], |
1105
|
|
|
interpolation='none', |
1106
|
|
|
extent=image_dimension |
1107
|
|
|
) |
1108
|
|
|
|
1109
|
|
|
ax.set_aspect(1) |
1110
|
|
|
ax.set_xlabel(scan_axis[0] + ' position (' + x_prefix + 'm)') |
1111
|
|
|
ax.set_ylabel(scan_axis[1] + ' position (' + y_prefix + 'm)') |
1112
|
|
|
ax.spines['bottom'].set_position(('outward', 10)) |
1113
|
|
|
ax.spines['left'].set_position(('outward', 10)) |
1114
|
|
|
ax.spines['top'].set_visible(False) |
1115
|
|
|
ax.spines['right'].set_visible(False) |
1116
|
|
|
ax.get_xaxis().tick_bottom() |
1117
|
|
|
ax.get_yaxis().tick_left() |
1118
|
|
|
|
1119
|
|
|
# draw the crosshair position if defined |
1120
|
|
|
if crosshair_pos is not None: |
1121
|
|
|
trans_xmark = mpl.transforms.blended_transform_factory( |
1122
|
|
|
ax.transData, |
1123
|
|
|
ax.transAxes) |
1124
|
|
|
|
1125
|
|
|
trans_ymark = mpl.transforms.blended_transform_factory( |
1126
|
|
|
ax.transAxes, |
1127
|
|
|
ax.transData) |
1128
|
|
|
|
1129
|
|
|
ax.annotate('', xy=(crosshair_pos[0]*np.power(1000,x_prefix_count), 0), |
1130
|
|
|
xytext=(crosshair_pos[0]*np.power(1000,x_prefix_count), -0.01), xycoords=trans_xmark, |
1131
|
|
|
arrowprops=dict(facecolor='#17becf', shrink=0.05), |
1132
|
|
|
) |
1133
|
|
|
|
1134
|
|
|
ax.annotate('', xy=(0, crosshair_pos[1]*np.power(1000,y_prefix_count)), |
1135
|
|
|
xytext=(-0.01, crosshair_pos[1]*np.power(1000,y_prefix_count)), xycoords=trans_ymark, |
1136
|
|
|
arrowprops=dict(facecolor='#17becf', shrink=0.05), |
1137
|
|
|
) |
1138
|
|
|
|
1139
|
|
|
# Draw the colorbar |
1140
|
|
|
cbar = plt.colorbar(cfimage, shrink=0.8)#, fraction=0.046, pad=0.08, shrink=0.75) |
1141
|
|
|
cbar.set_label('Fluorescence (' + c_prefix + 'c/s)') |
1142
|
|
|
|
1143
|
|
View Code Duplication |
# remove ticks from colorbar for cleaner image |
|
|
|
|
1144
|
|
|
cbar.ax.tick_params(which=u'both', length=0) |
1145
|
|
|
|
1146
|
|
|
# If we have percentile information, draw that to the figure |
1147
|
|
|
if percentile_range is not None: |
1148
|
|
|
cbar.ax.annotate(str(percentile_range[0]), |
1149
|
|
|
xy=(-0.3, 0.0), |
1150
|
|
|
xycoords='axes fraction', |
1151
|
|
|
horizontalalignment='right', |
1152
|
|
|
verticalalignment='center', |
1153
|
|
|
rotation=90 |
1154
|
|
|
) |
1155
|
|
|
cbar.ax.annotate(str(percentile_range[1]), |
1156
|
|
|
xy=(-0.3, 1.0), |
1157
|
|
|
xycoords='axes fraction', |
1158
|
|
|
horizontalalignment='right', |
1159
|
|
|
verticalalignment='center', |
1160
|
|
|
rotation=90 |
1161
|
|
|
) |
1162
|
|
|
cbar.ax.annotate('(percentile)', |
1163
|
|
|
xy=(-0.3, 0.5), |
1164
|
|
|
xycoords='axes fraction', |
1165
|
|
|
horizontalalignment='right', |
1166
|
|
|
verticalalignment='center', |
1167
|
|
|
rotation=90 |
1168
|
|
|
) |
1169
|
|
|
self.signal_draw_figure_completed.emit() |
1170
|
|
|
return fig |
1171
|
|
|
|
1172
|
|
|
##################################### Tilt correction ######################################## |
1173
|
|
|
|
1174
|
|
|
@QtCore.Slot() |
1175
|
|
|
def set_tilt_point1(self): |
1176
|
|
|
""" Gets the first reference point for tilt correction.""" |
1177
|
|
|
self.point1 = np.array(self._scanning_device.get_scanner_position()[:3]) |
1178
|
|
|
self.signal_tilt_correction_update.emit() |
1179
|
|
|
|
1180
|
|
|
@QtCore.Slot() |
1181
|
|
|
def set_tilt_point2(self): |
1182
|
|
|
""" Gets the second reference point for tilt correction.""" |
1183
|
|
|
self.point2 = np.array(self._scanning_device.get_scanner_position()[:3]) |
1184
|
|
|
self.signal_tilt_correction_update.emit() |
1185
|
|
|
|
1186
|
|
|
@QtCore.Slot() |
1187
|
|
|
def set_tilt_point3(self): |
1188
|
|
|
"""Gets the third reference point for tilt correction.""" |
1189
|
|
|
self.point3 = np.array(self._scanning_device.get_scanner_position()[:3]) |
1190
|
|
|
self.signal_tilt_correction_update.emit() |
1191
|
|
|
|
1192
|
|
|
@QtCore.Slot() |
1193
|
|
|
def calc_tilt_correction(self): |
1194
|
|
|
""" Calculates the values for the tilt correction. """ |
1195
|
|
|
a = self.point2 - self.point1 |
1196
|
|
|
b = self.point3 - self.point1 |
1197
|
|
|
n = np.cross(a, b) |
1198
|
|
|
self._scanning_device.tilt_variable_ax = n[0] / n[2] |
1199
|
|
|
self._scanning_device.tilt_variable_ay = n[1] / n[2] |
1200
|
|
|
|
1201
|
|
|
@QtCore.Slot(bool) |
1202
|
|
|
def set_tilt_correction(self, enabled): |
1203
|
|
|
""" Set tilt correction in tilt interfuse. |
1204
|
|
|
|
1205
|
|
|
@param bool enabled: whether we want to use tilt correction |
1206
|
|
|
""" |
1207
|
|
|
self._scanning_device.tiltcorrection = enabled |
1208
|
|
|
self._scanning_device.tilt_reference_x = self._scanning_device.get_scanner_position()[0] |
1209
|
|
|
self._scanning_device.tilt_reference_y = self._scanning_device.get_scanner_position()[1] |
1210
|
|
|
self.signal_tilt_correction_active.emit(enabled) |
1211
|
|
|
|
1212
|
|
|
def history_forward(self): |
1213
|
|
|
""" Move forward in confocal image history. |
1214
|
|
|
""" |
1215
|
|
View Code Duplication |
if self.history_index < len(self.history) - 1: |
|
|
|
|
1216
|
|
|
self.history_index += 1 |
1217
|
|
|
self.history[self.history_index].restore(self) |
1218
|
|
|
self.signal_xy_image_updated.emit() |
1219
|
|
|
self.signal_depth_image_updated.emit() |
1220
|
|
|
self.signal_tilt_correction_update.emit() |
1221
|
|
|
self.signal_tilt_correction_active.emit(self._scanning_device.tiltcorrection) |
1222
|
|
|
self._change_position('history') |
1223
|
|
|
self.signal_change_position.emit('history') |
1224
|
|
|
self.signal_history_event.emit() |
1225
|
|
|
|
1226
|
|
|
def history_back(self): |
1227
|
|
|
""" Move backwards in confocal image history. |
1228
|
|
|
""" |
1229
|
|
View Code Duplication |
if self.history_index > 0: |
|
|
|
|
1230
|
|
|
self.history_index -= 1 |
1231
|
|
|
self.history[self.history_index].restore(self) |
1232
|
|
|
self.signal_xy_image_updated.emit() |
1233
|
|
|
self.signal_depth_image_updated.emit() |
1234
|
|
|
self.signal_tilt_correction_update.emit() |
1235
|
|
|
self.signal_tilt_correction_active.emit(self._scanning_device.tiltcorrection) |
1236
|
|
|
self._change_position('history') |
1237
|
|
|
self.signal_change_position.emit('history') |
1238
|
|
|
self.signal_history_event.emit() |
1239
|
|
|
|