| Total Complexity | 232 |
| Total Lines | 1552 |
| Duplicated Lines | 17.91 % |
| Changes | 11 | ||
| Bugs | 0 | Features | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like AWG70K often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 38 | class AWG70K(Base, PulserInterface): |
||
| 39 | """ |
||
| 40 | |||
| 41 | """ |
||
| 42 | _modclass = 'awg70k' |
||
| 43 | _modtype = 'hardware' |
||
| 44 | |||
| 45 | # config options |
||
| 46 | _tmp_work_dir = ConfigOption(name='tmp_work_dir', |
||
| 47 | default=os.path.join(get_home_dir(), 'pulsed_files'), |
||
| 48 | missing='warn') |
||
| 49 | _visa_address = ConfigOption(name='awg_visa_address', missing='error') |
||
| 50 | _ip_address = ConfigOption(name='awg_ip_address', missing='error') |
||
| 51 | _ftp_dir = ConfigOption(name='ftp_root_dir', default='C:\\inetpub\\ftproot', missing='warn') |
||
| 52 | _username = ConfigOption(name='ftp_login', default='anonymous', missing='warn') |
||
| 53 | _password = ConfigOption(name='ftp_passwd', default='anonymous@', missing='warn') |
||
| 54 | _visa_timeout = ConfigOption(name='timeout', default=30, missing='nothing') |
||
| 55 | |||
| 56 | # translation dict from qudi trigger descriptor to device command |
||
| 57 | __event_triggers = {'OFF': 'OFF', 'A': 'ATR', 'B': 'BTR', 'INT': 'INT'} |
||
| 58 | |||
| 59 | def __init__(self, *args, **kwargs): |
||
| 60 | super().__init__(*args, **kwargs) |
||
| 61 | |||
| 62 | # Get an instance of the visa resource manager |
||
| 63 | self._rm = visa.ResourceManager() |
||
| 64 | |||
| 65 | self.awg = None # This variable will hold a reference to the awg visa resource |
||
| 66 | self.awg_model = '' # String describing the model |
||
| 67 | |||
| 68 | self.ftp_working_dir = 'waves' # subfolder of FTP root dir on AWG disk to work in |
||
| 69 | return |
||
| 70 | |||
| 71 | def on_activate(self): |
||
| 72 | """ Initialisation performed during activation of the module. |
||
| 73 | """ |
||
| 74 | # Create work directory if necessary |
||
| 75 | if not os.path.exists(self._tmp_work_dir): |
||
| 76 | os.makedirs(os.path.abspath(self._tmp_work_dir)) |
||
| 77 | |||
| 78 | # connect to awg using PyVISA |
||
| 79 | if self._visa_address not in self._rm.list_resources(): |
||
| 80 | self.awg = None |
||
| 81 | self.log.error('VISA address "{0}" not found by the pyVISA resource manager.\nCheck ' |
||
| 82 | 'the connection by using for example "Agilent Connection Expert".' |
||
| 83 | ''.format(self._visa_address)) |
||
| 84 | else: |
||
| 85 | self.awg = self._rm.open_resource(self._visa_address) |
||
| 86 | # set timeout by default to 30 sec |
||
| 87 | self.awg.timeout = self._visa_timeout * 1000 |
||
| 88 | |||
| 89 | # try connecting to AWG using FTP protocol |
||
| 90 | with FTP(self._ip_address) as ftp: |
||
| 91 | ftp.login(user=self._username, passwd=self._password) |
||
| 92 | ftp.cwd(self.ftp_working_dir) |
||
| 93 | |||
| 94 | if self.awg is not None: |
||
| 95 | self.awg_model = self.query('*IDN?').split(',')[1] |
||
| 96 | else: |
||
| 97 | self.awg_model = '' |
||
| 98 | return |
||
| 99 | |||
| 100 | def on_deactivate(self): |
||
| 101 | """ Required tasks to be performed during deactivation of the module. |
||
| 102 | """ |
||
| 103 | # Closes the connection to the AWG |
||
| 104 | try: |
||
| 105 | self.awg.close() |
||
| 106 | except: |
||
| 107 | self.log.debug('Closing AWG connection using pyvisa failed.') |
||
| 108 | self.log.info('Closed connection to AWG') |
||
| 109 | return |
||
| 110 | |||
| 111 | def get_constraints(self): |
||
| 112 | """ |
||
| 113 | Retrieve the hardware constrains from the Pulsing device. |
||
| 114 | |||
| 115 | @return constraints object: object with pulser constraints as attributes. |
||
| 116 | |||
| 117 | Provides all the constraints (e.g. sample_rate, amplitude, total_length_bins, |
||
| 118 | channel_config, ...) related to the pulse generator hardware to the caller. |
||
| 119 | |||
| 120 | SEE PulserConstraints CLASS IN pulser_interface.py FOR AVAILABLE CONSTRAINTS!!! |
||
| 121 | |||
| 122 | If you are not sure about the meaning, look in other hardware files to get an impression. |
||
| 123 | If still additional constraints are needed, then they have to be added to the |
||
| 124 | PulserConstraints class. |
||
| 125 | |||
| 126 | Each scalar parameter is an ScalarConstraints object defined in cor.util.interfaces. |
||
| 127 | Essentially it contains min/max values as well as min step size, default value and unit of |
||
| 128 | the parameter. |
||
| 129 | |||
| 130 | PulserConstraints.activation_config differs, since it contain the channel |
||
| 131 | configuration/activation information of the form: |
||
| 132 | {<descriptor_str>: <channel_set>, |
||
| 133 | <descriptor_str>: <channel_set>, |
||
| 134 | ...} |
||
| 135 | |||
| 136 | If the constraints cannot be set in the pulsing hardware (e.g. because it might have no |
||
| 137 | sequence mode) just leave it out so that the default is used (only zeros). |
||
| 138 | """ |
||
| 139 | constraints = PulserConstraints() |
||
| 140 | |||
| 141 | if self.awg_model == 'AWG70002A': |
||
| 142 | constraints.sample_rate.min = 1.5e3 |
||
| 143 | constraints.sample_rate.max = 25.0e9 |
||
| 144 | constraints.sample_rate.step = 5.0e2 |
||
| 145 | constraints.sample_rate.default = 25.0e9 |
||
| 146 | elif self.awg_model == 'AWG70001A': |
||
| 147 | constraints.sample_rate.min = 3.0e3 |
||
| 148 | constraints.sample_rate.max = 50.0e9 |
||
| 149 | constraints.sample_rate.step = 1.0e3 |
||
| 150 | constraints.sample_rate.default = 50.0e9 |
||
| 151 | |||
| 152 | constraints.a_ch_amplitude.min = 0.25 |
||
| 153 | constraints.a_ch_amplitude.max = 0.5 |
||
| 154 | constraints.a_ch_amplitude.step = 0.001 |
||
| 155 | constraints.a_ch_amplitude.default = 0.5 |
||
| 156 | # FIXME: Enter the proper digital channel low constraints: |
||
| 157 | constraints.d_ch_low.min = 0.0 |
||
| 158 | constraints.d_ch_low.max = 0.0 |
||
| 159 | constraints.d_ch_low.step = 0.0 |
||
| 160 | constraints.d_ch_low.default = 0.0 |
||
| 161 | # FIXME: Enter the proper digital channel high constraints: |
||
| 162 | constraints.d_ch_high.min = 0.0 |
||
| 163 | constraints.d_ch_high.max = 1.4 |
||
| 164 | constraints.d_ch_high.step = 0.1 |
||
| 165 | constraints.d_ch_high.default = 1.4 |
||
| 166 | |||
| 167 | constraints.waveform_length.min = 1 |
||
| 168 | constraints.waveform_length.max = 8000000000 |
||
| 169 | constraints.waveform_length.step = 1 |
||
| 170 | constraints.waveform_length.default = 1 |
||
| 171 | |||
| 172 | # FIXME: Check the proper number for your device |
||
| 173 | constraints.waveform_num.min = 1 |
||
| 174 | constraints.waveform_num.max = 32000 |
||
| 175 | constraints.waveform_num.step = 1 |
||
| 176 | constraints.waveform_num.default = 1 |
||
| 177 | # FIXME: Check the proper number for your device |
||
| 178 | constraints.sequence_num.min = 1 |
||
| 179 | constraints.sequence_num.max = 4000 |
||
| 180 | constraints.sequence_num.step = 1 |
||
| 181 | constraints.sequence_num.default = 1 |
||
| 182 | # FIXME: Check the proper number for your device |
||
| 183 | constraints.subsequence_num.min = 1 |
||
| 184 | constraints.subsequence_num.max = 8000 |
||
| 185 | constraints.subsequence_num.step = 1 |
||
| 186 | constraints.subsequence_num.default = 1 |
||
| 187 | |||
| 188 | # If sequencer mode is available then these should be specified |
||
| 189 | constraints.repetitions.min = 0 |
||
| 190 | constraints.repetitions.max = 65536 |
||
| 191 | constraints.repetitions.step = 1 |
||
| 192 | constraints.repetitions.default = 0 |
||
| 193 | # ToDo: Check how many external triggers are available |
||
| 194 | constraints.event_triggers = ['A', 'B'] |
||
| 195 | constraints.flags = ['A', 'B', 'C', 'D'] |
||
| 196 | |||
| 197 | constraints.sequence_steps.min = 0 |
||
| 198 | constraints.sequence_steps.max = 8000 |
||
| 199 | constraints.sequence_steps.step = 1 |
||
| 200 | constraints.sequence_steps.default = 0 |
||
| 201 | |||
| 202 | # the name a_ch<num> and d_ch<num> are generic names, which describe UNAMBIGUOUSLY the |
||
| 203 | # channels. Here all possible channel configurations are stated, where only the generic |
||
| 204 | # names should be used. The names for the different configurations can be customary chosen. |
||
| 205 | activation_config = OrderedDict() |
||
| 206 | if self.awg_model == 'AWG70002A': |
||
| 207 | activation_config['all'] = {'a_ch1', 'd_ch1', 'd_ch2', 'a_ch2', 'd_ch3', 'd_ch4'} |
||
| 208 | # Usage of both channels but reduced markers (higher analog resolution) |
||
| 209 | activation_config['ch1_2mrk_ch2_1mrk'] = {'a_ch1', 'd_ch1', 'd_ch2', 'a_ch2', 'd_ch3'} |
||
| 210 | activation_config['ch1_2mrk_ch2_0mrk'] = {'a_ch1', 'd_ch1', 'd_ch2', 'a_ch2'} |
||
| 211 | activation_config['ch1_1mrk_ch2_2mrk'] = {'a_ch1', 'd_ch1', 'a_ch2', 'd_ch3', 'd_ch4'} |
||
| 212 | activation_config['ch1_0mrk_ch2_2mrk'] = {'a_ch1', 'a_ch2', 'd_ch3', 'd_ch4'} |
||
| 213 | activation_config['ch1_1mrk_ch2_1mrk'] = {'a_ch1', 'd_ch1', 'a_ch2', 'd_ch3'} |
||
| 214 | activation_config['ch1_0mrk_ch2_1mrk'] = {'a_ch1', 'a_ch2', 'd_ch3'} |
||
| 215 | activation_config['ch1_1mrk_ch2_0mrk'] = {'a_ch1', 'd_ch1', 'a_ch2'} |
||
| 216 | # Usage of channel 1 only: |
||
| 217 | activation_config['ch1_2mrk'] = {'a_ch1', 'd_ch1', 'd_ch2'} |
||
| 218 | # Usage of channel 2 only: |
||
| 219 | activation_config['ch2_2mrk'] = {'a_ch2', 'd_ch3', 'd_ch4'} |
||
| 220 | # Usage of only channel 1 with one marker: |
||
| 221 | activation_config['ch1_1mrk'] = {'a_ch1', 'd_ch1'} |
||
| 222 | # Usage of only channel 2 with one marker: |
||
| 223 | activation_config['ch2_1mrk'] = {'a_ch2', 'd_ch3'} |
||
| 224 | # Usage of only channel 1 with no marker: |
||
| 225 | activation_config['ch1_0mrk'] = {'a_ch1'} |
||
| 226 | # Usage of only channel 2 with no marker: |
||
| 227 | activation_config['ch2_0mrk'] = {'a_ch2'} |
||
| 228 | elif self.awg_model == 'AWG70001A': |
||
| 229 | activation_config['all'] = {'a_ch1', 'd_ch1', 'd_ch2'} |
||
| 230 | # Usage of only channel 1 with one marker: |
||
| 231 | activation_config['ch1_1mrk'] = {'a_ch1', 'd_ch1'} |
||
| 232 | # Usage of only channel 1 with no marker: |
||
| 233 | activation_config['ch1_0mrk'] = {'a_ch1'} |
||
| 234 | |||
| 235 | constraints.activation_config = activation_config |
||
| 236 | |||
| 237 | # FIXME: additional constraint really necessary? |
||
| 238 | constraints.dac_resolution = {'min': 8, 'max': 10, 'step': 1, 'unit': 'bit'} |
||
| 239 | return constraints |
||
| 240 | |||
| 241 | def pulser_on(self): |
||
| 242 | """ Switches the pulsing device on. |
||
| 243 | |||
| 244 | @return int: error code (0:OK, -1:error, higher number corresponds to |
||
| 245 | current status of the device. Check then the |
||
| 246 | class variable status_dic.) |
||
| 247 | """ |
||
| 248 | # do nothing if AWG is already running |
||
| 249 | if not self._is_output_on(): |
||
| 250 | self.write('AWGC:RUN') |
||
| 251 | # wait until the AWG is actually running |
||
| 252 | while not self._is_output_on(): |
||
| 253 | time.sleep(0.25) |
||
| 254 | return self.get_status()[0] |
||
| 255 | |||
| 256 | def pulser_off(self): |
||
| 257 | """ Switches the pulsing device off. |
||
| 258 | |||
| 259 | @return int: error code (0:OK, -1:error, higher number corresponds to |
||
| 260 | current status of the device. Check then the |
||
| 261 | class variable status_dic.) |
||
| 262 | """ |
||
| 263 | # do nothing if AWG is already idle |
||
| 264 | if self._is_output_on(): |
||
| 265 | self.write('AWGC:STOP') |
||
| 266 | # wait until the AWG has actually stopped |
||
| 267 | while self._is_output_on(): |
||
| 268 | time.sleep(0.25) |
||
| 269 | return self.get_status()[0] |
||
| 270 | |||
| 271 | def write_waveform(self, name, analog_samples, digital_samples, is_first_chunk, is_last_chunk, |
||
| 272 | total_number_of_samples): |
||
| 273 | """ |
||
| 274 | Write a new waveform or append samples to an already existing waveform on the device memory. |
||
| 275 | The flags is_first_chunk and is_last_chunk can be used as indicator if a new waveform should |
||
| 276 | be created or if the write process to a waveform should be terminated. |
||
| 277 | |||
| 278 | @param name: str, the name of the waveform to be created/append to |
||
| 279 | @param analog_samples: numpy.ndarray of type float32 containing the voltage samples |
||
| 280 | @param digital_samples: numpy.ndarray of type bool containing the marker states |
||
| 281 | (if analog channels are active, this must be the same length as |
||
| 282 | analog_samples) |
||
| 283 | @param is_first_chunk: bool, flag indicating if it is the first chunk to write. |
||
| 284 | If True this method will create a new empty wavveform. |
||
| 285 | If False the samples are appended to the existing waveform. |
||
| 286 | @param is_last_chunk: bool, flag indicating if it is the last chunk to write. |
||
| 287 | Some devices may need to know when to close the appending wfm. |
||
| 288 | @param total_number_of_samples: int, The number of sample points for the entire waveform |
||
| 289 | (not only the currently written chunk) |
||
| 290 | |||
| 291 | @return: (int, list) number of samples written (-1 indicates failed process) and list of |
||
| 292 | created waveform names |
||
| 293 | """ |
||
| 294 | waveforms = list() |
||
| 295 | |||
| 296 | # Sanity checks |
||
| 297 | if len(analog_samples) == 0: |
||
| 298 | self.log.error('No analog samples passed to write_waveform method in awg70k.') |
||
| 299 | return -1, waveforms |
||
| 300 | |||
| 301 | min_samples = int(self.query('WLIS:WAV:LMIN?')) |
||
| 302 | if total_number_of_samples < min_samples: |
||
| 303 | self.log.error('Unable to write waveform.\nNumber of samples to write ({0:d}) is ' |
||
| 304 | 'smaller than the allowed minimum waveform length ({1:d}).' |
||
| 305 | ''.format(total_number_of_samples, min_samples)) |
||
| 306 | return -1, waveforms |
||
| 307 | |||
| 308 | # determine active channels |
||
| 309 | activation_dict = self.get_active_channels() |
||
| 310 | active_channels = {chnl for chnl in activation_dict if activation_dict[chnl]} |
||
| 311 | active_analog = sorted(chnl for chnl in active_channels if chnl.startswith('a')) |
||
| 312 | |||
| 313 | # Sanity check of channel numbers |
||
| 314 | if active_channels != set(analog_samples.keys()).union(set(digital_samples.keys())): |
||
| 315 | self.log.error('Mismatch of channel activation and sample array dimensions for ' |
||
| 316 | 'waveform creation.\nChannel activation is: {0}\nSample arrays have: ' |
||
| 317 | ''.format(active_channels, |
||
| 318 | set(analog_samples.keys()).union(set(digital_samples.keys())))) |
||
| 319 | return -1, waveforms |
||
| 320 | |||
| 321 | # Write waveforms. One for each analog channel. |
||
| 322 | for a_ch in active_analog: |
||
| 323 | # Get the integer analog channel number |
||
| 324 | a_ch_num = int(a_ch.split('ch')[-1]) |
||
| 325 | # Get the digital channel specifiers belonging to this analog channel markers |
||
| 326 | mrk_ch_1 = 'd_ch{0:d}'.format(a_ch_num * 2 - 1) |
||
| 327 | mrk_ch_2 = 'd_ch{0:d}'.format(a_ch_num * 2) |
||
| 328 | |||
| 329 | start = time.time() |
||
| 330 | # Encode marker information in an array of bytes (uint8). Avoid intermediate copies!!! |
||
| 331 | if mrk_ch_1 in digital_samples and mrk_ch_2 in digital_samples: |
||
| 332 | mrk_bytes = digital_samples[mrk_ch_2].view('uint8') |
||
| 333 | tmp_bytes = digital_samples[mrk_ch_1].view('uint8') |
||
| 334 | np.left_shift(mrk_bytes, 7, out=mrk_bytes) |
||
| 335 | np.left_shift(tmp_bytes, 6, out=tmp_bytes) |
||
| 336 | np.add(mrk_bytes, tmp_bytes, out=mrk_bytes) |
||
| 337 | elif mrk_ch_1 in digital_samples: |
||
| 338 | mrk_bytes = digital_samples[mrk_ch_1].view('uint8') |
||
| 339 | np.left_shift(mrk_bytes, 6, out=mrk_bytes) |
||
| 340 | else: |
||
| 341 | mrk_bytes = None |
||
| 342 | print('Prepare digital channel data: {0}'.format(time.time()-start)) |
||
| 343 | |||
| 344 | # Create waveform name string |
||
| 345 | wfm_name = '{0}_ch{1:d}'.format(name, a_ch_num) |
||
| 346 | |||
| 347 | # Check if waveform already exists and delete if necessary. |
||
| 348 | if wfm_name in self.get_waveform_names(): |
||
| 349 | self.delete_waveform(wfm_name) |
||
| 350 | |||
| 351 | # Write WFMX file for waveform |
||
| 352 | start = time.time() |
||
| 353 | self._write_wfmx(filename=wfm_name, |
||
| 354 | analog_samples=analog_samples[a_ch], |
||
| 355 | digital_samples=mrk_bytes, |
||
| 356 | is_first_chunk=is_first_chunk, |
||
| 357 | is_last_chunk=is_last_chunk, |
||
| 358 | total_number_of_samples=total_number_of_samples) |
||
| 359 | print('Write WFMX file: {0}'.format(time.time() - start)) |
||
| 360 | |||
| 361 | # transfer waveform to AWG and load into workspace |
||
| 362 | start = time.time() |
||
| 363 | self._send_file(filename=wfm_name + '.wfmx') |
||
| 364 | print('Send WFMX file: {0}'.format(time.time() - start)) |
||
| 365 | |||
| 366 | start = time.time() |
||
| 367 | self.write('MMEM:OPEN "{0}"'.format(os.path.join(self._ftp_path, wfm_name + '.wfmx'))) |
||
| 368 | # Wait for everything to complete |
||
| 369 | while int(self.query('*OPC?')) != 1: |
||
| 370 | time.sleep(0.25) |
||
| 371 | # Just to make sure |
||
| 372 | while wfm_name not in self.get_waveform_names(): |
||
| 373 | time.sleep(0.25) |
||
| 374 | print('Load WFMX file into workspace: {0}'.format(time.time() - start)) |
||
| 375 | |||
| 376 | # Append created waveform name to waveform list |
||
| 377 | waveforms.append(wfm_name) |
||
| 378 | return total_number_of_samples, waveforms |
||
| 379 | |||
| 380 | def write_sequence(self, name, sequence_parameter_list): |
||
| 381 | """ |
||
| 382 | Write a new sequence on the device memory. |
||
| 383 | |||
| 384 | @param name: str, the name of the waveform to be created/append to |
||
| 385 | @param sequence_parameter_list: list, contains the parameters for each sequence step and |
||
| 386 | the according waveform names. |
||
| 387 | |||
| 388 | @return: int, number of sequence steps written (-1 indicates failed process) |
||
| 389 | """ |
||
| 390 | # Check if device has sequencer option installed |
||
| 391 | if not self.has_sequence_mode(): |
||
| 392 | self.log.error('Direct sequence generation in AWG not possible. Sequencer option not ' |
||
| 393 | 'installed.') |
||
| 394 | return -1 |
||
| 395 | |||
| 396 | # Check if all waveforms are present on device memory |
||
| 397 | avail_waveforms = set(self.get_waveform_names()) |
||
| 398 | for waveform_tuple, param_dict in sequence_parameter_list: |
||
| 399 | if not avail_waveforms.issuperset(waveform_tuple): |
||
| 400 | self.log.error('Failed to create sequence "{0}" due to waveforms "{1}" not ' |
||
| 401 | 'present in device memory.'.format(name, waveform_tuple)) |
||
| 402 | return -1 |
||
| 403 | |||
| 404 | active_analog = sorted(chnl for chnl in self.get_active_channels() if chnl.startswith('a')) |
||
| 405 | num_tracks = len(active_analog) |
||
| 406 | num_steps = len(sequence_parameter_list) |
||
| 407 | |||
| 408 | # Create new sequence and set jump timing to immediate. |
||
| 409 | # Delete old sequence by the same name if present. |
||
| 410 | self.new_sequence(name=name, steps=num_steps) |
||
| 411 | |||
| 412 | # Fill in sequence information |
||
| 413 | for step, (wfm_tuple, seq_params) in enumerate(sequence_parameter_list, 1): |
||
| 414 | # Set waveforms to play |
||
| 415 | if num_tracks == len(wfm_tuple): |
||
| 416 | for track, waveform in enumerate(wfm_tuple, 1): |
||
| 417 | self.sequence_set_waveform(name, waveform, step, track) |
||
| 418 | else: |
||
| 419 | self.log.error('Unable to write sequence.\nLength of waveform tuple "{0}" does not ' |
||
| 420 | 'match the number of sequence tracks.'.format(waveform_tuple)) |
||
| 421 | return -1 |
||
| 422 | |||
| 423 | # Set event jump trigger |
||
| 424 | self.sequence_set_event_jump(name, |
||
| 425 | step, |
||
| 426 | seq_params['event_trigger'], |
||
| 427 | seq_params['event_jump_to']) |
||
| 428 | # Set wait trigger |
||
| 429 | self.sequence_set_wait_trigger(name, step, seq_params['wait_for']) |
||
| 430 | # Set repetitions |
||
| 431 | self.sequence_set_repetitions(name, step, seq_params['repetitions']) |
||
| 432 | # Set go_to parameter |
||
| 433 | self.sequence_set_goto(name, step, seq_params['go_to']) |
||
| 434 | # Set flag states |
||
| 435 | trigger = seq_params['flag_trigger'] != 'OFF' |
||
| 436 | flag_list = [seq_params['flag_trigger']] if trigger else [seq_params['flag_high']] |
||
| 437 | self.sequence_set_flags(name, step, flag_list, trigger) |
||
| 438 | |||
| 439 | # Wait for everything to complete |
||
| 440 | while int(self.query('*OPC?')) != 1: |
||
| 441 | time.sleep(0.25) |
||
| 442 | return num_steps |
||
| 443 | |||
| 444 | def get_waveform_names(self): |
||
| 445 | """ Retrieve the names of all uploaded waveforms on the device. |
||
| 446 | |||
| 447 | @return list: List of all uploaded waveform name strings in the device workspace. |
||
| 448 | """ |
||
| 449 | try: |
||
| 450 | query_return = self.query('WLIS:LIST?') |
||
| 451 | except visa.VisaIOError: |
||
| 452 | query_return = None |
||
| 453 | self.log.error('Unable to read waveform list from device. VisaIOError occured.') |
||
| 454 | waveform_list = sorted(query_return.split(',')) if query_return else list() |
||
| 455 | return waveform_list |
||
| 456 | |||
| 457 | def get_sequence_names(self): |
||
| 458 | """ Retrieve the names of all uploaded sequence on the device. |
||
| 459 | |||
| 460 | @return list: List of all uploaded sequence name strings in the device workspace. |
||
| 461 | """ |
||
| 462 | sequence_list = list() |
||
| 463 | |||
| 464 | if not self.has_sequence_mode(): |
||
| 465 | return sequence_list |
||
| 466 | |||
| 467 | try: |
||
| 468 | number_of_seq = int(self.query('SLIS:SIZE?')) |
||
| 469 | for ii in range(number_of_seq): |
||
| 470 | sequence_list.append(self.query('SLIS:NAME? {0:d}'.format(ii + 1))) |
||
| 471 | except visa.VisaIOError: |
||
| 472 | self.log.error('Unable to read sequence list from device. VisaIOError occurred.') |
||
| 473 | return sequence_list |
||
| 474 | |||
| 475 | def delete_waveform(self, waveform_name): |
||
| 476 | """ Delete the waveform with name "waveform_name" from the device memory. |
||
| 477 | |||
| 478 | @param str waveform_name: The name of the waveform to be deleted |
||
| 479 | Optionally a list of waveform names can be passed. |
||
| 480 | |||
| 481 | @return list: a list of deleted waveform names. |
||
| 482 | """ |
||
| 483 | if isinstance(waveform_name, str): |
||
| 484 | waveform_name = [waveform_name] |
||
| 485 | |||
| 486 | avail_waveforms = self.get_waveform_names() |
||
| 487 | deleted_waveforms = list() |
||
| 488 | for waveform in waveform_name: |
||
| 489 | if waveform in avail_waveforms: |
||
| 490 | self.write('WLIS:WAV:DEL "{0}"'.format(waveform)) |
||
| 491 | deleted_waveforms.append(waveform) |
||
| 492 | return deleted_waveforms |
||
| 493 | |||
| 494 | def delete_sequence(self, sequence_name): |
||
| 495 | """ Delete the sequence with name "sequence_name" from the device memory. |
||
| 496 | |||
| 497 | @param str sequence_name: The name of the sequence to be deleted |
||
| 498 | Optionally a list of sequence names can be passed. |
||
| 499 | |||
| 500 | @return list: a list of deleted sequence names. |
||
| 501 | """ |
||
| 502 | if isinstance(sequence_name, str): |
||
| 503 | sequence_name = [sequence_name] |
||
| 504 | |||
| 505 | avail_sequences = self.get_sequence_names() |
||
| 506 | deleted_sequences = list() |
||
| 507 | for sequence in sequence_name: |
||
| 508 | if sequence in avail_sequences: |
||
| 509 | self.write('SLIS:SEQ:DEL "{0}"'.format(sequence)) |
||
| 510 | deleted_sequences.append(sequence) |
||
| 511 | return deleted_sequences |
||
| 512 | |||
| 513 | View Code Duplication | def load_waveform(self, load_dict): |
|
|
|
|||
| 514 | """ Loads a waveform to the specified channel of the pulsing device. |
||
| 515 | For devices that have a workspace (i.e. AWG) this will load the waveform from the device |
||
| 516 | workspace into the channel. |
||
| 517 | For a device without mass memory this will make the waveform/pattern that has been |
||
| 518 | previously written with self.write_waveform ready to play. |
||
| 519 | |||
| 520 | @param load_dict: dict|list, a dictionary with keys being one of the available channel |
||
| 521 | index and values being the name of the already written |
||
| 522 | waveform to load into the channel. |
||
| 523 | Examples: {1: rabi_ch1, 2: rabi_ch2} or |
||
| 524 | {1: rabi_ch2, 2: rabi_ch1} |
||
| 525 | If just a list of waveform names if given, the channel |
||
| 526 | association will be invoked from the channel |
||
| 527 | suffix '_ch1', '_ch2' etc. |
||
| 528 | |||
| 529 | @return (dict, str): Dictionary with keys being the channel number and values being the |
||
| 530 | respective asset loaded into the channel, string describing the asset |
||
| 531 | type ('waveform' or 'sequence') |
||
| 532 | """ |
||
| 533 | if isinstance(load_dict, list): |
||
| 534 | new_dict = dict() |
||
| 535 | for waveform in load_dict: |
||
| 536 | channel = int(waveform.rsplit('_ch', 1)[1]) |
||
| 537 | new_dict[channel] = waveform |
||
| 538 | load_dict = new_dict |
||
| 539 | |||
| 540 | # Get all active channels |
||
| 541 | chnl_activation = self.get_active_channels() |
||
| 542 | analog_channels = sorted( |
||
| 543 | chnl for chnl in chnl_activation if chnl.startswith('a') and chnl_activation[chnl]) |
||
| 544 | |||
| 545 | # Check if all channels to load to are active |
||
| 546 | channels_to_set = {'a_ch{0:d}'.format(chnl_num) for chnl_num in load_dict} |
||
| 547 | if not channels_to_set.issubset(analog_channels): |
||
| 548 | self.log.error('Unable to load waveforms into channels.\n' |
||
| 549 | 'One or more channels to set are not active.') |
||
| 550 | return self.get_loaded_assets() |
||
| 551 | |||
| 552 | # Check if all waveforms to load are present on device memory |
||
| 553 | if not set(load_dict.values()).issubset(self.get_waveform_names()): |
||
| 554 | self.log.error('Unable to load waveforms into channels.\n' |
||
| 555 | 'One or more waveforms to load are missing on device memory.') |
||
| 556 | return self.get_loaded_assets() |
||
| 557 | |||
| 558 | # Load waveforms into channels |
||
| 559 | for chnl_num, waveform in load_dict.items(): |
||
| 560 | self.write('SOUR{0:d}:CASS:WAV "{1}"'.format(chnl_num, waveform)) |
||
| 561 | while self.query('SOUR{0:d}:CASS?'.format(chnl_num)) != waveform: |
||
| 562 | time.sleep(0.1) |
||
| 563 | |||
| 564 | return self.get_loaded_assets() |
||
| 565 | |||
| 566 | def load_sequence(self, sequence_name): |
||
| 567 | """ Loads a sequence to the channels of the device in order to be ready for playback. |
||
| 568 | For devices that have a workspace (i.e. AWG) this will load the sequence from the device |
||
| 569 | workspace into the channels. |
||
| 570 | |||
| 571 | @param sequence_name: str, name of the sequence to load |
||
| 572 | |||
| 573 | @return (dict, str): Dictionary with keys being the channel number and values being the |
||
| 574 | respective asset loaded into the channel, string describing the asset |
||
| 575 | type ('waveform' or 'sequence') |
||
| 576 | """ |
||
| 577 | if sequence_name not in self.get_sequence_names(): |
||
| 578 | self.log.error('Unable to load sequence.\n' |
||
| 579 | 'Sequence to load is missing on device memory.') |
||
| 580 | return self.get_loaded_assets() |
||
| 581 | |||
| 582 | # Get all active channels |
||
| 583 | chnl_activation = self.get_active_channels() |
||
| 584 | analog_channels = sorted( |
||
| 585 | chnl for chnl in chnl_activation if chnl.startswith('a') and chnl_activation[chnl]) |
||
| 586 | |||
| 587 | # Check if number of sequence tracks matches the number of analog channels |
||
| 588 | trac_num = int(self.query('SLIS:SEQ:TRAC? "{0}"'.format(sequence_name))) |
||
| 589 | if trac_num != len(analog_channels): |
||
| 590 | self.log.error('Unable to load sequence.\nNumber of tracks in sequence to load does ' |
||
| 591 | 'not match the number of active analog channels.') |
||
| 592 | return self.get_loaded_assets() |
||
| 593 | |||
| 594 | # Load sequence |
||
| 595 | for chnl in range(1, trac_num + 1): |
||
| 596 | self.write('SOUR{0:d}:CASS:SEQ "{1}", {2:d}'.format(chnl, sequence_name, chnl)) |
||
| 597 | while self.query('SOUR{0:d}:CASS?'.format(chnl))[1:-2] != '{0},{1:d}'.format( |
||
| 598 | sequence_name, chnl): |
||
| 599 | time.sleep(0.2) |
||
| 600 | |||
| 601 | return self.get_loaded_assets() |
||
| 602 | |||
| 603 | def get_loaded_assets(self): |
||
| 604 | """ |
||
| 605 | Retrieve the currently loaded asset names for each active channel of the device. |
||
| 606 | The returned dictionary will have the channel numbers as keys. |
||
| 607 | In case of loaded waveforms the dictionary values will be the waveform names. |
||
| 608 | In case of a loaded sequence the values will be the sequence name appended by a suffix |
||
| 609 | representing the track loaded to the respective channel (i.e. '<sequence_name>_1'). |
||
| 610 | |||
| 611 | @return (dict, str): Dictionary with keys being the channel number and values being the |
||
| 612 | respective asset loaded into the channel, |
||
| 613 | string describing the asset type ('waveform' or 'sequence') |
||
| 614 | """ |
||
| 615 | # Get all active channels |
||
| 616 | chnl_activation = self.get_active_channels() |
||
| 617 | channel_numbers = sorted(int(chnl.split('_ch')[1]) for chnl in chnl_activation if |
||
| 618 | chnl.startswith('a') and chnl_activation[chnl]) |
||
| 619 | |||
| 620 | # Get assets per channel |
||
| 621 | loaded_assets = dict() |
||
| 622 | current_type = None |
||
| 623 | for chnl_num in channel_numbers: |
||
| 624 | # Ask AWG for currently loaded waveform or sequence. The answer for a waveform will |
||
| 625 | # look like '"waveformname"\n' and for a sequence '"sequencename,1"\n' |
||
| 626 | # (where the number is the current track) |
||
| 627 | asset_name = self.query('SOUR1:CASS?') |
||
| 628 | # Figure out if a sequence or just a waveform is loaded by splitting after the comma |
||
| 629 | splitted = asset_name.rsplit(',', 1) |
||
| 630 | # If the length is 2 a sequence is loaded and if it is 1 a waveform is loaded |
||
| 631 | asset_name = splitted[0] |
||
| 632 | if len(splitted) > 1: |
||
| 633 | if current_type is not None and current_type != 'sequence': |
||
| 634 | self.log.error('Unable to determine loaded assets.') |
||
| 635 | return dict(), '' |
||
| 636 | current_type = 'sequence' |
||
| 637 | asset_name += '_' + splitted[1] |
||
| 638 | else: |
||
| 639 | if current_type is not None and current_type != 'waveform': |
||
| 640 | self.log.error('Unable to determine loaded assets.') |
||
| 641 | return dict(), '' |
||
| 642 | current_type = 'waveform' |
||
| 643 | loaded_assets[chnl_num] = asset_name |
||
| 644 | |||
| 645 | return loaded_assets, current_type |
||
| 646 | |||
| 647 | def clear_all(self): |
||
| 648 | """ Clears all loaded waveform from the pulse generators RAM. |
||
| 649 | |||
| 650 | @return int: error code (0:OK, -1:error) |
||
| 651 | |||
| 652 | Unused for digital pulse generators without storage capability |
||
| 653 | (PulseBlaster, FPGA). |
||
| 654 | """ |
||
| 655 | self.write('WLIS:WAV:DEL ALL') |
||
| 656 | while int(self.query('*OPC?')) != 1: |
||
| 657 | time.sleep(0.25) |
||
| 658 | if self.has_sequence_mode(): |
||
| 659 | self.write('SLIS:SEQ:DEL ALL') |
||
| 660 | while int(self.query('*OPC?')) != 1: |
||
| 661 | time.sleep(0.25) |
||
| 662 | return 0 |
||
| 663 | |||
| 664 | def get_status(self): |
||
| 665 | """ Retrieves the status of the pulsing hardware |
||
| 666 | |||
| 667 | @return (int, dict): inter value of the current status with the |
||
| 668 | corresponding dictionary containing status |
||
| 669 | description for all the possible status variables |
||
| 670 | of the pulse generator hardware |
||
| 671 | """ |
||
| 672 | status_dic = {-1: 'Failed Request or Communication', |
||
| 673 | 0: 'Device has stopped, but can receive commands', |
||
| 674 | 1: 'Device is active and running'} |
||
| 675 | current_status = -1 if self.awg is None else int(self._is_output_on()) |
||
| 676 | # All the other status messages should have higher integer values then 1. |
||
| 677 | return current_status, status_dic |
||
| 678 | |||
| 679 | def set_sample_rate(self, sample_rate): |
||
| 680 | """ Set the sample rate of the pulse generator hardware |
||
| 681 | |||
| 682 | @param float sample_rate: The sample rate to be set (in Hz) |
||
| 683 | |||
| 684 | @return foat: the sample rate returned from the device (-1:error) |
||
| 685 | """ |
||
| 686 | # Check if AWG is in function generator mode |
||
| 687 | # self._activate_awg_mode() |
||
| 688 | |||
| 689 | self.write('CLOCK:SRATE %.4G' % sample_rate) |
||
| 690 | while int(self.query('*OPC?')) != 1: |
||
| 691 | time.sleep(0.25) |
||
| 692 | time.sleep(1) |
||
| 693 | return self.get_sample_rate() |
||
| 694 | |||
| 695 | def get_sample_rate(self): |
||
| 696 | """ Set the sample rate of the pulse generator hardware |
||
| 697 | |||
| 698 | @return float: The current sample rate of the device (in Hz) |
||
| 699 | """ |
||
| 700 | return_rate = float(self.query('CLOCK:SRATE?')) |
||
| 701 | return return_rate |
||
| 702 | |||
| 703 | def get_analog_level(self, amplitude=None, offset=None): |
||
| 704 | """ Retrieve the analog amplitude and offset of the provided channels. |
||
| 705 | |||
| 706 | @param list amplitude: optional, if a specific amplitude value (in Volt |
||
| 707 | peak to peak, i.e. the full amplitude) of a |
||
| 708 | channel is desired. |
||
| 709 | @param list offset: optional, if a specific high value (in Volt) of a |
||
| 710 | channel is desired. |
||
| 711 | |||
| 712 | @return dict: with keys being the generic string channel names and items |
||
| 713 | being the values for those channels. Amplitude is always |
||
| 714 | denoted in Volt-peak-to-peak and Offset in (absolute) |
||
| 715 | Voltage. |
||
| 716 | |||
| 717 | Note: Do not return a saved amplitude and/or offset value but instead |
||
| 718 | retrieve the current amplitude and/or offset directly from the |
||
| 719 | device. |
||
| 720 | |||
| 721 | If no entries provided then the levels of all channels where simply |
||
| 722 | returned. If no analog channels provided, return just an empty dict. |
||
| 723 | Example of a possible input: |
||
| 724 | amplitude = ['a_ch1','a_ch4'], offset =[1,3] |
||
| 725 | to obtain the amplitude of channel 1 and 4 and the offset |
||
| 726 | {'a_ch1': -0.5, 'a_ch4': 2.0} {'a_ch1': 0.0, 'a_ch3':-0.75} |
||
| 727 | since no high request was performed. |
||
| 728 | |||
| 729 | The major difference to digital signals is that analog signals are |
||
| 730 | always oscillating or changing signals, otherwise you can use just |
||
| 731 | digital output. In contrast to digital output levels, analog output |
||
| 732 | levels are defined by an amplitude (here total signal span, denoted in |
||
| 733 | Voltage peak to peak) and an offset (a value around which the signal |
||
| 734 | oscillates, denoted by an (absolute) voltage). |
||
| 735 | |||
| 736 | In general there is no bijective correspondence between |
||
| 737 | (amplitude, offset) and (value high, value low)! |
||
| 738 | """ |
||
| 739 | amp = dict() |
||
| 740 | off = dict() |
||
| 741 | |||
| 742 | chnl_list = self._get_all_analog_channels() |
||
| 743 | |||
| 744 | # get pp amplitudes |
||
| 745 | View Code Duplication | if amplitude is None: |
|
| 746 | for ch_num, chnl in enumerate(chnl_list, 1): |
||
| 747 | amp[chnl] = float(self.query('SOUR{0:d}:VOLT:AMPL?'.format(ch_num))) |
||
| 748 | else: |
||
| 749 | for chnl in amplitude: |
||
| 750 | if chnl in chnl_list: |
||
| 751 | ch_num = int(chnl.rsplit('_ch', 1)[1]) |
||
| 752 | amp[chnl] = float(self.query('SOUR{0:d}:VOLT:AMPL?'.format(ch_num))) |
||
| 753 | else: |
||
| 754 | self.log.warning('Get analog amplitude from AWG70k channel "{0}" failed. ' |
||
| 755 | 'Channel non-existent.'.format(chnl)) |
||
| 756 | |||
| 757 | # get voltage offsets |
||
| 758 | if offset is None: |
||
| 759 | for ch_num, chnl in enumerate(chnl_list): |
||
| 760 | off[chnl] = 0.0 |
||
| 761 | else: |
||
| 762 | for chnl in offset: |
||
| 763 | if chnl in chnl_list: |
||
| 764 | ch_num = int(chnl.rsplit('_ch', 1)[1]) |
||
| 765 | off[chnl] = 0.0 |
||
| 766 | else: |
||
| 767 | self.log.warning('Get analog offset from AWG70k channel "{0}" failed. ' |
||
| 768 | 'Channel non-existent.'.format(chnl)) |
||
| 769 | return amp, off |
||
| 770 | |||
| 771 | View Code Duplication | def set_analog_level(self, amplitude=None, offset=None): |
|
| 772 | """ Set amplitude and/or offset value of the provided analog channel. |
||
| 773 | |||
| 774 | @param dict amplitude: dictionary, with key being the channel and items |
||
| 775 | being the amplitude values (in Volt peak to peak, |
||
| 776 | i.e. the full amplitude) for the desired channel. |
||
| 777 | @param dict offset: dictionary, with key being the channel and items |
||
| 778 | being the offset values (in absolute volt) for the |
||
| 779 | desired channel. |
||
| 780 | |||
| 781 | @return (dict, dict): tuple of two dicts with the actual set values for |
||
| 782 | amplitude and offset. |
||
| 783 | |||
| 784 | If nothing is passed then the command will return two empty dicts. |
||
| 785 | |||
| 786 | Note: After setting the analog and/or offset of the device, retrieve |
||
| 787 | them again for obtaining the actual set value(s) and use that |
||
| 788 | information for further processing. |
||
| 789 | |||
| 790 | The major difference to digital signals is that analog signals are |
||
| 791 | always oscillating or changing signals, otherwise you can use just |
||
| 792 | digital output. In contrast to digital output levels, analog output |
||
| 793 | levels are defined by an amplitude (here total signal span, denoted in |
||
| 794 | Voltage peak to peak) and an offset (a value around which the signal |
||
| 795 | oscillates, denoted by an (absolute) voltage). |
||
| 796 | |||
| 797 | In general there is no bijective correspondence between |
||
| 798 | (amplitude, offset) and (value high, value low)! |
||
| 799 | """ |
||
| 800 | # Check the inputs by using the constraints... |
||
| 801 | constraints = self.get_constraints() |
||
| 802 | # ...and the available analog channels |
||
| 803 | analog_channels = self._get_all_analog_channels() |
||
| 804 | |||
| 805 | # amplitude sanity check |
||
| 806 | if amplitude is not None: |
||
| 807 | for chnl in amplitude: |
||
| 808 | ch_num = int(chnl.rsplit('_ch', 1)[1]) |
||
| 809 | if chnl not in analog_channels: |
||
| 810 | self.log.warning('Channel to set (a_ch{0}) not available in AWG.\nSetting ' |
||
| 811 | 'analogue voltage for this channel ignored.'.format(chnl)) |
||
| 812 | del amplitude[chnl] |
||
| 813 | if amplitude[chnl] < constraints.a_ch_amplitude.min: |
||
| 814 | self.log.warning('Minimum Vpp for channel "{0}" is {1}. Requested Vpp of {2}V ' |
||
| 815 | 'was ignored and instead set to min value.' |
||
| 816 | ''.format(chnl, constraints.a_ch_amplitude.min, |
||
| 817 | amplitude[chnl])) |
||
| 818 | amplitude[chnl] = constraints.a_ch_amplitude.min |
||
| 819 | elif amplitude[chnl] > constraints.a_ch_amplitude.max: |
||
| 820 | self.log.warning('Maximum Vpp for channel "{0}" is {1}. Requested Vpp of {2}V ' |
||
| 821 | 'was ignored and instead set to max value.' |
||
| 822 | ''.format(chnl, constraints.a_ch_amplitude.max, |
||
| 823 | amplitude[chnl])) |
||
| 824 | amplitude[chnl] = constraints.a_ch_amplitude.max |
||
| 825 | # offset sanity check |
||
| 826 | if offset is not None: |
||
| 827 | for chnl in offset: |
||
| 828 | ch_num = int(chnl.rsplit('_ch', 1)[1]) |
||
| 829 | if chnl not in analog_channels: |
||
| 830 | self.log.warning('Channel to set (a_ch{0}) not available in AWG.\nSetting ' |
||
| 831 | 'offset voltage for this channel ignored.'.format(chnl)) |
||
| 832 | del offset[chnl] |
||
| 833 | if offset[chnl] < constraints.a_ch_offset.min: |
||
| 834 | self.log.warning('Minimum offset for channel "{0}" is {1}. Requested offset of ' |
||
| 835 | '{2}V was ignored and instead set to min value.' |
||
| 836 | ''.format(chnl, constraints.a_ch_offset.min, offset[chnl])) |
||
| 837 | offset[chnl] = constraints.a_ch_offset.min |
||
| 838 | elif offset[chnl] > constraints.a_ch_offset.max: |
||
| 839 | self.log.warning('Maximum offset for channel "{0}" is {1}. Requested offset of ' |
||
| 840 | '{2}V was ignored and instead set to max value.' |
||
| 841 | ''.format(chnl, constraints.a_ch_offset.max, |
||
| 842 | offset[chnl])) |
||
| 843 | offset[chnl] = constraints.a_ch_offset.max |
||
| 844 | |||
| 845 | if amplitude is not None: |
||
| 846 | for a_ch in amplitude: |
||
| 847 | ch_num = int(chnl.rsplit('_ch', 1)[1]) |
||
| 848 | self.write('SOUR{0:d}:VOLT:AMPL {1}'.format(ch_num, amplitude[a_ch])) |
||
| 849 | while int(self.query('*OPC?')) != 1: |
||
| 850 | time.sleep(0.25) |
||
| 851 | |||
| 852 | if offset is not None: |
||
| 853 | for a_ch in offset: |
||
| 854 | ch_num = int(chnl.rsplit('_ch', 1)[1]) |
||
| 855 | self.write('SOUR{0:d}:VOLT:OFFSET {1}'.format(ch_num, offset[a_ch])) |
||
| 856 | while int(self.query('*OPC?')) != 1: |
||
| 857 | time.sleep(0.25) |
||
| 858 | return self.get_analog_level() |
||
| 859 | |||
| 860 | View Code Duplication | def get_digital_level(self, low=None, high=None): |
|
| 861 | """ Retrieve the digital low and high level of the provided channels. |
||
| 862 | |||
| 863 | @param list low: optional, if a specific low value (in Volt) of a |
||
| 864 | channel is desired. |
||
| 865 | @param list high: optional, if a specific high value (in Volt) of a |
||
| 866 | channel is desired. |
||
| 867 | |||
| 868 | @return: (dict, dict): tuple of two dicts, with keys being the channel |
||
| 869 | number and items being the values for those |
||
| 870 | channels. Both low and high value of a channel is |
||
| 871 | denoted in (absolute) Voltage. |
||
| 872 | |||
| 873 | Note: Do not return a saved low and/or high value but instead retrieve |
||
| 874 | the current low and/or high value directly from the device. |
||
| 875 | |||
| 876 | If no entries provided then the levels of all channels where simply |
||
| 877 | returned. If no digital channels provided, return just an empty dict. |
||
| 878 | |||
| 879 | Example of a possible input: |
||
| 880 | low = ['d_ch1', 'd_ch4'] |
||
| 881 | to obtain the low voltage values of digital channel 1 an 4. A possible |
||
| 882 | answer might be |
||
| 883 | {'d_ch1': -0.5, 'd_ch4': 2.0} {} |
||
| 884 | since no high request was performed. |
||
| 885 | |||
| 886 | The major difference to analog signals is that digital signals are |
||
| 887 | either ON or OFF, whereas analog channels have a varying amplitude |
||
| 888 | range. In contrast to analog output levels, digital output levels are |
||
| 889 | defined by a voltage, which corresponds to the ON status and a voltage |
||
| 890 | which corresponds to the OFF status (both denoted in (absolute) voltage) |
||
| 891 | |||
| 892 | In general there is no bijective correspondence between |
||
| 893 | (amplitude, offset) and (value high, value low)! |
||
| 894 | """ |
||
| 895 | # TODO: Test with multiple channel AWG |
||
| 896 | low_val = {} |
||
| 897 | high_val = {} |
||
| 898 | |||
| 899 | digital_channels = self._get_all_digital_channels() |
||
| 900 | |||
| 901 | if low is None: |
||
| 902 | low = digital_channels |
||
| 903 | if high is None: |
||
| 904 | high = digital_channels |
||
| 905 | |||
| 906 | # get low marker levels |
||
| 907 | for chnl in low: |
||
| 908 | if chnl not in digital_channels: |
||
| 909 | continue |
||
| 910 | d_ch_number = int(chnl.rsplit('_ch', 1)[1]) |
||
| 911 | a_ch_number = (1 + d_ch_number) // 2 |
||
| 912 | marker_index = 2 - (d_ch_number % 2) |
||
| 913 | low_val[chnl] = float( |
||
| 914 | self.query('SOUR{0:d}:MARK{1:d}:VOLT:LOW?'.format(a_ch_number, marker_index))) |
||
| 915 | # get high marker levels |
||
| 916 | for chnl in high: |
||
| 917 | if chnl not in digital_channels: |
||
| 918 | continue |
||
| 919 | d_ch_number = int(chnl.rsplit('_ch', 1)[1]) |
||
| 920 | a_ch_number = (1 + d_ch_number) // 2 |
||
| 921 | marker_index = 2 - (d_ch_number % 2) |
||
| 922 | high_val[chnl] = float( |
||
| 923 | self.query('SOUR{0:d}:MARK{1:d}:VOLT:HIGH?'.format(a_ch_number, marker_index))) |
||
| 924 | |||
| 925 | return low_val, high_val |
||
| 926 | |||
| 927 | def set_digital_level(self, low=None, high=None): |
||
| 928 | """ Set low and/or high value of the provided digital channel. |
||
| 929 | |||
| 930 | @param dict low: dictionary, with key being the channel and items being |
||
| 931 | the low values (in volt) for the desired channel. |
||
| 932 | @param dict high: dictionary, with key being the channel and items being |
||
| 933 | the high values (in volt) for the desired channel. |
||
| 934 | |||
| 935 | @return (dict, dict): tuple of two dicts where first dict denotes the |
||
| 936 | current low value and the second dict the high |
||
| 937 | value. |
||
| 938 | |||
| 939 | If nothing is passed then the command will return two empty dicts. |
||
| 940 | |||
| 941 | Note: After setting the high and/or low values of the device, retrieve |
||
| 942 | them again for obtaining the actual set value(s) and use that |
||
| 943 | information for further processing. |
||
| 944 | |||
| 945 | The major difference to analog signals is that digital signals are |
||
| 946 | either ON or OFF, whereas analog channels have a varying amplitude |
||
| 947 | range. In contrast to analog output levels, digital output levels are |
||
| 948 | defined by a voltage, which corresponds to the ON status and a voltage |
||
| 949 | which corresponds to the OFF status (both denoted in (absolute) voltage) |
||
| 950 | |||
| 951 | In general there is no bijective correspondence between |
||
| 952 | (amplitude, offset) and (value high, value low)! |
||
| 953 | """ |
||
| 954 | if low is None: |
||
| 955 | low = dict() |
||
| 956 | if high is None: |
||
| 957 | high = dict() |
||
| 958 | |||
| 959 | #If you want to check the input use the constraints: |
||
| 960 | constraints = self.get_constraints() |
||
| 961 | |||
| 962 | for d_ch, value in low.items(): |
||
| 963 | #FIXME: Tell the device the proper digital voltage low value: |
||
| 964 | # self.tell('SOURCE1:MARKER{0}:VOLTAGE:LOW {1}'.format(d_ch, low[d_ch])) |
||
| 965 | pass |
||
| 966 | |||
| 967 | for d_ch, value in high.items(): |
||
| 968 | #FIXME: Tell the device the proper digital voltage high value: |
||
| 969 | # self.tell('SOURCE1:MARKER{0}:VOLTAGE:HIGH {1}'.format(d_ch, high[d_ch])) |
||
| 970 | pass |
||
| 971 | return self.get_digital_level() |
||
| 972 | |||
| 973 | def get_active_channels(self, ch=None): |
||
| 974 | """ Get the active channels of the pulse generator hardware. |
||
| 975 | |||
| 976 | @param list ch: optional, if specific analog or digital channels are |
||
| 977 | needed to be asked without obtaining all the channels. |
||
| 978 | |||
| 979 | @return dict: where keys denoting the channel number and items boolean |
||
| 980 | expressions whether channel are active or not. |
||
| 981 | |||
| 982 | Example for an possible input (order is not important): |
||
| 983 | ch = ['a_ch2', 'd_ch2', 'a_ch1', 'd_ch5', 'd_ch1'] |
||
| 984 | then the output might look like |
||
| 985 | {'a_ch2': True, 'd_ch2': False, 'a_ch1': False, 'd_ch5': True, 'd_ch1': False} |
||
| 986 | |||
| 987 | If no parameters are passed to this method all channels will be asked |
||
| 988 | for their setting. |
||
| 989 | """ |
||
| 990 | # If you want to check the input use the constraints: |
||
| 991 | # constraints = self.get_constraints() |
||
| 992 | |||
| 993 | analog_channels = self._get_all_analog_channels() |
||
| 994 | |||
| 995 | active_ch = dict() |
||
| 996 | for ch_num, a_ch in enumerate(analog_channels, 1): |
||
| 997 | # check what analog channels are active |
||
| 998 | active_ch[a_ch] = bool(int(self.query('OUTPUT{0:d}:STATE?'.format(ch_num)))) |
||
| 999 | # check how many markers are active on each channel, i.e. the DAC resolution |
||
| 1000 | if active_ch[a_ch]: |
||
| 1001 | digital_mrk = 10 - int(self.query('SOUR{0:d}:DAC:RES?'.format(ch_num))) |
||
| 1002 | View Code Duplication | if digital_mrk == 2: |
|
| 1003 | active_ch['d_ch{0:d}'.format(ch_num * 2)] = True |
||
| 1004 | active_ch['d_ch{0:d}'.format(ch_num * 2 - 1)] = True |
||
| 1005 | elif digital_mrk == 1: |
||
| 1006 | active_ch['d_ch{0:d}'.format(ch_num * 2)] = False |
||
| 1007 | active_ch['d_ch{0:d}'.format(ch_num * 2 - 1)] = True |
||
| 1008 | else: |
||
| 1009 | active_ch['d_ch{0:d}'.format(ch_num * 2)] = False |
||
| 1010 | active_ch['d_ch{0:d}'.format(ch_num * 2 - 1)] = False |
||
| 1011 | else: |
||
| 1012 | active_ch['d_ch{0:d}'.format(ch_num * 2)] = False |
||
| 1013 | active_ch['d_ch{0:d}'.format(ch_num * 2 - 1)] = False |
||
| 1014 | |||
| 1015 | # return either all channel information or just the one asked for. |
||
| 1016 | if ch is not None: |
||
| 1017 | chnl_to_delete = [chnl for chnl in active_ch if chnl not in ch] |
||
| 1018 | for chnl in chnl_to_delete: |
||
| 1019 | del active_ch[chnl] |
||
| 1020 | return active_ch |
||
| 1021 | |||
| 1022 | def set_active_channels(self, ch=None): |
||
| 1023 | """ Set the active channels for the pulse generator hardware. |
||
| 1024 | |||
| 1025 | @param dict ch: dictionary with keys being the analog or digital |
||
| 1026 | string generic names for the channels with items being |
||
| 1027 | a boolean value.current_loaded_asset |
||
| 1028 | |||
| 1029 | @return dict: with the actual set values for active channels for analog |
||
| 1030 | and digital values. |
||
| 1031 | |||
| 1032 | If nothing is passed then the command will return an empty dict. |
||
| 1033 | |||
| 1034 | Note: After setting the active channels of the device, retrieve them |
||
| 1035 | again for obtaining the actual set value(s) and use that |
||
| 1036 | information for further processing. |
||
| 1037 | |||
| 1038 | Example for possible input: |
||
| 1039 | ch={'a_ch2': True, 'd_ch1': False, 'd_ch3': True, 'd_ch4': True} |
||
| 1040 | to activate analog channel 2 digital channel 3 and 4 and to deactivate |
||
| 1041 | digital channel 1. |
||
| 1042 | |||
| 1043 | The hardware itself has to handle, whether separate channel activation |
||
| 1044 | is possible. |
||
| 1045 | """ |
||
| 1046 | current_channel_state = self.get_active_channels() |
||
| 1047 | |||
| 1048 | if ch is None: |
||
| 1049 | return current_channel_state |
||
| 1050 | |||
| 1051 | if not set(current_channel_state).issuperset(ch): |
||
| 1052 | self.log.error('Trying to (de)activate channels that are not present in AWG70k.\n' |
||
| 1053 | 'Setting of channel activation aborted.') |
||
| 1054 | return current_channel_state |
||
| 1055 | |||
| 1056 | # Determine new channel activation states |
||
| 1057 | new_channels_state = current_channel_state.copy() |
||
| 1058 | for chnl in ch: |
||
| 1059 | new_channels_state[chnl] = ch[chnl] |
||
| 1060 | |||
| 1061 | # check if the channels to set are part of the activation_config constraints |
||
| 1062 | constraints = self.get_constraints() |
||
| 1063 | new_active_channels = {chnl for chnl in new_channels_state if new_channels_state[chnl]} |
||
| 1064 | if new_active_channels not in constraints.activation_config.values(): |
||
| 1065 | self.log.error('activation_config to set ({0}) is not allowed according to constraints.' |
||
| 1066 | ''.format(new_active_channels)) |
||
| 1067 | return current_channel_state |
||
| 1068 | |||
| 1069 | # get lists of all analog channels |
||
| 1070 | analog_channels = self._get_all_analog_channels() |
||
| 1071 | |||
| 1072 | # calculate dac resolution for each analog channel and set it in hardware. |
||
| 1073 | # Also (de)activate the analog channels accordingly |
||
| 1074 | max_res = constraints.dac_resolution['max'] |
||
| 1075 | for a_ch in analog_channels: |
||
| 1076 | ach_num = int(a_ch.rsplit('_ch', 1)[1]) |
||
| 1077 | # determine number of markers for current a_ch |
||
| 1078 | if new_channels_state['d_ch{0:d}'.format(2 * ach_num - 1)]: |
||
| 1079 | marker_num = 2 if new_channels_state['d_ch{0:d}'.format(2 * ach_num)] else 1 |
||
| 1080 | else: |
||
| 1081 | marker_num = 0 |
||
| 1082 | # set DAC resolution for this channel |
||
| 1083 | dac_res = max_res - marker_num |
||
| 1084 | self.write('SOUR{0:d}:DAC:RES {1:d}'.format(ach_num, dac_res)) |
||
| 1085 | # (de)activate the analog channel |
||
| 1086 | if new_channels_state[a_ch]: |
||
| 1087 | self.write('OUTPUT{0:d}:STATE ON'.format(ach_num)) |
||
| 1088 | else: |
||
| 1089 | self.write('OUTPUT{0:d}:STATE OFF'.format(ach_num)) |
||
| 1090 | |||
| 1091 | return self.get_active_channels() |
||
| 1092 | |||
| 1093 | def get_interleave(self): |
||
| 1094 | """ Check whether Interleave is ON or OFF in AWG. |
||
| 1095 | |||
| 1096 | @return bool: True: ON, False: OFF |
||
| 1097 | |||
| 1098 | Unused for pulse generator hardware other than an AWG. |
||
| 1099 | """ |
||
| 1100 | return False |
||
| 1101 | |||
| 1102 | def set_interleave(self, state=False): |
||
| 1103 | """ Turns the interleave of an AWG on or off. |
||
| 1104 | |||
| 1105 | @param bool state: The state the interleave should be set to |
||
| 1106 | (True: ON, False: OFF) |
||
| 1107 | |||
| 1108 | @return bool: actual interleave status (True: ON, False: OFF) |
||
| 1109 | |||
| 1110 | Note: After setting the interleave of the device, retrieve the |
||
| 1111 | interleave again and use that information for further processing. |
||
| 1112 | |||
| 1113 | Unused for pulse generator hardware other than an AWG. |
||
| 1114 | """ |
||
| 1115 | if state: |
||
| 1116 | self.log.warning('Interleave mode not available for the AWG 70000 Series!\n' |
||
| 1117 | 'Method call will be ignored.') |
||
| 1118 | return False |
||
| 1119 | |||
| 1120 | def has_sequence_mode(self): |
||
| 1121 | """ Asks the pulse generator whether sequence mode exists. |
||
| 1122 | |||
| 1123 | @return: bool, True for yes, False for no. |
||
| 1124 | """ |
||
| 1125 | options = self.query('*OPT?').split(',') |
||
| 1126 | return '03' in options |
||
| 1127 | |||
| 1128 | def reset(self): |
||
| 1129 | """Reset the device. |
||
| 1130 | |||
| 1131 | @return int: error code (0:OK, -1:error) |
||
| 1132 | """ |
||
| 1133 | self.write('*RST') |
||
| 1134 | self.write('*WAI') |
||
| 1135 | return 0 |
||
| 1136 | |||
| 1137 | def query(self, question): |
||
| 1138 | """ Asks the device a 'question' and receive and return an answer from it. |
||
| 1139 | |||
| 1140 | @param string question: string containing the command |
||
| 1141 | |||
| 1142 | @return string: the answer of the device to the 'question' in a string |
||
| 1143 | """ |
||
| 1144 | return self.awg.query(question).strip().rstrip('\n').rstrip().strip('"') |
||
| 1145 | |||
| 1146 | def write(self, command): |
||
| 1147 | """ Sends a command string to the device. |
||
| 1148 | |||
| 1149 | @param string command: string containing the command |
||
| 1150 | |||
| 1151 | @return int: error code (0:OK, -1:error) |
||
| 1152 | """ |
||
| 1153 | bytes_written, enum_status_code = self.awg.write(command) |
||
| 1154 | return int(enum_status_code) |
||
| 1155 | |||
| 1156 | def new_sequence(self, name, steps): |
||
| 1157 | """ |
||
| 1158 | Generate a new sequence 'name' having 'steps' number of steps with immediate (async.) jump |
||
| 1159 | timing. |
||
| 1160 | |||
| 1161 | @param str name: Name of the sequence which should be generated |
||
| 1162 | @param int steps: Number of steps |
||
| 1163 | |||
| 1164 | @return int: error code |
||
| 1165 | """ |
||
| 1166 | if not self.has_sequence_mode(): |
||
| 1167 | self.log.error('Sequence generation in AWG not possible. ' |
||
| 1168 | 'Sequencer option not installed.') |
||
| 1169 | return -1 |
||
| 1170 | |||
| 1171 | if name in self.get_sequence_names(): |
||
| 1172 | self.delete_sequence(name) |
||
| 1173 | self.write('SLIS:SEQ:NEW "{0}", {1:d}'.format(name, steps)) |
||
| 1174 | self.write('SLIS:SEQ:EVEN:JTIM "{0}", IMM'.format(name)) |
||
| 1175 | return 0 |
||
| 1176 | |||
| 1177 | def sequence_set_waveform(self, sequence_name, waveform_name, step, track): |
||
| 1178 | """ |
||
| 1179 | Set the waveform 'waveform_name' to position 'step' in the sequence 'sequence_name'. |
||
| 1180 | |||
| 1181 | @param str sequence_name: Name of the sequence which should be editted |
||
| 1182 | @param str waveform_name: Name of the waveform which should be added |
||
| 1183 | @param int step: Position of the added waveform |
||
| 1184 | @param int track: track which should be editted |
||
| 1185 | |||
| 1186 | @return int: error code |
||
| 1187 | """ |
||
| 1188 | if not self.has_sequence_mode(): |
||
| 1189 | self.log.error('Direct sequence generation in AWG not possible. ' |
||
| 1190 | 'Sequencer option not installed.') |
||
| 1191 | return -1 |
||
| 1192 | |||
| 1193 | self.write('SLIS:SEQ:STEP{0:d}:TASS{1:d}:WAV "{2}", "{3}"'.format(step, |
||
| 1194 | track, |
||
| 1195 | sequence_name, |
||
| 1196 | waveform_name)) |
||
| 1197 | return 0 |
||
| 1198 | |||
| 1199 | def sequence_set_repetitions(self, sequence_name, step, repeat=1): |
||
| 1200 | """ |
||
| 1201 | Set the repetition counter of sequence "sequence_name" at step "step" to "repeat". |
||
| 1202 | A repeat value of -1 denotes infinite repetitions; 0 means the step is played once. |
||
| 1203 | |||
| 1204 | @param str sequence_name: Name of the sequence to be edited |
||
| 1205 | @param int step: Sequence step to be edited |
||
| 1206 | @param int repeat: number of repetitions. (-1: infinite, 0: once, 1: twice, ...) |
||
| 1207 | |||
| 1208 | @return int: error code |
||
| 1209 | """ |
||
| 1210 | if not self.has_sequence_mode(): |
||
| 1211 | self.log.error('Direct sequence generation in AWG not possible. ' |
||
| 1212 | 'Sequencer option not installed.') |
||
| 1213 | return -1 |
||
| 1214 | repeat = 'INF' if repeat < 0 else str(int(repeat)) |
||
| 1215 | self.write('SLIS:SEQ:STEP{0:d}:RCO "{1}", {2}'.format(step, sequence_name, repeat)) |
||
| 1216 | return 0 |
||
| 1217 | |||
| 1218 | def sequence_set_goto(self, sequence_name, step, goto=-1): |
||
| 1219 | """ |
||
| 1220 | |||
| 1221 | @param str sequence_name: |
||
| 1222 | @param int step: |
||
| 1223 | @param int goto: |
||
| 1224 | |||
| 1225 | @return int: error code |
||
| 1226 | """ |
||
| 1227 | if not self.has_sequence_mode(): |
||
| 1228 | self.log.error('Direct sequence generation in AWG not possible. ' |
||
| 1229 | 'Sequencer option not installed.') |
||
| 1230 | return -1 |
||
| 1231 | |||
| 1232 | goto = str(int(goto)) if seq_params['go_to'] > 0 else 'NEXT' |
||
| 1233 | self.write('SLIS:SEQ:STEP{0:d}:GOTO "{1}", {2}'.format(step, sequence_name, goto)) |
||
| 1234 | return 0 |
||
| 1235 | |||
| 1236 | def sequence_set_event_jump(self, sequence_name, step, trigger='OFF', jumpto=0): |
||
| 1237 | """ |
||
| 1238 | Set the event trigger input of the specified sequence step and the jump_to destination. |
||
| 1239 | |||
| 1240 | @param str sequence_name: Name of the sequence to be edited |
||
| 1241 | @param int step: Sequence step to be edited |
||
| 1242 | @param str trigger: Trigger string specifier. ('OFF', 'A', 'B' or 'INT') |
||
| 1243 | @param int jumpto: The sequence step to jump to. 0 or -1 is interpreted as next step |
||
| 1244 | |||
| 1245 | @return int: error code |
||
| 1246 | """ |
||
| 1247 | if not self.has_sequence_mode(): |
||
| 1248 | self.log.error('Direct sequence generation in AWG not possible. ' |
||
| 1249 | 'Sequencer option not installed.') |
||
| 1250 | return -1 |
||
| 1251 | |||
| 1252 | trigger = self.__event_triggers.get(trigger) |
||
| 1253 | if trigger is None: |
||
| 1254 | self.log.error('Invalid trigger specifier "{0}".\n' |
||
| 1255 | 'Please choose one of: "OFF", "A", "B", "INT"') |
||
| 1256 | return -1 |
||
| 1257 | |||
| 1258 | self.write('SLIS:SEQ:STEP{0:d}:EJIN "{1}", {2}'.format(step, sequence_name, trigger)) |
||
| 1259 | # Set event_jump_to if event trigger is enabled |
||
| 1260 | if trigger != 'OFF': |
||
| 1261 | jumpto = 'NEXT' if jumpto <= 0 else str(int(jumpto)) |
||
| 1262 | self.write('SLIS:SEQ:STEP{0:d}:EJUM "{1}", {2}'.format(step, sequence_name, jumpto)) |
||
| 1263 | return 0 |
||
| 1264 | |||
| 1265 | def sequence_set_wait_trigger(self, sequence_name, step, trigger='OFF'): |
||
| 1266 | """ |
||
| 1267 | Make a certain sequence step wait for a trigger to start playing. |
||
| 1268 | |||
| 1269 | @param str sequence_name: Name of the sequence to be edited |
||
| 1270 | @param int step: Sequence step to be edited |
||
| 1271 | @param str trigger: Trigger string specifier. ('OFF', 'A', 'B' or 'INT') |
||
| 1272 | |||
| 1273 | @return int: error code |
||
| 1274 | """ |
||
| 1275 | if not self.has_sequence_mode(): |
||
| 1276 | self.log.error('Direct sequence generation in AWG not possible. ' |
||
| 1277 | 'Sequencer option not installed.') |
||
| 1278 | return -1 |
||
| 1279 | |||
| 1280 | trigger = self.__event_triggers.get(trigger) |
||
| 1281 | if trigger is None: |
||
| 1282 | self.log.error('Invalid trigger specifier "{0}".\n' |
||
| 1283 | 'Please choose one of: "OFF", "A", "B", "INT"') |
||
| 1284 | return -1 |
||
| 1285 | |||
| 1286 | self.write('SLIS:SEQ:STEP{0:d}:WINP "{1}", {2}'.format(step, sequence_name, trigger)) |
||
| 1287 | return 0 |
||
| 1288 | |||
| 1289 | def sequence_set_flags(self, sequence_name, step, flags=None, trigger=False): |
||
| 1290 | """ |
||
| 1291 | Set the flags in "flags" to HIGH (trigger=False) during the sequence step or let the flags |
||
| 1292 | send out a fixed duration trigger pulse (trigger=True). All other flags are set to LOW. |
||
| 1293 | |||
| 1294 | @param str sequence_name: Name of the sequence to be edited |
||
| 1295 | @param int step: Sequence step to be edited |
||
| 1296 | @param list flags: List of flag specifiers to be active during this sequence step |
||
| 1297 | @param bool trigger: Whether the flag should be HIGH during the step (False) or send out a |
||
| 1298 | fixed length trigger pulse when starting to play the step (True). |
||
| 1299 | |||
| 1300 | @return int: error code |
||
| 1301 | """ |
||
| 1302 | if not self.has_sequence_mode(): |
||
| 1303 | self.log.error('Direct sequence generation in AWG not possible. ' |
||
| 1304 | 'Sequencer option not installed.') |
||
| 1305 | return -1 |
||
| 1306 | |||
| 1307 | for flag in ('A', 'B', 'C', 'D'): |
||
| 1308 | if flag in flags: |
||
| 1309 | state = 'PULS' if trigger else 'HIGH' |
||
| 1310 | else: |
||
| 1311 | state = 'LOW' |
||
| 1312 | |||
| 1313 | self.write('SLIS:SEQ:STEP{0:d}:TFL1:{2}FL "{3}",{4}'.format(step, |
||
| 1314 | flag, |
||
| 1315 | sequence_name, |
||
| 1316 | state)) |
||
| 1317 | return 0 |
||
| 1318 | |||
| 1319 | def make_sequence_continuous(self, sequencename): |
||
| 1320 | """ |
||
| 1321 | Usually after a run of a sequence the output stops. Many times it is desired that the full |
||
| 1322 | sequence is repeated many times. This is achieved here by setting the 'jump to' value of |
||
| 1323 | the last element to 'First' |
||
| 1324 | |||
| 1325 | @param sequencename: Name of the sequence which should be made continous |
||
| 1326 | |||
| 1327 | @return int last_step: The step number which 'jump to' has to be set to 'First' |
||
| 1328 | """ |
||
| 1329 | if not self.has_sequence_mode(): |
||
| 1330 | self.log.error('Direct sequence generation in AWG not possible. ' |
||
| 1331 | 'Sequencer option not installed.') |
||
| 1332 | return -1 |
||
| 1333 | |||
| 1334 | last_step = int(self.query('SLIS:SEQ:LENG? "{0}"'.format(sequencename))) |
||
| 1335 | err = self.sequence_set_goto(sequencename, last_step, 1) |
||
| 1336 | if err < 0: |
||
| 1337 | last_step = err |
||
| 1338 | return last_step |
||
| 1339 | |||
| 1340 | def force_jump_sequence(self, final_step, channel=1): |
||
| 1341 | """ |
||
| 1342 | This command forces the sequencer to jump to the specified step per channel. A |
||
| 1343 | force jump does not require a trigger event to execute the jump. |
||
| 1344 | For two channel instruments, if both channels are playing the same sequence, then |
||
| 1345 | both channels jump simultaneously to the same sequence step. |
||
| 1346 | |||
| 1347 | @param channel: determines the channel number. If omitted, interpreted as 1 |
||
| 1348 | @param final_step: Step to jump to. Possible options are |
||
| 1349 | FIRSt - This enables the sequencer to jump to first step in the sequence. |
||
| 1350 | CURRent - This enables the sequencer to jump to the current sequence step, |
||
| 1351 | essentially starting the current step over. |
||
| 1352 | LAST - This enables the sequencer to jump to the last step in the sequence. |
||
| 1353 | END - This enables the sequencer to go to the end and play 0 V until play is |
||
| 1354 | stopped. |
||
| 1355 | <NR1> - This enables the sequencer to jump to the specified step, where the |
||
| 1356 | value is between 1 and 16383. |
||
| 1357 | |||
| 1358 | """ |
||
| 1359 | self.write('SOURCE{0:d}:JUMP:FORCE {1}'.format(channel, final_step)) |
||
| 1360 | return |
||
| 1361 | |||
| 1362 | def _get_all_channels(self): |
||
| 1363 | """ |
||
| 1364 | Helper method to return a sorted list of all technically available channel descriptors |
||
| 1365 | (e.g. ['a_ch1', 'a_ch2', 'd_ch1', 'd_ch2']) |
||
| 1366 | |||
| 1367 | @return list: Sorted list of channels |
||
| 1368 | """ |
||
| 1369 | configs = self.get_constraints().activation_config |
||
| 1370 | if 'all' in configs: |
||
| 1371 | largest_config = configs['all'] |
||
| 1372 | else: |
||
| 1373 | largest_config = list(configs.values())[0] |
||
| 1374 | for config in configs.values(): |
||
| 1375 | if len(largest_config) < len(config): |
||
| 1376 | largest_config = config |
||
| 1377 | return sorted(largest_config) |
||
| 1378 | |||
| 1379 | def _get_all_analog_channels(self): |
||
| 1380 | """ |
||
| 1381 | Helper method to return a sorted list of all technically available analog channel |
||
| 1382 | descriptors (e.g. ['a_ch1', 'a_ch2']) |
||
| 1383 | |||
| 1384 | @return list: Sorted list of analog channels |
||
| 1385 | """ |
||
| 1386 | return [chnl for chnl in self._get_all_channels() if chnl.startswith('a')] |
||
| 1387 | |||
| 1388 | def _get_all_digital_channels(self): |
||
| 1389 | """ |
||
| 1390 | Helper method to return a sorted list of all technically available digital channel |
||
| 1391 | descriptors (e.g. ['d_ch1', 'd_ch2']) |
||
| 1392 | |||
| 1393 | @return list: Sorted list of digital channels |
||
| 1394 | """ |
||
| 1395 | return [chnl for chnl in self._get_all_channels() if chnl.startswith('d')] |
||
| 1396 | |||
| 1397 | def _is_output_on(self): |
||
| 1398 | """ |
||
| 1399 | Aks the AWG if the output is enabled, i.e. if the AWG is running |
||
| 1400 | |||
| 1401 | @return: bool, (True: output on, False: output off) |
||
| 1402 | """ |
||
| 1403 | return bool(int(self.query('AWGC:RST?'))) |
||
| 1404 | |||
| 1405 | View Code Duplication | def _get_filenames_on_device(self): |
|
| 1406 | """ |
||
| 1407 | |||
| 1408 | @return list: filenames found in <ftproot>\\waves |
||
| 1409 | """ |
||
| 1410 | filename_list = list() |
||
| 1411 | with FTP(self._ip_address) as ftp: |
||
| 1412 | ftp.login(user=self._username, passwd=self._password) |
||
| 1413 | ftp.cwd(self.ftp_working_dir) |
||
| 1414 | # get only the files from the dir and skip possible directories |
||
| 1415 | log = list() |
||
| 1416 | ftp.retrlines('LIST', callback=log.append) |
||
| 1417 | for line in log: |
||
| 1418 | if '<DIR>' not in line: |
||
| 1419 | # that is how a potential line is looking like: |
||
| 1420 | # '05-10-16 05:22PM 292 SSR aom adjusted.seq' |
||
| 1421 | # The first part consists of the date information. Remove this information and |
||
| 1422 | # separate the first number, which indicates the size of the file. This is |
||
| 1423 | # necessary if the filename contains whitespaces. |
||
| 1424 | size_filename = line[18:].lstrip() |
||
| 1425 | # split after the first appearing whitespace and take the rest as filename. |
||
| 1426 | # Remove for safety all trailing and leading whitespaces: |
||
| 1427 | filename = size_filename.split(' ', 1)[1].strip() |
||
| 1428 | filename_list.append(filename) |
||
| 1429 | return filename_list |
||
| 1430 | |||
| 1431 | def _delete_file(self, filename): |
||
| 1432 | """ |
||
| 1433 | |||
| 1434 | @param str filename: |
||
| 1435 | """ |
||
| 1436 | if filename in self._get_filenames_on_device(): |
||
| 1437 | with FTP(self._ip_address) as ftp: |
||
| 1438 | ftp.login(user=self._username, passwd=self._password) |
||
| 1439 | ftp.cwd(self.ftp_working_dir) |
||
| 1440 | ftp.delete(filename) |
||
| 1441 | return |
||
| 1442 | |||
| 1443 | View Code Duplication | def _send_file(self, filename): |
|
| 1444 | """ |
||
| 1445 | |||
| 1446 | @param filename: |
||
| 1447 | @return: |
||
| 1448 | """ |
||
| 1449 | # check input |
||
| 1450 | if not filename: |
||
| 1451 | self.log.error('No filename provided for file upload to awg!\nCommand will be ignored.') |
||
| 1452 | return -1 |
||
| 1453 | |||
| 1454 | filepath = os.path.join(self._tmp_work_dir, filename) |
||
| 1455 | if not os.path.isfile(filepath): |
||
| 1456 | self.log.error('No file "{0}" found in "{1}". Unable to upload!' |
||
| 1457 | ''.format(filename, self._tmp_work_dir)) |
||
| 1458 | return -1 |
||
| 1459 | |||
| 1460 | # Delete old file on AWG by the same filename |
||
| 1461 | self._delete_file(filename) |
||
| 1462 | |||
| 1463 | # Transfer file |
||
| 1464 | with FTP(self._ip_address) as ftp: |
||
| 1465 | ftp.login(user=self._username, passwd=self._password) |
||
| 1466 | ftp.cwd(self.ftp_working_dir) |
||
| 1467 | with open(filepath, 'rb') as file: |
||
| 1468 | ftp.storbinary('STOR ' + filename, file) |
||
| 1469 | return 0 |
||
| 1470 | |||
| 1471 | def _write_wfmx(self, filename, analog_samples, marker_bytes, is_first_chunk, is_last_chunk, |
||
| 1472 | total_number_of_samples): |
||
| 1473 | """ |
||
| 1474 | Appends a sampled chunk of a whole waveform to a wfmx-file. Create the file |
||
| 1475 | if it is the first chunk. |
||
| 1476 | If both flags (is_first_chunk, is_last_chunk) are set to TRUE it means |
||
| 1477 | that the whole ensemble is written as a whole in one big chunk. |
||
| 1478 | |||
| 1479 | @param name: string, represents the name of the sampled ensemble |
||
| 1480 | @param analog_samples: dict containing float32 numpy ndarrays, contains the |
||
| 1481 | samples for the analog channels that |
||
| 1482 | are to be written by this function call. |
||
| 1483 | @param marker_bytes: np.ndarray containing bool numpy ndarrays, contains the samples |
||
| 1484 | for the digital channels that |
||
| 1485 | are to be written by this function call. |
||
| 1486 | @param total_number_of_samples: int, The total number of samples in the |
||
| 1487 | entire waveform. Has to be known in advance. |
||
| 1488 | @param is_first_chunk: bool, indicates if the current chunk is the |
||
| 1489 | first write to this file. |
||
| 1490 | @param is_last_chunk: bool, indicates if the current chunk is the last |
||
| 1491 | write to this file. |
||
| 1492 | |||
| 1493 | @return list: the list contains the string names of the created files for the passed |
||
| 1494 | presampled arrays |
||
| 1495 | """ |
||
| 1496 | # The memory overhead of the tmp file write/read process in bytes. Only used if wfmx file is |
||
| 1497 | # written in chunks in order to avoid excessive memory usage. |
||
| 1498 | tmp_bytes_overhead = 16777216 # 16 MB |
||
| 1499 | |||
| 1500 | if not filename.endswith('.wfmx'): |
||
| 1501 | filename += '.wfmx' |
||
| 1502 | wfmx_path = os.path.join(self._tmp_work_dir, filename) |
||
| 1503 | tmp_path = os.path.join(self._tmp_work_dir, 'digital_tmp.bin') |
||
| 1504 | |||
| 1505 | # if it is the first chunk, create the .WFMX file with header. |
||
| 1506 | if is_first_chunk: |
||
| 1507 | # create header |
||
| 1508 | header = self._create_xml_header(total_number_of_samples, marker_bytes is not None) |
||
| 1509 | # write header |
||
| 1510 | with open(wfmx_path, 'wb') as wfmxfile: |
||
| 1511 | wfmxfile.write(header) |
||
| 1512 | # Check if a tmp digital samples file is present and delete it if necessary. |
||
| 1513 | if os.path.isfile(tmp_path): |
||
| 1514 | os.remove(tmp_path) |
||
| 1515 | |||
| 1516 | # append analog samples to the .WFMX file. |
||
| 1517 | # Write digital samples in temporary file if not the entire samples are passed at once. |
||
| 1518 | with open(wfmx_path, 'ab') as wfmxfile: |
||
| 1519 | # append analog samples in binary format. One sample is 4 bytes (np.float32). |
||
| 1520 | wfmxfile.write(analog_samples) |
||
| 1521 | |||
| 1522 | # Write digital samples to tmp file if chunkwise writing is used and it's not the last chunk |
||
| 1523 | if not is_last_chunk and marker_bytes is not None: |
||
| 1524 | with open(tmp_path, 'ab') as tmp_file: |
||
| 1525 | tmp_file.write(marker_bytes) |
||
| 1526 | |||
| 1527 | # If this is the last chunk, write digital samples from tmp file to wfmx file (if present) |
||
| 1528 | # and also append the currently passed digital samples to wfmx file. |
||
| 1529 | # Read from tmp file in chunks of tmp_bytes_overhead in order to avoid too much memory |
||
| 1530 | # overhead. |
||
| 1531 | if is_last_chunk and marker_bytes is not None: |
||
| 1532 | with open(wfmx_path, 'ab') as wfmxfile: |
||
| 1533 | # Copy over digital samples from tmp file. Delete tmp file afterwards. |
||
| 1534 | if os.path.isfile(tmp_path): |
||
| 1535 | with open(tmp_path, 'rb') as tmp_file: |
||
| 1536 | while True: |
||
| 1537 | tmp = tmp_file.read(tmp_bytes_overhead) |
||
| 1538 | if not tmp: |
||
| 1539 | break |
||
| 1540 | wfmxfile.write(tmp) |
||
| 1541 | os.remove(tmp_path) |
||
| 1542 | # Append current digital samples array to wfmx file |
||
| 1543 | wfmxfile.write(marker_bytes) |
||
| 1544 | return |
||
| 1545 | |||
| 1546 | def _create_xml_header(self, number_of_samples, markers_active): |
||
| 1547 | """ |
||
| 1548 | This function creates an xml file containing the header for the wfmx-file format using |
||
| 1549 | etree. |
||
| 1550 | """ |
||
| 1551 | hdr = ET.Element('DataFile', offset='XXXXXXXXX', version='0.1') |
||
| 1552 | dsc = ET.SubElement(hdr, 'DataSetsCollection', xmlns='http://www.tektronix.com') |
||
| 1553 | datasets = ET.SubElement(dsc, 'DataSets', version='1', xmlns='http://www.tektronix.com') |
||
| 1554 | datadesc = ET.SubElement(datasets, 'DataDescription') |
||
| 1555 | sub_elem = ET.SubElement(datadesc, 'NumberSamples') |
||
| 1556 | sub_elem.text = str(int(number_of_samples)) |
||
| 1557 | sub_elem = ET.SubElement(datadesc, 'SamplesType') |
||
| 1558 | sub_elem.text = 'AWGWaveformSample' |
||
| 1559 | sub_elem = ET.SubElement(datadesc, 'MarkersIncluded') |
||
| 1560 | sub_elem.text = 'true' if markers_active else 'false' |
||
| 1561 | sub_elem = ET.SubElement(datadesc, 'NumberFormat') |
||
| 1562 | sub_elem.text = 'Single' |
||
| 1563 | sub_elem = ET.SubElement(datadesc, 'Endian') |
||
| 1564 | sub_elem.text = 'Little' |
||
| 1565 | sub_elem = ET.SubElement(datadesc, 'Timestamp') |
||
| 1566 | sub_elem.text = '2014-10-28T12:59:52.9004865-07:00' |
||
| 1567 | prodspec = ET.SubElement(datasets, 'ProductSpecific', name='') |
||
| 1568 | sub_elem = ET.SubElement(prodspec, 'ReccSamplingRate', units='Hz') |
||
| 1569 | sub_elem.text = str(self.get_sample_rate()) |
||
| 1570 | sub_elem = ET.SubElement(prodspec, 'ReccAmplitude', units='Volts') |
||
| 1571 | sub_elem.text = '0.5' |
||
| 1572 | sub_elem = ET.SubElement(prodspec, 'ReccOffset', units='Volts') |
||
| 1573 | sub_elem.text = '0' |
||
| 1574 | sub_elem = ET.SubElement(prodspec, 'SerialNumber') |
||
| 1575 | sub_elem = ET.SubElement(prodspec, 'SoftwareVersion') |
||
| 1576 | sub_elem.text = '4.0.0075' |
||
| 1577 | sub_elem = ET.SubElement(prodspec, 'UserNotes') |
||
| 1578 | sub_elem = ET.SubElement(prodspec, 'OriginalBitDepth') |
||
| 1579 | sub_elem.text = 'Floating' |
||
| 1580 | sub_elem = ET.SubElement(prodspec, 'Thumbnail') |
||
| 1581 | sub_elem = ET.SubElement(prodspec, 'CreatorProperties', name='Basic Waveform') |
||
| 1582 | sub_elem = ET.SubElement(hdr, 'Setup') |
||
| 1583 | |||
| 1584 | xml_header = ET.tostring(hdr, encoding='unicode') |
||
| 1585 | xml_header = xml_header.replace('><', '>\r\n<') |
||
| 1586 | |||
| 1587 | # Calculates the length of the header and replace placeholder with actual number |
||
| 1588 | xml_header = xml_header.replace('XXXXXXXXX', str(len(xml_header)).zfill(9)) |
||
| 1589 | return xml_header |
||
| 1590 |