Total Complexity | 48 |
Total Lines | 875 |
Duplicated Lines | 66.17 % |
Changes | 2 | ||
Bugs | 0 | Features | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like BasicPredefinedGenerator often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
41 | class BasicPredefinedGenerator(PredefinedGeneratorBase): |
||
42 | """ |
||
43 | |||
44 | """ |
||
45 | def __init__(self, *args, **kwargs): |
||
46 | super().__init__(*args, **kwargs) |
||
47 | |||
48 | View Code Duplication | def generate_laser_on(self, name='laser_on', length=3.0e-6): |
|
|
|||
49 | """ Generates Laser on. |
||
50 | |||
51 | @param str name: Name of the PulseBlockEnsemble |
||
52 | @param float length: laser duration in seconds |
||
53 | |||
54 | @return object: the generated PulseBlockEnsemble object. |
||
55 | """ |
||
56 | created_blocks = list() |
||
57 | created_ensembles = list() |
||
58 | created_sequences = list() |
||
59 | |||
60 | # create the laser element |
||
61 | laser_element = self._get_laser_element(length=length, increment=0) |
||
62 | # Create block and append to created_blocks list |
||
63 | laser_block = PulseBlock(name=name) |
||
64 | laser_block.append(laser_element) |
||
65 | created_blocks.append(laser_block) |
||
66 | # Create block ensemble and append to created_ensembles list |
||
67 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=False) |
||
68 | block_ensemble.append((laser_block.name, 0)) |
||
69 | created_ensembles.append(block_ensemble) |
||
70 | return created_blocks, created_ensembles, created_sequences |
||
71 | |||
72 | def generate_laser_mw_on(self, name='laser_mw_on', length=3.0e-6): |
||
73 | """ General generation method for laser on and microwave on generation. |
||
74 | |||
75 | @param string name: Name of the PulseBlockEnsemble to be generated |
||
76 | @param float length: Length of the PulseBlockEnsemble in seconds |
||
77 | |||
78 | @return object: the generated PulseBlockEnsemble object. |
||
79 | """ |
||
80 | created_blocks = list() |
||
81 | created_ensembles = list() |
||
82 | created_sequences = list() |
||
83 | |||
84 | # create the laser_mw element |
||
85 | laser_mw_element = self._get_mw_laser_element(length=length, |
||
86 | increment=0, |
||
87 | amp=self.microwave_amplitude, |
||
88 | freq=self.microwave_frequency, |
||
89 | phase=0) |
||
90 | # Create block and append to created_blocks list |
||
91 | laser_mw_block = PulseBlock(name=name) |
||
92 | laser_mw_block.append(laser_mw_element) |
||
93 | created_blocks.append(laser_mw_block) |
||
94 | # Create block ensemble and append to created_ensembles list |
||
95 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=False) |
||
96 | block_ensemble.append((laser_mw_block.name, 0)) |
||
97 | created_ensembles.append(block_ensemble) |
||
98 | return created_blocks, created_ensembles, created_sequences |
||
99 | |||
100 | View Code Duplication | def generate_idle(self, name='idle', length=3.0e-6): |
|
101 | """ Generate just a simple idle ensemble. |
||
102 | |||
103 | @param str name: Name of the PulseBlockEnsemble to be generated |
||
104 | @param float length: Length of the PulseBlockEnsemble in seconds |
||
105 | |||
106 | @return object: the generated PulseBlockEnsemble object. |
||
107 | """ |
||
108 | created_blocks = list() |
||
109 | created_ensembles = list() |
||
110 | created_sequences = list() |
||
111 | |||
112 | # create the laser_mw element |
||
113 | idle_element = self._get_idle_element(length=length, increment=0) |
||
114 | # Create block and append to created_blocks list |
||
115 | idle_block = PulseBlock(name=name) |
||
116 | idle_block.append(idle_element) |
||
117 | created_blocks.append(idle_block) |
||
118 | # Create block ensemble and append to created_ensembles list |
||
119 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=False) |
||
120 | block_ensemble.append((idle_block.name, 0)) |
||
121 | created_ensembles.append(block_ensemble) |
||
122 | return created_blocks, created_ensembles, created_sequences |
||
123 | |||
124 | View Code Duplication | def generate_rabi(self, name='rabi', tau_start=10.0e-9, tau_step=10.0e-9, number_of_taus=50): |
|
125 | """ |
||
126 | |||
127 | """ |
||
128 | created_blocks = list() |
||
129 | created_ensembles = list() |
||
130 | created_sequences = list() |
||
131 | |||
132 | # get tau array for measurement ticks |
||
133 | tau_array = tau_start + np.arange(number_of_taus) * tau_step |
||
134 | |||
135 | # create the laser_mw element |
||
136 | mw_element = self._get_mw_element(length=tau_start, |
||
137 | increment=tau_step, |
||
138 | amp=self.microwave_amplitude, |
||
139 | freq=self.microwave_frequency, |
||
140 | phase=0) |
||
141 | waiting_element = self._get_idle_element(length=self.wait_time, |
||
142 | increment=0) |
||
143 | laser_element = self._get_laser_gate_element(length=self.laser_length, |
||
144 | increment=0) |
||
145 | delay_element = self._get_delay_gate_element() |
||
146 | |||
147 | # Create block and append to created_blocks list |
||
148 | rabi_block = PulseBlock(name=name) |
||
149 | rabi_block.append(mw_element) |
||
150 | rabi_block.append(laser_element) |
||
151 | rabi_block.append(delay_element) |
||
152 | rabi_block.append(waiting_element) |
||
153 | created_blocks.append(rabi_block) |
||
154 | |||
155 | # Create block ensemble |
||
156 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=False) |
||
157 | block_ensemble.append((rabi_block.name, number_of_taus - 1)) |
||
158 | |||
159 | # Create and append sync trigger block if needed |
||
160 | if self.sync_channel: |
||
161 | sync_block = PulseBlock(name='sync_trigger') |
||
162 | sync_block.append(self._get_sync_element()) |
||
163 | created_blocks.append(sync_block) |
||
164 | block_ensemble.append((sync_block.name, 0)) |
||
165 | |||
166 | # add metadata to invoke settings later on |
||
167 | block_ensemble.measurement_information['alternating'] = False |
||
168 | block_ensemble.measurement_information['laser_ignore_list'] = list() |
||
169 | block_ensemble.measurement_information['controlled_variable'] = tau_array |
||
170 | block_ensemble.measurement_information['units'] = ('s', '') |
||
171 | block_ensemble.measurement_information['number_of_lasers'] = number_of_taus |
||
172 | block_ensemble.measurement_information['counting_length'] = self._get_ensemble_count_length( |
||
173 | ensemble=block_ensemble, created_blocks=created_blocks) |
||
174 | |||
175 | # Append ensemble to created_ensembles list |
||
176 | created_ensembles.append(block_ensemble) |
||
177 | return created_blocks, created_ensembles, created_sequences |
||
178 | |||
179 | View Code Duplication | def generate_pulsedodmr(self, name='pulsedODMR', freq_start=2870.0e6, freq_step=0.2e6, |
|
180 | num_of_points=50): |
||
181 | """ |
||
182 | |||
183 | """ |
||
184 | created_blocks = list() |
||
185 | created_ensembles = list() |
||
186 | created_sequences = list() |
||
187 | |||
188 | # Create frequency array |
||
189 | freq_array = freq_start + np.arange(num_of_points) * freq_step |
||
190 | |||
191 | # create the elements |
||
192 | waiting_element = self._get_idle_element(length=self.wait_time, |
||
193 | increment=0) |
||
194 | laser_element = self._get_laser_gate_element(length=self.laser_length, |
||
195 | increment=0) |
||
196 | delay_element = self._get_delay_gate_element() |
||
197 | |||
198 | # Create block and append to created_blocks list |
||
199 | pulsedodmr_block = PulseBlock(name=name) |
||
200 | for mw_freq in freq_array: |
||
201 | mw_element = self._get_mw_element(length=self.rabi_period / 2, |
||
202 | increment=0, |
||
203 | amp=self.microwave_amplitude, |
||
204 | freq=mw_freq, |
||
205 | phase=0) |
||
206 | pulsedodmr_block.append(mw_element) |
||
207 | pulsedodmr_block.append(laser_element) |
||
208 | pulsedodmr_block.append(delay_element) |
||
209 | pulsedodmr_block.append(waiting_element) |
||
210 | created_blocks.append(pulsedodmr_block) |
||
211 | |||
212 | # Create block ensemble |
||
213 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=False) |
||
214 | block_ensemble.append((pulsedodmr_block.name, 0)) |
||
215 | |||
216 | # Create and append sync trigger block if needed |
||
217 | if self.sync_channel: |
||
218 | sync_block = PulseBlock(name='sync_trigger') |
||
219 | sync_block.append(self._get_sync_element()) |
||
220 | created_blocks.append(sync_block) |
||
221 | block_ensemble.append((sync_block.name, 0)) |
||
222 | |||
223 | # add metadata to invoke settings later on |
||
224 | block_ensemble.measurement_information['alternating'] = False |
||
225 | block_ensemble.measurement_information['laser_ignore_list'] = list() |
||
226 | block_ensemble.measurement_information['controlled_variable'] = freq_array |
||
227 | block_ensemble.measurement_information['units'] = ('Hz', '') |
||
228 | block_ensemble.measurement_information['number_of_lasers'] = num_of_points |
||
229 | block_ensemble.measurement_information['counting_length'] = self._get_ensemble_count_length( |
||
230 | ensemble=block_ensemble, created_blocks=created_blocks) |
||
231 | |||
232 | # append ensemble to created ensembles |
||
233 | created_ensembles.append(block_ensemble) |
||
234 | return created_blocks, created_ensembles, created_sequences |
||
235 | |||
236 | def generate_ramsey(self, name='ramsey', tau_start=1.0e-6, tau_step=1.0e-6, num_of_points=50, |
||
237 | alternating=True): |
||
238 | """ |
||
239 | |||
240 | """ |
||
241 | created_blocks = list() |
||
242 | created_ensembles = list() |
||
243 | created_sequences = list() |
||
244 | |||
245 | # get tau array for measurement ticks |
||
246 | tau_array = tau_start + np.arange(num_of_points) * tau_step |
||
247 | |||
248 | # create the elements |
||
249 | waiting_element = self._get_idle_element(length=self.wait_time, |
||
250 | increment=0) |
||
251 | laser_element = self._get_laser_gate_element(length=self.laser_length, |
||
252 | increment=0) |
||
253 | delay_element = self._get_delay_gate_element() |
||
254 | pihalf_element = self._get_mw_element(length=self.rabi_period / 4, |
||
255 | increment=0, |
||
256 | amp=self.microwave_amplitude, |
||
257 | freq=self.microwave_frequency, |
||
258 | phase=0) |
||
259 | # Use a 180 deg phase shiftet pulse as 3pihalf pulse if microwave channel is analog |
||
260 | if self.microwave_channel.startswith('a'): |
||
261 | pi3half_element = self._get_mw_element(length=self.rabi_period / 4, |
||
262 | increment=0, |
||
263 | amp=self.microwave_amplitude, |
||
264 | freq=self.microwave_frequency, |
||
265 | phase=180) |
||
266 | else: |
||
267 | pi3half_element = self._get_mw_element(length=3 * self.rabi_period / 4, |
||
268 | increment=0, |
||
269 | amp=self.microwave_amplitude, |
||
270 | freq=self.microwave_frequency, |
||
271 | phase=0) |
||
272 | tau_element = self._get_idle_element(length=tau_start, increment=tau_step) |
||
273 | |||
274 | # Create block and append to created_blocks list |
||
275 | ramsey_block = PulseBlock(name=name) |
||
276 | ramsey_block.append(pihalf_element) |
||
277 | ramsey_block.append(tau_element) |
||
278 | ramsey_block.append(pihalf_element) |
||
279 | ramsey_block.append(laser_element) |
||
280 | ramsey_block.append(delay_element) |
||
281 | ramsey_block.append(waiting_element) |
||
282 | if alternating: |
||
283 | ramsey_block.append(pihalf_element) |
||
284 | ramsey_block.append(tau_element) |
||
285 | ramsey_block.append(pi3half_element) |
||
286 | ramsey_block.append(laser_element) |
||
287 | ramsey_block.append(delay_element) |
||
288 | ramsey_block.append(waiting_element) |
||
289 | created_blocks.append(ramsey_block) |
||
290 | |||
291 | # Create block ensemble |
||
292 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=True) |
||
293 | block_ensemble.append((ramsey_block.name, num_of_points - 1)) |
||
294 | |||
295 | # Create and append sync trigger block if needed |
||
296 | if self.sync_channel: |
||
297 | sync_block = PulseBlock(name='sync_trigger') |
||
298 | sync_block.append(self._get_sync_element()) |
||
299 | created_blocks.append(sync_block) |
||
300 | block_ensemble.append((sync_block.name, 0)) |
||
301 | |||
302 | # add metadata to invoke settings later on |
||
303 | number_of_lasers = 2 * num_of_points if alternating else num_of_points |
||
304 | block_ensemble.measurement_information['alternating'] = alternating |
||
305 | block_ensemble.measurement_information['laser_ignore_list'] = list() |
||
306 | block_ensemble.measurement_information['controlled_variable'] = tau_array |
||
307 | block_ensemble.measurement_information['units'] = ('s', '') |
||
308 | block_ensemble.measurement_information['number_of_lasers'] = number_of_lasers |
||
309 | block_ensemble.measurement_information['counting_length'] = self._get_ensemble_count_length( |
||
310 | ensemble=block_ensemble, created_blocks=created_blocks) |
||
311 | |||
312 | # append ensemble to created ensembles |
||
313 | created_ensembles.append(block_ensemble) |
||
314 | return created_blocks, created_ensembles, created_sequences |
||
315 | |||
316 | def generate_hahnecho(self, name='hahn_echo', tau_start=1.0e-6, tau_step=1.0e-6, |
||
317 | num_of_points=50, alternating=True): |
||
318 | """ |
||
319 | |||
320 | """ |
||
321 | created_blocks = list() |
||
322 | created_ensembles = list() |
||
323 | created_sequences = list() |
||
324 | |||
325 | # get tau array for measurement ticks |
||
326 | tau_array = tau_start + np.arange(num_of_points) * tau_step |
||
327 | |||
328 | # create the elements |
||
329 | waiting_element = self._get_idle_element(length=self.wait_time, |
||
330 | increment=0) |
||
331 | laser_element = self._get_laser_gate_element(length=self.laser_length, |
||
332 | increment=0) |
||
333 | delay_element = self._get_delay_gate_element() |
||
334 | pihalf_element = self._get_mw_element(length=self.rabi_period / 4, |
||
335 | increment=0, |
||
336 | amp=self.microwave_amplitude, |
||
337 | freq=self.microwave_frequency, |
||
338 | phase=0) |
||
339 | pi_element = self._get_mw_element(length=self.rabi_period / 2, |
||
340 | increment=0, |
||
341 | amp=self.microwave_amplitude, |
||
342 | freq=self.microwave_frequency, |
||
343 | phase=0) |
||
344 | # Use a 180 deg phase shiftet pulse as 3pihalf pulse if microwave channel is analog |
||
345 | if self.microwave_channel.startswith('a'): |
||
346 | pi3half_element = self._get_mw_element(length=self.rabi_period / 4, |
||
347 | increment=0, |
||
348 | amp=self.microwave_amplitude, |
||
349 | freq=self.microwave_frequency, |
||
350 | phase=180) |
||
351 | else: |
||
352 | pi3half_element = self._get_mw_element(length=3 * self.rabi_period / 4, |
||
353 | increment=0, |
||
354 | amp=self.microwave_amplitude, |
||
355 | freq=self.microwave_frequency, |
||
356 | phase=0) |
||
357 | tau_element = self._get_idle_element(length=tau_start, increment=tau_step) |
||
358 | |||
359 | # Create block and append to created_blocks list |
||
360 | hahn_block = PulseBlock(name=name) |
||
361 | hahn_block.append(pihalf_element) |
||
362 | hahn_block.append(tau_element) |
||
363 | hahn_block.append(pi_element) |
||
364 | hahn_block.append(tau_element) |
||
365 | hahn_block.append(pihalf_element) |
||
366 | hahn_block.append(laser_element) |
||
367 | hahn_block.append(delay_element) |
||
368 | hahn_block.append(waiting_element) |
||
369 | if alternating: |
||
370 | hahn_block.append(pihalf_element) |
||
371 | hahn_block.append(tau_element) |
||
372 | hahn_block.append(pi_element) |
||
373 | hahn_block.append(tau_element) |
||
374 | hahn_block.append(pi3half_element) |
||
375 | hahn_block.append(laser_element) |
||
376 | hahn_block.append(delay_element) |
||
377 | hahn_block.append(waiting_element) |
||
378 | created_blocks.append(hahn_block) |
||
379 | |||
380 | # Create block ensemble |
||
381 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=True) |
||
382 | block_ensemble.append((hahn_block.name, num_of_points - 1)) |
||
383 | |||
384 | # Create and append sync trigger block if needed |
||
385 | if self.sync_channel: |
||
386 | sync_block = PulseBlock(name='sync_trigger') |
||
387 | sync_block.append(self._get_sync_element()) |
||
388 | created_blocks.append(sync_block) |
||
389 | block_ensemble.append((sync_block.name, 0)) |
||
390 | |||
391 | # add metadata to invoke settings later on |
||
392 | number_of_lasers = 2 * num_of_points if alternating else num_of_points |
||
393 | block_ensemble.measurement_information['alternating'] = alternating |
||
394 | block_ensemble.measurement_information['laser_ignore_list'] = list() |
||
395 | block_ensemble.measurement_information['controlled_variable'] = tau_array |
||
396 | block_ensemble.measurement_information['units'] = ('s', '') |
||
397 | block_ensemble.measurement_information['number_of_lasers'] = number_of_lasers |
||
398 | block_ensemble.measurement_information['counting_length'] = self._get_ensemble_count_length( |
||
399 | ensemble=block_ensemble, created_blocks=created_blocks) |
||
400 | |||
401 | # append ensemble to created ensembles |
||
402 | created_ensembles.append(block_ensemble) |
||
403 | return created_blocks, created_ensembles, created_sequences |
||
404 | |||
405 | View Code Duplication | def generate_HHamp(self, name='hh_amp', spinlock_length=20e-6, amp_start=0.05, amp_step=0.01, |
|
406 | num_of_points=50): |
||
407 | """ |
||
408 | |||
409 | """ |
||
410 | created_blocks = list() |
||
411 | created_ensembles = list() |
||
412 | created_sequences = list() |
||
413 | |||
414 | # get amplitude array for measurement ticks |
||
415 | amp_array = amp_start + np.arange(num_of_points) * amp_step |
||
416 | |||
417 | # create the elements |
||
418 | waiting_element = self._get_idle_element(length=self.wait_time, increment=0) |
||
419 | laser_element = self._get_laser_gate_element(length=self.laser_length, increment=0) |
||
420 | delay_element = self._get_delay_gate_element() |
||
421 | pihalf_element = self._get_mw_element(length=self.rabi_period / 4, |
||
422 | increment=0, |
||
423 | amp=self.microwave_amplitude, |
||
424 | freq=self.microwave_frequency, |
||
425 | phase=0) |
||
426 | # Use a 180 deg phase shiftet pulse as 3pihalf pulse if microwave channel is analog |
||
427 | if self.microwave_channel.startswith('a'): |
||
428 | pi3half_element = self._get_mw_element(length=self.rabi_period / 4, |
||
429 | increment=0, |
||
430 | amp=self.microwave_amplitude, |
||
431 | freq=self.microwave_frequency, |
||
432 | phase=180) |
||
433 | else: |
||
434 | pi3half_element = self._get_mw_element(length=3 * self.rabi_period / 4, |
||
435 | increment=0, |
||
436 | amp=self.microwave_amplitude, |
||
437 | freq=self.microwave_frequency, |
||
438 | phase=0) |
||
439 | |||
440 | # Create block and append to created_blocks list |
||
441 | hhamp_block = PulseBlock(name=name) |
||
442 | for sl_amp in amp_array: |
||
443 | sl_element = self._get_mw_element(length=spinlock_length, |
||
444 | increment=0, |
||
445 | amp=sl_amp, |
||
446 | freq=self.microwave_frequency, |
||
447 | phase=90) |
||
448 | hhamp_block.append(pihalf_element) |
||
449 | hhamp_block.append(sl_element) |
||
450 | hhamp_block.append(pihalf_element) |
||
451 | hhamp_block.append(laser_element) |
||
452 | hhamp_block.append(delay_element) |
||
453 | hhamp_block.append(waiting_element) |
||
454 | |||
455 | hhamp_block.append(pi3half_element) |
||
456 | hhamp_block.append(sl_element) |
||
457 | hhamp_block.append(pihalf_element) |
||
458 | hhamp_block.append(laser_element) |
||
459 | hhamp_block.append(delay_element) |
||
460 | hhamp_block.append(waiting_element) |
||
461 | created_blocks.append(hhamp_block) |
||
462 | |||
463 | # Create block ensemble |
||
464 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=True) |
||
465 | block_ensemble.append((hhamp_block.name, 0)) |
||
466 | |||
467 | # Create and append sync trigger block if needed |
||
468 | if self.sync_channel: |
||
469 | sync_block = PulseBlock(name='sync_trigger') |
||
470 | sync_block.append(self._get_sync_element()) |
||
471 | created_blocks.append(sync_block) |
||
472 | block_ensemble.append((sync_block.name, 0)) |
||
473 | |||
474 | # add metadata to invoke settings later on |
||
475 | block_ensemble.measurement_information['alternating'] = True |
||
476 | block_ensemble.measurement_information['laser_ignore_list'] = list() |
||
477 | block_ensemble.measurement_information['controlled_variable'] = amp_array |
||
478 | block_ensemble.measurement_information['units'] = ('V', '') |
||
479 | block_ensemble.measurement_information['number_of_lasers'] = 2 * num_of_points |
||
480 | block_ensemble.measurement_information['counting_length'] = self._get_ensemble_count_length( |
||
481 | ensemble=block_ensemble, created_blocks=created_blocks) |
||
482 | |||
483 | # append ensemble to created ensembles |
||
484 | created_ensembles.append(block_ensemble) |
||
485 | return created_blocks, created_ensembles, created_sequences |
||
486 | |||
487 | View Code Duplication | def generate_HHtau(self, name='hh_tau', spinlock_amp=0.1, tau_start=1e-6, tau_step=1e-6, |
|
488 | num_of_points=50): |
||
489 | """ |
||
490 | |||
491 | """ |
||
492 | created_blocks = list() |
||
493 | created_ensembles = list() |
||
494 | created_sequences = list() |
||
495 | |||
496 | # get tau array for measurement ticks |
||
497 | tau_array = tau_start + np.arange(num_of_points) * tau_step |
||
498 | |||
499 | # create the elements |
||
500 | waiting_element = self._get_idle_element(length=self.wait_time, increment=0) |
||
501 | laser_element = self._get_laser_gate_element(length=self.laser_length, increment=0) |
||
502 | delay_element = self._get_delay_gate_element() |
||
503 | pihalf_element = self._get_mw_element(length=self.rabi_period / 4, |
||
504 | increment=0, |
||
505 | amp=self.microwave_amplitude, |
||
506 | freq=self.microwave_frequency, |
||
507 | phase=0) |
||
508 | # Use a 180 deg phase shiftet pulse as 3pihalf pulse if microwave channel is analog |
||
509 | if self.microwave_channel.startswith('a'): |
||
510 | pi3half_element = self._get_mw_element(length=self.rabi_period / 4, |
||
511 | increment=0, |
||
512 | amp=self.microwave_amplitude, |
||
513 | freq=self.microwave_frequency, |
||
514 | phase=180) |
||
515 | else: |
||
516 | pi3half_element = self._get_mw_element(length=3 * self.rabi_period / 4, |
||
517 | increment=0, |
||
518 | amp=self.microwave_amplitude, |
||
519 | freq=self.microwave_frequency, |
||
520 | phase=0) |
||
521 | sl_element = self._get_mw_element(length=tau_start, |
||
522 | increment=tau_step, |
||
523 | amp=spinlock_amp, |
||
524 | freq=self.microwave_frequency, |
||
525 | phase=90) |
||
526 | |||
527 | # Create block and append to created_blocks list |
||
528 | hhtau_block = PulseBlock(name=name) |
||
529 | hhtau_block.append(pihalf_element) |
||
530 | hhtau_block.append(sl_element) |
||
531 | hhtau_block.append(pihalf_element) |
||
532 | hhtau_block.append(laser_element) |
||
533 | hhtau_block.append(delay_element) |
||
534 | hhtau_block.append(waiting_element) |
||
535 | |||
536 | hhtau_block.append(pi3half_element) |
||
537 | hhtau_block.append(sl_element) |
||
538 | hhtau_block.append(pihalf_element) |
||
539 | hhtau_block.append(laser_element) |
||
540 | hhtau_block.append(delay_element) |
||
541 | hhtau_block.append(waiting_element) |
||
542 | created_blocks.append(hhtau_block) |
||
543 | |||
544 | # Create block ensemble |
||
545 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=True) |
||
546 | block_ensemble.append((hhtau_block.name, num_of_points - 1)) |
||
547 | |||
548 | # Create and append sync trigger block if needed |
||
549 | if self.sync_channel: |
||
550 | sync_block = PulseBlock(name='sync_trigger') |
||
551 | sync_block.append(self._get_sync_element()) |
||
552 | created_blocks.append(sync_block) |
||
553 | block_ensemble.append((sync_block.name, 0)) |
||
554 | |||
555 | # add metadata to invoke settings later on |
||
556 | block_ensemble.measurement_information['alternating'] = True |
||
557 | block_ensemble.measurement_information['laser_ignore_list'] = list() |
||
558 | block_ensemble.measurement_information['controlled_variable'] = tau_array |
||
559 | block_ensemble.measurement_information['units'] = ('s', '') |
||
560 | block_ensemble.measurement_information['number_of_lasers'] = 2 * num_of_points |
||
561 | block_ensemble.measurement_information['counting_length'] = self._get_ensemble_count_length( |
||
562 | ensemble=block_ensemble, created_blocks=created_blocks) |
||
563 | |||
564 | # append ensemble to created ensembles |
||
565 | created_ensembles.append(block_ensemble) |
||
566 | return created_blocks, created_ensembles, created_sequences |
||
567 | |||
568 | def generate_HHpol(self, name='hh_pol', spinlock_length=20.0e-6, spinlock_amp=0.1, |
||
569 | polarization_steps=50): |
||
570 | """ |
||
571 | |||
572 | """ |
||
573 | created_blocks = list() |
||
574 | created_ensembles = list() |
||
575 | created_sequences = list() |
||
576 | |||
577 | # get steps array for measurement ticks |
||
578 | steps_array = np.arange(2 * polarization_steps) |
||
579 | |||
580 | # create the elements |
||
581 | waiting_element = self._get_idle_element(length=self.wait_time, increment=0) |
||
582 | laser_element = self._get_laser_gate_element(length=self.laser_length, increment=0) |
||
583 | delay_element = self._get_delay_gate_element() |
||
584 | pihalf_element = self._get_mw_element(length=self.rabi_period / 4, |
||
585 | increment=0, |
||
586 | amp=self.microwave_amplitude, |
||
587 | freq=self.microwave_frequency, |
||
588 | phase=0) |
||
589 | # Use a 180 deg phase shiftet pulse as 3pihalf pulse if microwave channel is analog |
||
590 | if self.microwave_channel.startswith('a'): |
||
591 | pi3half_element = self._get_mw_element(length=self.rabi_period / 4, |
||
592 | increment=0, |
||
593 | amp=self.microwave_amplitude, |
||
594 | freq=self.microwave_frequency, |
||
595 | phase=180) |
||
596 | else: |
||
597 | pi3half_element = self._get_mw_element(length=3 * self.rabi_period / 4, |
||
598 | increment=0, |
||
599 | amp=self.microwave_amplitude, |
||
600 | freq=self.microwave_frequency, |
||
601 | phase=0) |
||
602 | sl_element = self._get_mw_element(length=spinlock_length, |
||
603 | increment=0, |
||
604 | amp=spinlock_amp, |
||
605 | freq=self.microwave_frequency, |
||
606 | phase=90) |
||
607 | |||
608 | # Create block for "up"-polarization and append to created_blocks list |
||
609 | up_block = PulseBlock(name=name + '_up') |
||
610 | up_block.append(pihalf_element) |
||
611 | up_block.append(sl_element) |
||
612 | up_block.append(pihalf_element) |
||
613 | up_block.append(laser_element) |
||
614 | up_block.append(delay_element) |
||
615 | up_block.append(waiting_element) |
||
616 | created_blocks.append(up_block) |
||
617 | |||
618 | # Create block for "down"-polarization and append to created_blocks list |
||
619 | down_block = PulseBlock(name=name + '_down') |
||
620 | down_block.append(pi3half_element) |
||
621 | down_block.append(sl_element) |
||
622 | down_block.append(pi3half_element) |
||
623 | down_block.append(laser_element) |
||
624 | down_block.append(delay_element) |
||
625 | down_block.append(waiting_element) |
||
626 | created_blocks.append(down_block) |
||
627 | |||
628 | # Create block ensemble |
||
629 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=True) |
||
630 | block_ensemble.append((up_block.name, polarization_steps - 1)) |
||
631 | block_ensemble.append((down_block.name, polarization_steps - 1)) |
||
632 | |||
633 | # Create and append sync trigger block if needed |
||
634 | if self.sync_channel: |
||
635 | sync_block = PulseBlock(name='sync_trigger') |
||
636 | sync_block.append(self._get_sync_element()) |
||
637 | created_blocks.append(sync_block) |
||
638 | block_ensemble.append((sync_block.name, 0)) |
||
639 | |||
640 | # add metadata to invoke settings later on |
||
641 | block_ensemble.measurement_information['alternating'] = False |
||
642 | block_ensemble.measurement_information['laser_ignore_list'] = list() |
||
643 | block_ensemble.measurement_information['controlled_variable'] = steps_array |
||
644 | block_ensemble.measurement_information['units'] = ('#', '') |
||
645 | block_ensemble.measurement_information['number_of_lasers'] = 2 * polarization_steps |
||
646 | block_ensemble.measurement_information['counting_length'] = self._get_ensemble_count_length( |
||
647 | ensemble=block_ensemble, created_blocks=created_blocks) |
||
648 | |||
649 | # append ensemble to created ensembles |
||
650 | created_ensembles.append(block_ensemble) |
||
651 | return created_blocks, created_ensembles, created_sequences |
||
652 | |||
653 | View Code Duplication | def generate_xy8_tau(self, name='xy8_tau', tau_start=0.5e-6, tau_step=0.01e-6, num_of_points=50, |
|
654 | xy8_order=4, alternating=True): |
||
655 | """ |
||
656 | |||
657 | """ |
||
658 | created_blocks = list() |
||
659 | created_ensembles = list() |
||
660 | created_sequences = list() |
||
661 | |||
662 | # get tau array for measurement ticks |
||
663 | tau_array = tau_start + np.arange(num_of_points) * tau_step |
||
664 | # calculate "real" start length of tau due to finite pi-pulse length |
||
665 | real_start_tau = max(0, tau_start - self.rabi_period / 2) |
||
666 | |||
667 | # create the elements |
||
668 | waiting_element = self._get_idle_element(length=self.wait_time, increment=0) |
||
669 | laser_element = self._get_laser_gate_element(length=self.laser_length, increment=0) |
||
670 | delay_element = self._get_delay_gate_element() |
||
671 | pihalf_element = self._get_mw_element(length=self.rabi_period / 4, |
||
672 | increment=0, |
||
673 | amp=self.microwave_amplitude, |
||
674 | freq=self.microwave_frequency, |
||
675 | phase=0) |
||
676 | # Use a 180 deg phase shiftet pulse as 3pihalf pulse if microwave channel is analog |
||
677 | if self.microwave_channel.startswith('a'): |
||
678 | pi3half_element = self._get_mw_element(length=self.rabi_period / 4, |
||
679 | increment=0, |
||
680 | amp=self.microwave_amplitude, |
||
681 | freq=self.microwave_frequency, |
||
682 | phase=180) |
||
683 | else: |
||
684 | pi3half_element = self._get_mw_element(length=3 * self.rabi_period / 4, |
||
685 | increment=0, |
||
686 | amp=self.microwave_amplitude, |
||
687 | freq=self.microwave_frequency, |
||
688 | phase=0) |
||
689 | pix_element = self._get_mw_element(length=self.rabi_period / 2, |
||
690 | increment=0, |
||
691 | amp=self.microwave_amplitude, |
||
692 | freq=self.microwave_frequency, |
||
693 | phase=0) |
||
694 | piy_element = self._get_mw_element(length=self.rabi_period / 2, |
||
695 | increment=0, |
||
696 | amp=self.microwave_amplitude, |
||
697 | freq=self.microwave_frequency, |
||
698 | phase=90) |
||
699 | tauhalf_element = self._get_idle_element(length=real_start_tau / 2, increment=tau_step / 2) |
||
700 | tau_element = self._get_idle_element(length=real_start_tau, increment=tau_step) |
||
701 | |||
702 | # Create block and append to created_blocks list |
||
703 | xy8_block = PulseBlock(name=name) |
||
704 | xy8_block.append(pihalf_element) |
||
705 | xy8_block.append(tauhalf_element) |
||
706 | for n in range(xy8_order): |
||
707 | xy8_block.append(pix_element) |
||
708 | xy8_block.append(tau_element) |
||
709 | xy8_block.append(piy_element) |
||
710 | xy8_block.append(tau_element) |
||
711 | xy8_block.append(pix_element) |
||
712 | xy8_block.append(tau_element) |
||
713 | xy8_block.append(piy_element) |
||
714 | xy8_block.append(tau_element) |
||
715 | xy8_block.append(piy_element) |
||
716 | xy8_block.append(tau_element) |
||
717 | xy8_block.append(pix_element) |
||
718 | xy8_block.append(tau_element) |
||
719 | xy8_block.append(piy_element) |
||
720 | xy8_block.append(tau_element) |
||
721 | xy8_block.append(pix_element) |
||
722 | if n != xy8_order - 1: |
||
723 | xy8_block.append(tau_element) |
||
724 | xy8_block.append(tauhalf_element) |
||
725 | xy8_block.append(pihalf_element) |
||
726 | xy8_block.append(laser_element) |
||
727 | xy8_block.append(delay_element) |
||
728 | xy8_block.append(waiting_element) |
||
729 | if alternating: |
||
730 | xy8_block.append(pihalf_element) |
||
731 | xy8_block.append(tauhalf_element) |
||
732 | for n in range(xy8_order): |
||
733 | xy8_block.append(pix_element) |
||
734 | xy8_block.append(tau_element) |
||
735 | xy8_block.append(piy_element) |
||
736 | xy8_block.append(tau_element) |
||
737 | xy8_block.append(pix_element) |
||
738 | xy8_block.append(tau_element) |
||
739 | xy8_block.append(piy_element) |
||
740 | xy8_block.append(tau_element) |
||
741 | xy8_block.append(piy_element) |
||
742 | xy8_block.append(tau_element) |
||
743 | xy8_block.append(pix_element) |
||
744 | xy8_block.append(tau_element) |
||
745 | xy8_block.append(piy_element) |
||
746 | xy8_block.append(tau_element) |
||
747 | xy8_block.append(pix_element) |
||
748 | if n != xy8_order - 1: |
||
749 | xy8_block.append(tau_element) |
||
750 | xy8_block.append(tauhalf_element) |
||
751 | xy8_block.append(pi3half_element) |
||
752 | xy8_block.append(laser_element) |
||
753 | xy8_block.append(delay_element) |
||
754 | xy8_block.append(waiting_element) |
||
755 | created_blocks.append(xy8_block) |
||
756 | |||
757 | # Create block ensemble |
||
758 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=True) |
||
759 | block_ensemble.append((xy8_block.name, num_of_points - 1)) |
||
760 | |||
761 | # Create and append sync trigger block if needed |
||
762 | if self.sync_channel: |
||
763 | sync_block = PulseBlock(name='sync_trigger') |
||
764 | sync_block.append(self._get_sync_element()) |
||
765 | created_blocks.append(sync_block) |
||
766 | block_ensemble.append((sync_block.name, 0)) |
||
767 | |||
768 | # add metadata to invoke settings later on |
||
769 | number_of_lasers = num_of_points * 2 if alternating else num_of_points |
||
770 | block_ensemble.measurement_information['alternating'] = alternating |
||
771 | block_ensemble.measurement_information['laser_ignore_list'] = list() |
||
772 | block_ensemble.measurement_information['controlled_variable'] = tau_array |
||
773 | block_ensemble.measurement_information['units'] = ('s', '') |
||
774 | block_ensemble.measurement_information['number_of_lasers'] = number_of_lasers |
||
775 | block_ensemble.measurement_information['counting_length'] = self._get_ensemble_count_length( |
||
776 | ensemble=block_ensemble, created_blocks=created_blocks) |
||
777 | |||
778 | # append ensemble to created ensembles |
||
779 | created_ensembles.append(block_ensemble) |
||
780 | return created_blocks, created_ensembles, created_sequences |
||
781 | |||
782 | View Code Duplication | def generate_xy8_freq(self, name='xy8_freq', freq_start=0.1e6, freq_step=0.01e6, |
|
783 | num_of_points=50, xy8_order=4, alternating=True): |
||
784 | """ |
||
785 | |||
786 | """ |
||
787 | created_blocks = list() |
||
788 | created_ensembles = list() |
||
789 | created_sequences = list() |
||
790 | |||
791 | # get frequency array for measurement ticks |
||
792 | freq_array = freq_start + np.arange(num_of_points) * freq_step |
||
793 | # get tau array from freq array |
||
794 | tau_array = 1 / (2 * freq_array) |
||
795 | # calculate "real" tau array (finite pi-pulse length) |
||
796 | real_tau_array = tau_array - self.rabi_period / 2 |
||
797 | np.clip(real_tau_array, 0, None, real_tau_array) |
||
798 | # Convert back to frequency in order to account for clipped values |
||
799 | freq_array = 1 / (2 * (real_tau_array + self.rabi_period / 2)) |
||
800 | |||
801 | # create the elements |
||
802 | waiting_element = self._get_idle_element(length=self.wait_time, increment=0) |
||
803 | laser_element = self._get_laser_gate_element(length=self.laser_length, increment=0) |
||
804 | delay_element = self._get_delay_gate_element() |
||
805 | pihalf_element = self._get_mw_element(length=self.rabi_period / 4, |
||
806 | increment=0, |
||
807 | amp=self.microwave_amplitude, |
||
808 | freq=self.microwave_frequency, |
||
809 | phase=0) |
||
810 | # Use a 180 deg phase shiftet pulse as 3pihalf pulse if microwave channel is analog |
||
811 | if self.microwave_channel.startswith('a'): |
||
812 | pi3half_element = self._get_mw_element(length=self.rabi_period / 4, |
||
813 | increment=0, |
||
814 | amp=self.microwave_amplitude, |
||
815 | freq=self.microwave_frequency, |
||
816 | phase=180) |
||
817 | else: |
||
818 | pi3half_element = self._get_mw_element(length=3 * self.rabi_period / 4, |
||
819 | increment=0, |
||
820 | amp=self.microwave_amplitude, |
||
821 | freq=self.microwave_frequency, |
||
822 | phase=0) |
||
823 | pix_element = self._get_mw_element(length=self.rabi_period / 2, |
||
824 | increment=0, |
||
825 | amp=self.microwave_amplitude, |
||
826 | freq=self.microwave_frequency, |
||
827 | phase=0) |
||
828 | piy_element = self._get_mw_element(length=self.rabi_period / 2, |
||
829 | increment=0, |
||
830 | amp=self.microwave_amplitude, |
||
831 | freq=self.microwave_frequency, |
||
832 | phase=90) |
||
833 | |||
834 | # Create block and append to created_blocks list |
||
835 | xy8_block = PulseBlock(name=name) |
||
836 | for ii, tau in enumerate(real_tau_array): |
||
837 | tauhalf_element = self._get_idle_element(length=tau / 2, increment=0) |
||
838 | tau_element = self._get_idle_element(length=tau, increment=0) |
||
839 | xy8_block.append(pihalf_element) |
||
840 | xy8_block.append(tauhalf_element) |
||
841 | for n in range(xy8_order): |
||
842 | xy8_block.append(pix_element) |
||
843 | xy8_block.append(tau_element) |
||
844 | xy8_block.append(piy_element) |
||
845 | xy8_block.append(tau_element) |
||
846 | xy8_block.append(pix_element) |
||
847 | xy8_block.append(tau_element) |
||
848 | xy8_block.append(piy_element) |
||
849 | xy8_block.append(tau_element) |
||
850 | xy8_block.append(piy_element) |
||
851 | xy8_block.append(tau_element) |
||
852 | xy8_block.append(pix_element) |
||
853 | xy8_block.append(tau_element) |
||
854 | xy8_block.append(piy_element) |
||
855 | xy8_block.append(tau_element) |
||
856 | xy8_block.append(pix_element) |
||
857 | if n != xy8_order - 1: |
||
858 | xy8_block.append(tau_element) |
||
859 | xy8_block.append(tauhalf_element) |
||
860 | xy8_block.append(pihalf_element) |
||
861 | xy8_block.append(laser_element) |
||
862 | xy8_block.append(delay_element) |
||
863 | xy8_block.append(waiting_element) |
||
864 | if alternating: |
||
865 | xy8_block.append(pihalf_element) |
||
866 | xy8_block.append(tauhalf_element) |
||
867 | for n in range(xy8_order): |
||
868 | xy8_block.append(pix_element) |
||
869 | xy8_block.append(tau_element) |
||
870 | xy8_block.append(piy_element) |
||
871 | xy8_block.append(tau_element) |
||
872 | xy8_block.append(pix_element) |
||
873 | xy8_block.append(tau_element) |
||
874 | xy8_block.append(piy_element) |
||
875 | xy8_block.append(tau_element) |
||
876 | xy8_block.append(piy_element) |
||
877 | xy8_block.append(tau_element) |
||
878 | xy8_block.append(pix_element) |
||
879 | xy8_block.append(tau_element) |
||
880 | xy8_block.append(piy_element) |
||
881 | xy8_block.append(tau_element) |
||
882 | xy8_block.append(pix_element) |
||
883 | if n != xy8_order - 1: |
||
884 | xy8_block.append(tau_element) |
||
885 | xy8_block.append(tauhalf_element) |
||
886 | xy8_block.append(pi3half_element) |
||
887 | xy8_block.append(laser_element) |
||
888 | xy8_block.append(delay_element) |
||
889 | xy8_block.append(waiting_element) |
||
890 | created_blocks.append(xy8_block) |
||
891 | |||
892 | # Create block ensemble |
||
893 | block_ensemble = PulseBlockEnsemble(name=name, rotating_frame=True) |
||
894 | block_ensemble.append((xy8_block.name, 0)) |
||
895 | |||
896 | # Create and append sync trigger block if needed |
||
897 | if self.sync_channel: |
||
898 | sync_block = PulseBlock(name='sync_trigger') |
||
899 | sync_block.append(self._get_sync_element()) |
||
900 | created_blocks.append(sync_block) |
||
901 | block_ensemble.append((sync_block.name, 0)) |
||
902 | |||
903 | # add metadata to invoke settings later on |
||
904 | number_of_lasers = num_of_points * 2 if alternating else num_of_points |
||
905 | block_ensemble.measurement_information['alternating'] = alternating |
||
906 | block_ensemble.measurement_information['laser_ignore_list'] = list() |
||
907 | block_ensemble.measurement_information['controlled_variable'] = freq_array |
||
908 | block_ensemble.measurement_information['units'] = ('Hz', '') |
||
909 | block_ensemble.measurement_information['number_of_lasers'] = number_of_lasers |
||
910 | block_ensemble.measurement_information['counting_length'] = self._get_ensemble_count_length( |
||
911 | ensemble=block_ensemble, created_blocks=created_blocks) |
||
912 | |||
913 | # append ensemble to created ensembles |
||
914 | created_ensembles.append(block_ensemble) |
||
915 | return created_blocks, created_ensembles, created_sequences |
||
916 |