Total Complexity | 87 |
Total Lines | 896 |
Duplicated Lines | 2.01 % |
Changes | 1 | ||
Bugs | 1 | Features | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like ConfocalLogic often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
243 | class ConfocalLogic(GenericLogic): |
||
244 | """ |
||
245 | This is the Logic class for confocal scanning. |
||
246 | """ |
||
247 | _modclass = 'confocallogic' |
||
248 | _modtype = 'logic' |
||
249 | |||
250 | # declare connectors |
||
251 | _in = { |
||
252 | 'confocalscanner1': 'ConfocalScannerInterface', |
||
253 | 'savelogic': 'SaveLogic' |
||
254 | } |
||
255 | _out = {'scannerlogic': 'ConfocalLogic'} |
||
256 | |||
257 | # signals |
||
258 | signal_start_scanning = QtCore.Signal() |
||
259 | signal_continue_scanning = QtCore.Signal() |
||
260 | signal_scan_lines_next = QtCore.Signal() |
||
261 | signal_xy_image_updated = QtCore.Signal() |
||
262 | signal_depth_image_updated = QtCore.Signal() |
||
263 | signal_change_position = QtCore.Signal(str) |
||
264 | |||
265 | sigImageXYInitialized = QtCore.Signal() |
||
266 | sigImageDepthInitialized = QtCore.Signal() |
||
267 | |||
268 | signal_history_event = QtCore.Signal() |
||
269 | |||
270 | def __init__(self, config, **kwargs): |
||
271 | super().__init__(config=config, **kwargs) |
||
272 | |||
273 | self.log.info('The following configuration was found.') |
||
274 | |||
275 | # checking for the right configuration |
||
276 | for key in config.keys(): |
||
277 | self.log.info('{0}: {1}'.format(key, config[key])) |
||
278 | |||
279 | #locking for thread safety |
||
280 | self.threadlock = Mutex() |
||
281 | |||
282 | # counter for scan_image |
||
283 | self._scan_counter = 0 |
||
284 | self._zscan = False |
||
285 | self.stopRequested = False |
||
286 | self.depth_scan_dir_is_xz = True |
||
287 | self.permanent_scan = False |
||
288 | |||
289 | def on_activate(self, e): |
||
290 | """ Initialisation performed during activation of the module. |
||
291 | |||
292 | @param e: error code |
||
293 | """ |
||
294 | self._scanning_device = self.get_in_connector('confocalscanner1') |
||
295 | # print("Scanning device is", self._scanning_device) |
||
296 | |||
297 | self._save_logic = self.get_in_connector('savelogic') |
||
298 | |||
299 | #default values for clock frequency and slowness |
||
300 | #slowness: steps during retrace line |
||
301 | if 'clock_frequency' in self._statusVariables: |
||
302 | self._clock_frequency = self._statusVariables['clock_frequency'] |
||
303 | else: |
||
304 | self._clock_frequency = 500 |
||
305 | if 'return_slowness' in self._statusVariables: |
||
306 | self.return_slowness = self._statusVariables['return_slowness'] |
||
307 | else: |
||
308 | self.return_slowness = 50 |
||
309 | |||
310 | # Reads in the maximal scanning range. The unit of that scan range is micrometer! |
||
311 | self.x_range = self._scanning_device.get_position_range()[0] |
||
312 | self.y_range = self._scanning_device.get_position_range()[1] |
||
313 | self.z_range = self._scanning_device.get_position_range()[2] |
||
314 | |||
315 | # restore here ... |
||
316 | self.history = [] |
||
317 | if 'max_history_length' in self._statusVariables: |
||
318 | self.max_history_length = self._statusVariables ['max_history_length'] |
||
319 | for i in reversed(range(1, self.max_history_length)): |
||
320 | try: |
||
321 | new_history_item = ConfocalHistoryEntry(self) |
||
322 | new_history_item.deserialize(self._statusVariables['history_{0}'.format(i)]) |
||
323 | self.history.append(new_history_item) |
||
324 | except KeyError: |
||
325 | pass |
||
326 | except OldConfigFileError: |
||
327 | self.log.warning('Old style config file detected. ' |
||
328 | 'History {0} ignored.'.format(i)) |
||
329 | except: |
||
330 | self.log.warning( |
||
331 | 'Restoring history {0} failed.'.format(i)) |
||
332 | else: |
||
333 | self.max_history_length = 10 |
||
334 | try: |
||
335 | new_state = ConfocalHistoryEntry(self) |
||
336 | new_state.deserialize(self._statusVariables['history_0']) |
||
337 | new_state.restore(self) |
||
338 | except: |
||
339 | new_state = ConfocalHistoryEntry(self) |
||
340 | new_state.restore(self) |
||
341 | finally: |
||
342 | self.history.append(new_state) |
||
343 | |||
344 | self.history_index = len(self.history) - 1 |
||
345 | |||
346 | # Sets connections between signals and functions |
||
347 | self.signal_scan_lines_next.connect(self._scan_line, QtCore.Qt.QueuedConnection) |
||
348 | self.signal_start_scanning.connect(self.start_scanner, QtCore.Qt.QueuedConnection) |
||
349 | self.signal_continue_scanning.connect(self.continue_scanner, QtCore.Qt.QueuedConnection) |
||
350 | |||
351 | self._change_position('activation') |
||
352 | |||
353 | def on_deactivate(self, e): |
||
354 | """ Reverse steps of activation |
||
355 | |||
356 | @param e: error code |
||
357 | |||
358 | @return int: error code (0:OK, -1:error) |
||
359 | """ |
||
360 | self._statusVariables['clock_frequency'] = self._clock_frequency |
||
361 | self._statusVariables['return_slowness'] = self.return_slowness |
||
362 | self._statusVariables['max_history_length'] = self.max_history_length |
||
363 | closing_state = ConfocalHistoryEntry(self) |
||
364 | closing_state.snapshot(self) |
||
365 | self.history.append(closing_state) |
||
366 | histindex = 0 |
||
367 | for state in reversed(self.history): |
||
368 | self._statusVariables['history_{0}'.format(histindex)] = state.serialize() |
||
369 | histindex += 1 |
||
370 | return 0 |
||
371 | |||
372 | def switch_hardware(self, to_on=False): |
||
373 | """ Switches the Hardware off or on. |
||
374 | |||
375 | @param to_on: True switches on, False switched off |
||
376 | |||
377 | @return int: error code (0:OK, -1:error) |
||
378 | """ |
||
379 | if to_on: |
||
380 | return self._scanning_device.activation() |
||
381 | else: |
||
382 | return self._scanning_device.reset_hardware() |
||
383 | |||
384 | def set_clock_frequency(self, clock_frequency): |
||
385 | """Sets the frequency of the clock |
||
386 | |||
387 | @param int clock_frequency: desired frequency of the clock |
||
388 | |||
389 | @return int: error code (0:OK, -1:error) |
||
390 | """ |
||
391 | self._clock_frequency = int(clock_frequency) |
||
392 | #checks if scanner is still running |
||
393 | if self.getState() == 'locked': |
||
394 | return -1 |
||
395 | else: |
||
396 | return 0 |
||
397 | |||
398 | def start_scanning(self, zscan = False): |
||
399 | """Starts scanning |
||
400 | |||
401 | @param bool zscan: zscan if true, xyscan if false |
||
402 | |||
403 | @return int: error code (0:OK, -1:error) |
||
404 | """ |
||
405 | # TODO: this is dirty, but it works for now |
||
406 | # while self.getState() == 'locked': |
||
407 | # time.sleep(0.01) |
||
408 | self._scan_counter = 0 |
||
409 | self._zscan = zscan |
||
410 | if self._zscan: |
||
411 | self._zscan_continuable = True |
||
412 | else: |
||
413 | self._xyscan_continuable = True |
||
414 | |||
415 | self.signal_start_scanning.emit() |
||
416 | return 0 |
||
417 | |||
418 | |||
419 | def continue_scanning(self,zscan): |
||
420 | """Continue scanning |
||
421 | |||
422 | @return int: error code (0:OK, -1:error) |
||
423 | """ |
||
424 | self._zscan = zscan |
||
425 | if zscan: |
||
426 | self._scan_counter = self._depth_line_pos |
||
427 | else: |
||
428 | self._scan_counter = self._xy_line_pos |
||
429 | self.signal_continue_scanning.emit() |
||
430 | return 0 |
||
431 | |||
432 | |||
433 | def stop_scanning(self): |
||
434 | """Stops the scan |
||
435 | |||
436 | @return int: error code (0:OK, -1:error) |
||
437 | """ |
||
438 | with self.threadlock: |
||
439 | if self.getState() == 'locked': |
||
440 | self.stopRequested = True |
||
441 | return 0 |
||
442 | |||
443 | def initialize_image(self): |
||
444 | """Initalization of the image. |
||
445 | |||
446 | @return int: error code (0:OK, -1:error) |
||
447 | """ |
||
448 | # x1: x-start-value, x2: x-end-value |
||
449 | x1, x2 = self.image_x_range[0], self.image_x_range[1] |
||
450 | # y1: x-start-value, y2: x-end-value |
||
451 | y1, y2 = self.image_y_range[0], self.image_y_range[1] |
||
452 | # z1: x-start-value, z2: x-end-value |
||
453 | z1, z2 = self.image_z_range[0], self.image_z_range[1] |
||
454 | |||
455 | # Checks if the x-start and x-end value are ok |
||
456 | if x2 < x1: |
||
457 | self.log.error( |
||
458 | 'x1 must be smaller than x2, but they are ' |
||
459 | '({0:.3f},{1:.3f}).'.format(x1, x2)) |
||
460 | return -1 |
||
461 | |||
462 | if self._zscan: |
||
463 | # creates an array of evenly spaced numbers over the interval |
||
464 | # x1, x2 and the spacing is equal to xy_resolution |
||
465 | self._X = np.linspace(x1, x2, self.xy_resolution) |
||
466 | # Checks if the z-start and z-end value are ok |
||
467 | if z2 < z1: |
||
468 | self.log.error( |
||
469 | 'z1 must be smaller than z2, but they are ' |
||
470 | '({0:.3f},{1:.3f}).'.format(z1, z2)) |
||
471 | return -1 |
||
472 | # creates an array of evenly spaced numbers over the interval |
||
473 | # z1, z2 and the spacing is equal to z_resolution |
||
474 | self._Z = np.linspace(z1, z2, max(self.z_resolution, 2)) |
||
475 | else: |
||
476 | # Checks if the y-start and y-end value are ok |
||
477 | if y2 < y1: |
||
478 | self.log.error( |
||
479 | 'y1 must be smaller than y2, but they are ' |
||
480 | '({0:.3f},{1:.3f}).'.format(y1, y2)) |
||
481 | return -1 |
||
482 | |||
483 | # prevents distorion of the image |
||
484 | if (x2 - x1) >= (y2 - y1): |
||
485 | self._X = np.linspace(x1, x2, max(self.xy_resolution, 2)) |
||
486 | self._Y = np.linspace(y1, y2, max(int(self.xy_resolution*(y2-y1)/(x2-x1)), 2)) |
||
487 | else: |
||
488 | self._Y = np.linspace(y1, y2, max(self.xy_resolution, 2)) |
||
489 | self._X = np.linspace(x1, x2, max(int(self.xy_resolution*(x2-x1)/(y2-y1)), 2)) |
||
490 | |||
491 | self._XL = self._X |
||
492 | self._YL = self._Y |
||
493 | self._AL = np.zeros(self._XL.shape) |
||
494 | |||
495 | # Arrays for retrace line |
||
496 | self._return_XL = np.linspace(self._XL[-1], self._XL[0], self.return_slowness) |
||
497 | self._return_AL = np.zeros(self._return_XL.shape) |
||
498 | |||
499 | if self._zscan: |
||
500 | if self.depth_scan_dir_is_xz: |
||
501 | self._image_vert_axis = self._Z |
||
502 | # creates an image where each pixel will be [x,y,z,counts] |
||
503 | self.depth_image = np.zeros((len(self._image_vert_axis), len(self._X), 4)) |
||
504 | self.depth_image[:, : ,0] = np.full((len(self._image_vert_axis), len(self._X)), self._XL) |
||
505 | self.depth_image[:, :, 1] = self._current_y * np.ones((len(self._image_vert_axis), len(self._X))) |
||
506 | z_value_matrix = np.full((len(self._X), len(self._image_vert_axis)), self._Z) |
||
507 | self.depth_image[:, :, 2] = z_value_matrix.transpose() |
||
508 | else: # depth scan is yz instead of xz |
||
509 | self._image_vert_axis = self._Z |
||
510 | # creats an image where each pixel will be [x,y,z,counts] |
||
511 | self.depth_image = np.zeros((len(self._image_vert_axis), len(self._Y), 4)) |
||
512 | self.depth_image[:, :, 0] = self._current_x * np.ones((len(self._image_vert_axis), len(self._Y))) |
||
513 | self.depth_image[:, :, 1] = np.full((len(self._image_vert_axis), len(self._Y)), self._YL) |
||
514 | z_value_matrix = np.full((len(self._Y), len(self._image_vert_axis)), self._Z) |
||
515 | self.depth_image[:, :, 2] = z_value_matrix.transpose() |
||
516 | # now we are scanning along the y-axis, so we need a new return line along Y: |
||
517 | self._return_YL = np.linspace(self._YL[-1], self._YL[0], self.return_slowness) |
||
518 | self._return_AL = np.zeros(self._return_YL.shape) |
||
519 | self.sigImageDepthInitialized.emit() |
||
520 | else: |
||
521 | self._image_vert_axis = self._Y |
||
522 | # creats an image where each pixel will be [x,y,z,counts] |
||
523 | self.xy_image = np.zeros((len(self._image_vert_axis), len(self._X), 4)) |
||
524 | self.xy_image[:, :, 0] = np.full((len(self._image_vert_axis), len(self._X)), self._XL) |
||
525 | y_value_matrix = np.full((len(self._X), len(self._image_vert_axis)), self._Y) |
||
526 | self.xy_image[:, :, 1] = y_value_matrix.transpose() |
||
527 | self.xy_image[:, :, 2] = self._current_z * np.ones((len(self._image_vert_axis), len(self._X))) |
||
528 | self.sigImageXYInitialized.emit() |
||
529 | return 0 |
||
530 | |||
531 | def start_scanner(self): |
||
532 | """Setting up the scanner device and starts the scanning procedure |
||
533 | |||
534 | @return int: error code (0:OK, -1:error) |
||
535 | """ |
||
536 | self.lock() |
||
537 | self._scanning_device.lock() |
||
538 | if self.initialize_image() < 0: |
||
539 | self._scanning_device.unlock() |
||
540 | self.unlock() |
||
541 | return -1 |
||
542 | |||
543 | returnvalue = self._scanning_device.set_up_scanner_clock(clock_frequency=self._clock_frequency) |
||
544 | if returnvalue < 0: |
||
545 | self._scanning_device.unlock() |
||
546 | self.unlock() |
||
547 | self.set_position('scanner') |
||
548 | return |
||
549 | |||
550 | returnvalue = self._scanning_device.set_up_scanner() |
||
551 | if returnvalue < 0: |
||
552 | self._scanning_device.unlock() |
||
553 | self.unlock() |
||
554 | self.set_position('scanner') |
||
555 | return |
||
556 | |||
557 | self.signal_scan_lines_next.emit() |
||
558 | return 0 |
||
559 | |||
560 | def continue_scanner(self): |
||
561 | """Continue the scanning procedure |
||
562 | |||
563 | @return int: error code (0:OK, -1:error) |
||
564 | """ |
||
565 | self.lock() |
||
566 | self._scanning_device.lock() |
||
567 | self._scanning_device.set_up_scanner_clock(clock_frequency=self._clock_frequency) |
||
568 | self._scanning_device.set_up_scanner() |
||
569 | self.signal_scan_lines_next.emit() |
||
570 | return 0 |
||
571 | |||
572 | def kill_scanner(self): |
||
573 | """Closing the scanner device. |
||
574 | |||
575 | @return int: error code (0:OK, -1:error) |
||
576 | """ |
||
577 | try: |
||
578 | self._scanning_device.close_scanner() |
||
579 | self._scanning_device.close_scanner_clock() |
||
580 | except Exception as e: |
||
581 | self.log.exception('Could not even close the scanner, giving up.') |
||
582 | raise e |
||
583 | try: |
||
584 | self._scanning_device.unlock() |
||
585 | except Exception as e: |
||
586 | self.log.exception('Could not unlock scanning device.') |
||
587 | |||
588 | return 0 |
||
589 | |||
590 | def set_position(self, tag, x=None, y=None, z=None, a=None): |
||
591 | """Forwarding the desired new position from the GUI to the scanning device. |
||
592 | |||
593 | @param string tag: TODO |
||
594 | |||
595 | @param float x: if defined, changes to postion in x-direction (microns) |
||
596 | @param float y: if defined, changes to postion in y-direction (microns) |
||
597 | @param float z: if defined, changes to postion in z-direction (microns) |
||
598 | @param float a: if defined, changes to postion in a-direction (microns) |
||
599 | |||
600 | @return int: error code (0:OK, -1:error) |
||
601 | """ |
||
602 | # print(tag, x, y, z) |
||
603 | # Changes the respective value |
||
604 | if x is not None: |
||
605 | self._current_x = x |
||
606 | if y is not None: |
||
607 | self._current_y = y |
||
608 | if z is not None: |
||
609 | self._current_z = z |
||
610 | |||
611 | # Checks if the scanner is still running |
||
612 | if self.getState() == 'locked' or self._scanning_device.getState() == 'locked': |
||
613 | return -1 |
||
614 | else: |
||
615 | self._change_position(tag) |
||
616 | self.signal_change_position.emit(tag) |
||
617 | return 0 |
||
618 | |||
619 | |||
620 | def _change_position(self, tag): |
||
621 | """ Threaded method to change the hardware position. |
||
622 | |||
623 | @return int: error code (0:OK, -1:error) |
||
624 | """ |
||
625 | # if tag == 'optimizer' or tag == 'scanner' or tag == 'activation': |
||
626 | self._scanning_device.scanner_set_position( |
||
627 | x=self._current_x, |
||
628 | y=self._current_y, |
||
629 | z=self._current_z, |
||
630 | a=self._current_a |
||
631 | ) |
||
632 | return 0 |
||
633 | |||
634 | |||
635 | def get_position(self): |
||
636 | """Forwarding the desired new position from the GUI to the scanning device. |
||
637 | |||
638 | @return list: with three entries x, y and z denoting the current |
||
639 | position in microns |
||
640 | """ |
||
641 | #FIXME: change that to SI units! |
||
642 | return self._scanning_device.get_scanner_position()[:3] |
||
643 | |||
644 | |||
645 | def _scan_line(self): |
||
646 | """scanning an image in either depth or xy |
||
647 | |||
648 | """ |
||
649 | # TODO: change z_values, if z is changed during scan! |
||
650 | # stops scanning |
||
651 | if self.stopRequested: |
||
652 | with self.threadlock: |
||
653 | self.kill_scanner() |
||
654 | self.stopRequested = False |
||
655 | self.unlock() |
||
656 | self.signal_xy_image_updated.emit() |
||
657 | self.signal_depth_image_updated.emit() |
||
658 | self.set_position('scanner') |
||
659 | if self._zscan: |
||
660 | self._depth_line_pos = self._scan_counter |
||
661 | else: |
||
662 | self._xy_line_pos = self._scan_counter |
||
663 | # add new history entry |
||
664 | new_history = ConfocalHistoryEntry(self) |
||
665 | new_history.snapshot(self) |
||
666 | self.history.append(new_history) |
||
667 | if len(self.history) > self.max_history_length: |
||
668 | self.history.pop(0) |
||
669 | self.history_index = len(self.history) - 1 |
||
670 | return |
||
671 | |||
672 | if self._zscan: |
||
673 | if self.TiltCorrection: |
||
674 | image = copy(self.depth_image) |
||
675 | image[:, :, 2] += self._calc_dz(x=image[:, :, 0], y=image[:, :, 1]) |
||
676 | else: |
||
677 | image = self.depth_image |
||
678 | else: |
||
679 | if self.TiltCorrection: |
||
680 | image = copy(self.xy_image) |
||
681 | image[:, :, 2] += self._calc_dz(x=image[:, :, 0], y=image[:, :, 1]) |
||
682 | else: |
||
683 | image = self.xy_image |
||
684 | |||
685 | try: |
||
686 | if self._scan_counter == 0: |
||
687 | # defines trace of positions for single line scan |
||
688 | start_line = np.vstack(( |
||
689 | np.linspace(self._current_x, image[self._scan_counter, 0, 0], self.return_slowness), |
||
690 | np.linspace(self._current_y, image[self._scan_counter, 0, 1], self.return_slowness), |
||
691 | np.linspace(self._current_z, image[self._scan_counter, 0, 2], self.return_slowness), |
||
692 | np.linspace(self._current_a, 0, self.return_slowness) |
||
693 | )) |
||
694 | # scan of a single line |
||
695 | start_line_counts = self._scanning_device.scan_line(start_line) |
||
696 | # defines trace of positions for a single line scan |
||
697 | line = np.vstack((image[self._scan_counter, :, 0], |
||
698 | image[self._scan_counter, :, 1], |
||
699 | image[self._scan_counter, :, 2], |
||
700 | image[self._scan_counter, :, 3])) |
||
701 | # scan of a single line |
||
702 | line_counts = self._scanning_device.scan_line(line) |
||
703 | # defines trace of positions for a single return line scan |
||
704 | if self.depth_scan_dir_is_xz: |
||
705 | return_line = np.vstack(( |
||
706 | self._return_XL, |
||
707 | image[self._scan_counter, 0, 1] * np.ones(self._return_XL.shape), |
||
708 | image[self._scan_counter, 0, 2] * np.ones(self._return_XL.shape), |
||
709 | self._return_AL |
||
710 | )) |
||
711 | else: |
||
712 | return_line = np.vstack(( |
||
713 | image[self._scan_counter, 0, 1] * np.ones(self._return_YL.shape), |
||
714 | self._return_YL, |
||
715 | image[self._scan_counter, 0, 2] * np.ones(self._return_YL.shape), |
||
716 | self._return_AL |
||
717 | )) |
||
718 | |||
719 | # scan of a single return-line |
||
720 | # This is just needed in order to return the scanner to the start of next line |
||
721 | return_line_counts = self._scanning_device.scan_line(return_line) |
||
722 | |||
723 | # updating images |
||
724 | if self._zscan: |
||
725 | if self.depth_scan_dir_is_xz: |
||
726 | self.depth_image[self._scan_counter, :, 3] = line_counts |
||
727 | else: |
||
728 | self.depth_image[self._scan_counter, :, 3] = line_counts |
||
729 | self.signal_depth_image_updated.emit() |
||
730 | else: |
||
731 | self.xy_image[self._scan_counter, :, 3] = line_counts |
||
732 | self.signal_xy_image_updated.emit() |
||
733 | |||
734 | # call this again from event loop |
||
735 | self._scan_counter += 1 |
||
736 | # stop scanning when last line scan was performed and makes scan not continuable |
||
737 | |||
738 | if self._scan_counter >= np.size(self._image_vert_axis): |
||
739 | if not self.permanent_scan: |
||
740 | self.stop_scanning() |
||
741 | if self._zscan: |
||
742 | self._zscan_continuable = False |
||
743 | else: |
||
744 | self._xyscan_continuable = False |
||
745 | else: |
||
746 | self._scan_counter = 0 |
||
747 | |||
748 | self.signal_scan_lines_next.emit() |
||
749 | |||
750 | except Exception as e: |
||
751 | self.log.critical('The scan went wrong, killing the scanner.') |
||
752 | self.stop_scanning() |
||
753 | self.signal_scan_lines_next.emit() |
||
754 | raise e |
||
755 | |||
756 | |||
757 | def save_xy_data(self, colorscale_range=None, percentile_range=None): |
||
758 | """ Save the current confocal xy data to file. |
||
759 | |||
760 | Two files are created. The first is the imagedata, which has a text-matrix of count values |
||
761 | corresponding to the pixel matrix of the image. Only count-values are saved here. |
||
762 | |||
763 | The second file saves the full raw data with x, y, z, and counts at every pixel. |
||
764 | |||
765 | A figure is also saved. |
||
766 | |||
767 | @param: list colorscale_range (optional) The range [min, max] of the display colour scale (for the figure) |
||
768 | |||
769 | @param: list percentile_range (optional) The percentile range [min, max] of the color scale |
||
770 | """ |
||
771 | save_time = datetime.now() |
||
772 | |||
773 | filepath = self._save_logic.get_path_for_module(module_name='Confocal') |
||
774 | |||
775 | # Prepare the metadata parameters (common to both saved files): |
||
776 | parameters = OrderedDict() |
||
777 | |||
778 | parameters['X image min (micrometer)'] = self.image_x_range[0] |
||
779 | parameters['X image max (micrometer)'] = self.image_x_range[1] |
||
780 | parameters['X image range (micrometer)'] = self.image_x_range[1] - self.image_x_range[0] |
||
781 | |||
782 | parameters['Y image min'] = self.image_y_range[0] |
||
783 | parameters['Y image max'] = self.image_y_range[1] |
||
784 | parameters['Y image range'] = self.image_y_range[1] - self.image_y_range[0] |
||
785 | |||
786 | parameters['XY resolution (samples per range)'] = self.xy_resolution |
||
787 | parameters['XY Image at z position (micrometer)'] = self._current_z |
||
788 | |||
789 | parameters['Clock frequency of scanner (Hz)'] = self._clock_frequency |
||
790 | parameters['Return Slowness (Steps during retrace line)'] = self.return_slowness |
||
791 | |||
792 | # data for the text-array "image": |
||
793 | image_data = OrderedDict() |
||
794 | image_data['Confocal pure XY scan image data without axis.\n' |
||
795 | '# The upper left entry represents the signal at the upper ' |
||
796 | 'left pixel position.\n' |
||
797 | '# A pixel-line in the image corresponds to a row ' |
||
798 | 'of entries where the Signal is in counts/s:'] = self.xy_image[:,:,3] |
||
799 | |||
800 | # Prepare a figure to be saved |
||
801 | figure_data = self.xy_image[:,:,3] |
||
802 | image_extent = [self.image_x_range[0], |
||
803 | self.image_x_range[1], |
||
804 | self.image_y_range[0], |
||
805 | self.image_y_range[1] |
||
806 | ] |
||
807 | axes = ['X', 'Y'] |
||
808 | crosshair_pos = [self.get_position()[0], self.get_position()[1]] |
||
809 | |||
810 | fig = self.draw_figure(data=figure_data, |
||
811 | image_extent=image_extent, |
||
812 | scan_axis=axes, |
||
813 | cbar_range=colorscale_range, |
||
814 | percentile_range=percentile_range, |
||
815 | crosshair_pos=crosshair_pos |
||
816 | ) |
||
817 | |||
818 | # Save the image data and figure |
||
819 | filelabel = 'confocal_xy_image' |
||
820 | self._save_logic.save_data(image_data, |
||
821 | filepath, |
||
822 | parameters=parameters, |
||
823 | filelabel=filelabel, |
||
824 | as_text=True, |
||
825 | timestamp=save_time, |
||
826 | plotfig=fig |
||
827 | ) |
||
828 | #, as_xml=False, precision=None, delimiter=None) |
||
829 | plt.close(fig) |
||
830 | |||
831 | # prepare the full raw data in an OrderedDict: |
||
832 | data = OrderedDict() |
||
833 | x_data = [] |
||
834 | y_data = [] |
||
835 | z_data = [] |
||
836 | counts_data = [] |
||
837 | |||
838 | for row in self.xy_image: |
||
839 | for entry in row: |
||
840 | x_data.append(entry[0]) |
||
841 | y_data.append(entry[1]) |
||
842 | z_data.append(entry[2]) |
||
843 | counts_data.append(entry[3]) |
||
844 | |||
845 | data['x values (micron)'] = x_data |
||
846 | data['y values (micron)'] = y_data |
||
847 | data['z values (micron)'] = z_data |
||
848 | data['count values (c/s)'] = counts_data |
||
849 | |||
850 | # Save the raw data to file |
||
851 | filelabel = 'confocal_xy_data' |
||
852 | self._save_logic.save_data(data, |
||
853 | filepath, |
||
854 | parameters=parameters, |
||
855 | filelabel=filelabel, |
||
856 | as_text=True, |
||
857 | timestamp=save_time |
||
858 | ) |
||
859 | #, as_xml=False, precision=None, delimiter=None) |
||
860 | |||
861 | self.log.debug('Confocal Image saved to:\n{0}'.format(filepath)) |
||
862 | |||
863 | def save_depth_data(self, colorscale_range=None, percentile_range=None): |
||
864 | """ Save the current confocal depth data to file. |
||
865 | |||
866 | Two files are created. The first is the imagedata, which has a text-matrix of count values |
||
867 | corresponding to the pixel matrix of the image. Only count-values are saved here. |
||
868 | |||
869 | The second file saves the full raw data with x, y, z, and counts at every pixel. |
||
870 | """ |
||
871 | save_time = datetime.now() |
||
872 | |||
873 | filepath = self._save_logic.get_path_for_module(module_name='Confocal') |
||
874 | |||
875 | # Prepare the metadata parameters (common to both saved files): |
||
876 | parameters = OrderedDict() |
||
877 | |||
878 | # TODO: This needs to check whether the scan was XZ or YZ direction |
||
879 | parameters['X image min (micrometer)'] = self.image_x_range[0] |
||
880 | parameters['X image max (micrometer)'] = self.image_x_range[1] |
||
881 | parameters['X image range (micrometer)'] = self.image_x_range[1] - self.image_x_range[0] |
||
882 | |||
883 | parameters['Z image min'] = self.image_z_range[0] |
||
884 | parameters['Z image max'] = self.image_z_range[1] |
||
885 | parameters['Z image range'] = self.image_z_range[1] - self.image_z_range[0] |
||
886 | |||
887 | parameters['XY resolution (samples per range)'] = self.xy_resolution |
||
888 | parameters['Z resolution (samples per range)'] = self.z_resolution |
||
889 | parameters['Depth Image at y position (micrometer)'] = self._current_y |
||
890 | |||
891 | parameters['Clock frequency of scanner (Hz)'] = self._clock_frequency |
||
892 | parameters['Return Slowness (Steps during retrace line)'] = self.return_slowness |
||
893 | |||
894 | # data for the text-array "image": |
||
895 | image_data = OrderedDict() |
||
896 | image_data['Confocal pure depth scan image data without axis.\n' |
||
897 | '# The upper left entry represents the signal at the upper ' |
||
898 | 'left pixel position.\n' |
||
899 | '# A pixel-line in the image corresponds to a row in ' |
||
900 | 'of entries where the Signal is in counts/s:'] = self.depth_image[:,:,3] |
||
901 | |||
902 | # Prepare a figure to be saved |
||
903 | figure_data = self.depth_image[:,:,3] |
||
904 | |||
905 | if self.depth_scan_dir_is_xz: |
||
906 | horizontal_range = [self.image_x_range[0], self.image_x_range[1]] |
||
907 | axes = ['X', 'Z'] |
||
908 | crosshair_pos = [self.get_position()[0], self.get_position()[2]] |
||
909 | else: |
||
910 | horizontal_range = [self.image_y_range[0], self.image_y_range[1]] |
||
911 | axes = ['Y', 'Z'] |
||
912 | crosshair_pos = [self.get_position()[1], self.get_position()[2]] |
||
913 | |||
914 | image_extent = [horizontal_range[0], |
||
915 | horizontal_range[1], |
||
916 | self.image_z_range[0], |
||
917 | self.image_z_range[1] |
||
918 | ] |
||
919 | |||
920 | fig = self.draw_figure(data=figure_data, |
||
921 | image_extent=image_extent, |
||
922 | scan_axis=axes, |
||
923 | cbar_range=colorscale_range, |
||
924 | percentile_range=percentile_range, |
||
925 | crosshair_pos=crosshair_pos |
||
926 | ) |
||
927 | |||
928 | # Save the image data and figure |
||
929 | filelabel = 'confocal_xy_image' |
||
930 | self._save_logic.save_data(image_data, |
||
931 | filepath, |
||
932 | parameters=parameters, |
||
933 | filelabel=filelabel, |
||
934 | as_text=True, |
||
935 | timestamp=save_time, |
||
936 | plotfig=fig |
||
937 | ) |
||
938 | #, as_xml=False, precision=None, delimiter=None) |
||
939 | plt.close(fig) |
||
940 | |||
941 | # prepare the full raw data in an OrderedDict: |
||
942 | data = OrderedDict() |
||
943 | x_data = [] |
||
944 | y_data = [] |
||
945 | z_data = [] |
||
946 | counts_data = [] |
||
947 | |||
948 | for row in self.depth_image: |
||
949 | for entry in row: |
||
950 | x_data.append(entry[0]) |
||
951 | y_data.append(entry[1]) |
||
952 | z_data.append(entry[2]) |
||
953 | counts_data.append(entry[3]) |
||
954 | |||
955 | data['x values (micros)'] = x_data |
||
956 | data['y values (micros)'] = y_data |
||
957 | data['z values (micros)'] = z_data |
||
958 | data['count values (micros)'] = counts_data |
||
959 | |||
960 | # Save the raw data to file |
||
961 | filelabel = 'confocal_depth_data' |
||
962 | self._save_logic.save_data(data, |
||
963 | filepath, |
||
964 | parameters=parameters, |
||
965 | filelabel=filelabel, |
||
966 | as_text=True, |
||
967 | timestamp=save_time |
||
968 | ) |
||
969 | #, as_xml=False, precision=None, delimiter=None) |
||
970 | |||
971 | self.log.debug('Confocal Image saved to:\n{0}'.format(filepath)) |
||
972 | |||
973 | def draw_figure(self, data, image_extent, scan_axis=None, cbar_range=None, percentile_range=None, crosshair_pos=None): |
||
974 | """ Create a 2-D color map figure of the scan image. |
||
975 | |||
976 | @param: array data: The NxM array of count values from a scan with NxM pixels. |
||
977 | |||
978 | @param: list image_extent: The scan range in the form [hor_min, hor_max, ver_min, ver_max] |
||
979 | |||
980 | @param: list axes: Names of the horizontal and vertical axes in the image |
||
981 | |||
982 | @param: list cbar_range: (optional) [color_scale_min, color_scale_max]. If not supplied then a default of |
||
983 | data_min to data_max will be used. |
||
984 | |||
985 | @param: list percentile_range: (optional) Percentile range of the chosen cbar_range. |
||
986 | |||
987 | @param: list crosshair_pos: (optional) crosshair position as [hor, vert] in the chosen image axes. |
||
988 | |||
989 | @return: fig fig: a matplotlib figure object to be saved to file. |
||
990 | """ |
||
991 | if scan_axis is None: |
||
992 | scan_axis = ['X', 'Y'] |
||
993 | |||
994 | # If no colorbar range was given, take full range of data |
||
995 | if cbar_range is None: |
||
996 | cbar_range = [np.min(data), np.max(data)] |
||
997 | |||
998 | # Scale color values using SI prefix |
||
999 | prefix = ['', 'k', 'M', 'G'] |
||
1000 | prefix_count = 0 |
||
1001 | image_data = data |
||
1002 | draw_cb_range = np.array(cbar_range) |
||
1003 | |||
1004 | while draw_cb_range[1] > 1000: |
||
1005 | image_data = image_data/1000 |
||
1006 | draw_cb_range = draw_cb_range/1000 |
||
1007 | prefix_count = prefix_count + 1 |
||
1008 | |||
1009 | c_prefix = prefix[prefix_count] |
||
1010 | |||
1011 | # Use qudi style |
||
1012 | plt.style.use(self._save_logic.mpl_qd_style) |
||
1013 | |||
1014 | # Create figure |
||
1015 | fig, ax = plt.subplots() |
||
1016 | |||
1017 | # Create image plot |
||
1018 | cfimage = ax.imshow(image_data, |
||
1019 | cmap=plt.get_cmap('inferno'), # reference the right place in qd |
||
1020 | origin="lower", |
||
1021 | vmin=draw_cb_range[0], |
||
1022 | vmax=draw_cb_range[1], |
||
1023 | interpolation='none', |
||
1024 | extent=image_extent |
||
1025 | ) |
||
1026 | |||
1027 | ax.set_aspect(1) |
||
1028 | ax.set_xlabel(scan_axis[0] + ' position (um)') |
||
1029 | ax.set_ylabel(scan_axis[1] + ' position (um)') |
||
1030 | ax.spines['bottom'].set_position(('outward', 10)) |
||
1031 | ax.spines['left'].set_position(('outward', 10)) |
||
1032 | ax.spines['top'].set_visible(False) |
||
1033 | ax.spines['right'].set_visible(False) |
||
1034 | ax.get_xaxis().tick_bottom() |
||
1035 | ax.get_yaxis().tick_left() |
||
1036 | |||
1037 | # draw the crosshair position if defined |
||
1038 | if crosshair_pos is not None: |
||
1039 | trans_xmark = mpl.transforms.blended_transform_factory( |
||
1040 | ax.transData, |
||
1041 | ax.transAxes) |
||
1042 | |||
1043 | trans_ymark = mpl.transforms.blended_transform_factory( |
||
1044 | ax.transAxes, |
||
1045 | ax.transData) |
||
1046 | |||
1047 | ax.annotate('', xy=(crosshair_pos[0], 0), xytext=(crosshair_pos[0], -0.01), xycoords=trans_xmark, |
||
1048 | arrowprops=dict(facecolor='#17becf', shrink=0.05), |
||
1049 | ) |
||
1050 | |||
1051 | ax.annotate('', xy=(0, crosshair_pos[1]), xytext=(-0.01, crosshair_pos[1]), xycoords=trans_ymark, |
||
1052 | arrowprops=dict(facecolor='#17becf', shrink=0.05), |
||
1053 | ) |
||
1054 | |||
1055 | # Draw the colorbar |
||
1056 | cbar = plt.colorbar(cfimage, shrink=0.8)#, fraction=0.046, pad=0.08, shrink=0.75) |
||
1057 | cbar.set_label('Fluorescence (' + c_prefix + 'c/s)') |
||
1058 | |||
1059 | # remove ticks from colorbar for cleaner image |
||
1060 | cbar.ax.tick_params(which=u'both', length=0) |
||
1061 | |||
1062 | # If we have percentile information, draw that to the figure |
||
1063 | if percentile_range is not None: |
||
1064 | cbar.ax.annotate(str(percentile_range[0]), |
||
1065 | xy=(-0.3, 0.0), |
||
1066 | xycoords='axes fraction', |
||
1067 | horizontalalignment='right', |
||
1068 | verticalalignment='center', |
||
1069 | rotation=90 |
||
1070 | ) |
||
1071 | cbar.ax.annotate(str(percentile_range[1]), |
||
1072 | xy=(-0.3, 1.0), |
||
1073 | xycoords='axes fraction', |
||
1074 | horizontalalignment='right', |
||
1075 | verticalalignment='center', |
||
1076 | rotation=90 |
||
1077 | ) |
||
1078 | cbar.ax.annotate('(percentile)', |
||
1079 | xy=(-0.3, 0.5), |
||
1080 | xycoords='axes fraction', |
||
1081 | horizontalalignment='right', |
||
1082 | verticalalignment='center', |
||
1083 | rotation=90 |
||
1084 | ) |
||
1085 | |||
1086 | return fig |
||
1087 | |||
1088 | ##################################### Tilit correction ######################################## |
||
1089 | |||
1090 | def set_tilt_point1(self): |
||
1091 | """ Gets the first reference point for tilt correction.""" |
||
1092 | self.point1 = np.array(self._scanning_device.get_scanner_position()[:3]) |
||
1093 | |||
1094 | def set_tilt_point2(self): |
||
1095 | """ Gets the second reference point for tilt correction.""" |
||
1096 | self.point2 = np.array(self._scanning_device.get_scanner_position()[:3]) |
||
1097 | |||
1098 | def set_tilt_point3(self): |
||
1099 | """Gets the third reference point for tilt correction.""" |
||
1100 | self.point3 = np.array(self._scanning_device.get_scanner_position()[:3]) |
||
1101 | |||
1102 | def calc_tilt_correction(self): |
||
1103 | """Calculates the values for the tilt correction.""" |
||
1104 | a = self.point2 - self.point1 |
||
1105 | b = self.point3 - self.point1 |
||
1106 | n = np.cross(a,b) |
||
1107 | self._scanning_device.tilt_variable_ax = n[0] / n[2] |
||
1108 | self._scanning_device.tilt_variable_ay = n[1] / n[2] |
||
1109 | |||
1110 | def activate_tiltcorrection(self): |
||
1111 | self._scanning_device.tiltcorrection = True |
||
1112 | self._scanning_device.tilt_reference_x = self._scanning_device.get_scanner_position()[0] |
||
1113 | self._scanning_device.tilt_reference_y = self._scanning_device.get_scanner_position()[1] |
||
1114 | |||
1115 | def deactivate_tiltcorrection(self): |
||
1116 | self._scanning_device.tiltcorrection = False |
||
1117 | self._scanning_device.tilt_reference_x = self._scanning_device.get_scanner_position()[0] |
||
1118 | self._scanning_device.tilt_reference_y = self._scanning_device.get_scanner_position()[1] |
||
1119 | |||
1120 | View Code Duplication | def history_forward(self): |
|
|
|||
1121 | if self.history_index < len(self.history) - 1: |
||
1122 | self.history_index += 1 |
||
1123 | self.history[self.history_index].restore(self) |
||
1124 | self.signal_xy_image_updated.emit() |
||
1125 | self.signal_depth_image_updated.emit() |
||
1126 | self._change_position('history') |
||
1127 | self.signal_change_position.emit('history') |
||
1128 | self.signal_history_event.emit() |
||
1129 | |||
1130 | View Code Duplication | def history_back(self): |
|
1131 | if self.history_index > 0: |
||
1132 | self.history_index -= 1 |
||
1133 | self.history[self.history_index].restore(self) |
||
1134 | self.signal_xy_image_updated.emit() |
||
1135 | self.signal_depth_image_updated.emit() |
||
1136 | self._change_position('history') |
||
1137 | self.signal_change_position.emit('history') |
||
1138 | self.signal_history_event.emit() |
||
1139 |