1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
""" |
3
|
|
|
This file contains the general Qudi trace analysis logic. |
4
|
|
|
Qudi is free software: you can redistribute it and/or modify |
5
|
|
|
it under the terms of the GNU General Public License as published by |
6
|
|
|
the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
(at your option) any later version. |
8
|
|
|
Qudi is distributed in the hope that it will be useful, |
9
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
10
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
11
|
|
|
GNU General Public License for more details. |
12
|
|
|
You should have received a copy of the GNU General Public License |
13
|
|
|
along with Qudi. If not, see <http://www.gnu.org/licenses/>. |
14
|
|
|
Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the |
15
|
|
|
top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> |
16
|
|
|
""" |
17
|
|
|
|
18
|
|
|
from qtpy import QtCore |
19
|
|
|
import numpy as np |
20
|
|
|
from scipy.signal import gaussian |
21
|
|
|
from scipy.ndimage import filters |
22
|
|
|
import scipy.integrate as integrate |
23
|
|
|
from scipy.interpolate import InterpolatedUnivariateSpline |
24
|
|
|
from collections import OrderedDict |
25
|
|
|
|
26
|
|
|
from core.module import Connector |
27
|
|
|
from logic.generic_logic import GenericLogic |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
class TraceAnalysisLogic(GenericLogic): |
31
|
|
|
""" Perform a gated counting measurement with the hardware. """ |
32
|
|
|
|
33
|
|
|
_modclass = 'TraceAnalysisLogic' |
34
|
|
|
_modtype = 'logic' |
35
|
|
|
|
36
|
|
|
# declare connectors |
37
|
|
|
counterlogic1 = Connector(interface='CounterLogic') |
38
|
|
|
savelogic = Connector(interface='SaveLogic') |
39
|
|
|
fitlogic = Connector(interface='FitLogic') |
40
|
|
|
|
41
|
|
|
sigHistogramUpdated = QtCore.Signal() |
42
|
|
|
sigAnalysisResultsUpdated = QtCore.Signal() |
43
|
|
|
|
44
|
|
|
def __init__(self, config, **kwargs): |
45
|
|
|
""" Create CounterLogic object with connectors. |
46
|
|
|
@param dict config: module configuration |
47
|
|
|
@param dict kwargs: optional parameters |
48
|
|
|
""" |
49
|
|
|
super().__init__(config=config, **kwargs) |
50
|
|
|
|
51
|
|
|
self.log.debug('The following configuration was found.') |
52
|
|
|
|
53
|
|
|
# checking for the right configuration |
54
|
|
|
for key in config.keys(): |
55
|
|
|
self.log.debug('{0}: {1}'.format(key, config[key])) |
56
|
|
|
|
57
|
|
|
self.hist_data = None |
58
|
|
|
self._hist_num_bins = None |
59
|
|
|
self.spin_flip_prob = 0 |
60
|
|
|
self.fidelity_left = 0 |
61
|
|
|
self.fidelity_right = 0 |
62
|
|
|
|
63
|
|
|
def on_activate(self): |
64
|
|
|
""" Initialisation performed during activation of the module. |
65
|
|
|
""" |
66
|
|
|
|
67
|
|
|
# self._counter_logic = self.get_connector('counterlogic1') |
68
|
|
|
self._save_logic = self.get_connector('savelogic') |
69
|
|
|
self._fit_logic = self.get_connector('fitlogic') |
70
|
|
|
self.trace = np.array([]) |
71
|
|
|
|
72
|
|
|
# self._counter_logic.sigGatedCounterFinished.connect(self.do_calculate_histogram) |
73
|
|
|
|
74
|
|
|
|
75
|
|
|
self.current_fit_function = 'No Fit' |
76
|
|
|
|
77
|
|
|
def on_deactivate(self): |
78
|
|
|
""" Deinitialisation performed during deactivation of the module. |
79
|
|
|
""" |
80
|
|
|
return |
81
|
|
|
|
82
|
|
|
def set_num_bins_histogram(self, num_bins, update=True): |
83
|
|
|
""" Set the number of bins |
84
|
|
|
@param int num_bins: number of bins for the histogram |
85
|
|
|
@param bool update: if the change of bins should evoke a recalculation |
86
|
|
|
of the histogram. |
87
|
|
|
""" |
88
|
|
|
self._hist_num_bins = num_bins |
89
|
|
|
|
90
|
|
|
if update: |
91
|
|
|
self.do_calculate_histogram() |
92
|
|
|
|
93
|
|
|
def do_calculate_histogram(self, mode='normal'): |
94
|
|
|
""" Passes all the needed parameters to the appropriated methods. |
95
|
|
|
@return: |
96
|
|
|
""" |
97
|
|
|
if mode == 'normal': |
98
|
|
|
self.hist_data = self.calculate_histogram(self._counter_logic.countdata[0], |
99
|
|
|
self._hist_num_bins) |
100
|
|
|
if mode == 'fastcomtec': |
101
|
|
|
self.sigHistogramUpdated.emit() |
102
|
|
|
|
103
|
|
|
def calculate_histogram(self, trace, num_bins=None, custom_bin_arr=None): |
104
|
|
|
""" Calculate the histogram of a given trace. |
105
|
|
|
@param np.array trace: a 1D trace |
106
|
|
|
@param int num_bins: number of bins between the minimal and maximal |
107
|
|
|
value of the trace. That must be an integer greater |
108
|
|
|
than or equal to 1. |
109
|
|
|
@param np.array custom_bin_arr: optional, 1D array. If a specific, |
110
|
|
|
non-uniform binning array is desired |
111
|
|
|
then it can be passed to the numpy |
112
|
|
|
routine. Then the parameter num_bins is |
113
|
|
|
ignored. Otherwise a uniform binning is |
114
|
|
|
applied by default. |
115
|
|
|
@return: np.array: a 2D array, where first entry are the x_values and |
116
|
|
|
second entry are the count values. The length of the |
117
|
|
|
array is normally determined by the num_bins |
118
|
|
|
parameter. |
119
|
|
|
Usually the bins for the histogram are taken to be equally spaced, |
120
|
|
|
ranging from the minimal to the maximal value of the input trace array. |
121
|
|
|
""" |
122
|
|
|
|
123
|
|
|
if custom_bin_arr is not None: |
124
|
|
|
hist_y_val, hist_x_val = np.histogram(trace, custom_bin_arr, |
125
|
|
|
density=False) |
126
|
|
|
else: |
127
|
|
|
|
128
|
|
|
# analyze the trace, and check whether all values are the same |
129
|
|
|
difference = trace.max() - trace.min() |
130
|
|
|
|
131
|
|
|
# if all values are the same, run at least the method with an zero |
132
|
|
|
# array. That will ensure at least an output: |
133
|
|
|
if np.isclose(0, difference) and num_bins is None: |
134
|
|
|
# numpy can handle an array of zeros |
135
|
|
|
num_bins = 50 |
136
|
|
|
hist_y_val, hist_x_val = np.histogram(trace, num_bins) |
137
|
|
|
|
138
|
|
|
# if no number of bins are passed, then take the integer difference |
139
|
|
|
# between the counts, that will prevent strange histogram artifacts: |
140
|
|
|
elif not np.isclose(0, difference) and num_bins is None: |
141
|
|
|
hist_y_val, hist_x_val = np.histogram(trace, int(difference)) |
142
|
|
|
|
143
|
|
|
# a histogram with self defined number of bins |
144
|
|
|
else: |
145
|
|
|
hist_y_val, hist_x_val = np.histogram(trace, num_bins) |
146
|
|
|
|
147
|
|
|
self.hist_data = np.array([hist_x_val, hist_y_val]) |
148
|
|
|
self.sigHistogramUpdated.emit() |
149
|
|
|
|
150
|
|
|
return self.hist_data |
151
|
|
|
|
152
|
|
|
def analyze_flip_prob(self, trace, num_bins=None, threshold=None): |
153
|
|
|
"""General method, which analysis how often a value was changed from |
154
|
|
|
one data point to another in relation to a certain threshold. |
155
|
|
|
@param np.array trace: 1D trace of data |
156
|
|
|
@param int num_bins: optional, if a specific size for the histogram is |
157
|
|
|
desired, which is used to calculate the threshold. |
158
|
|
|
@param float threshold: optional, if a specific threshold is going to be |
159
|
|
|
used, otherwise the threshold is calculated from |
160
|
|
|
the data. |
161
|
|
|
@return tuple(flip_prop, param): |
162
|
|
|
float flip_prop: the actual flip probability |
163
|
|
|
int num_of_flips: the total number of flips |
164
|
|
|
float fidelity: the fidelity |
165
|
|
|
float threshold: the calculated or passed threshold |
166
|
|
|
float lifetime_dark: the lifetime in the dark state in s |
167
|
|
|
float lifetime_bright: lifetime in the bright state in s |
168
|
|
|
""" |
169
|
|
|
|
170
|
|
|
hist_data = self.calculate_histogram(trace=trace, num_bins=num_bins) |
171
|
|
|
threshold_fit, fidelity, fit_param = self.calculate_threshold(hist_data) |
172
|
|
|
bin_trace = self.calculate_binary_trace(trace, threshold_fit) |
173
|
|
|
|
174
|
|
|
# here the index_arr contain all indices where the state is above |
175
|
|
|
# threshold, indicating the bright state. |
176
|
|
|
index_arr, filtered_arr = self.extract_filtered_values(trace, threshold_fit, below=False) |
177
|
|
|
|
178
|
|
|
# by shifting the index_arr one value further, one will investigate |
179
|
|
|
# basically the next state, where a change has happened. |
180
|
|
|
next_index_arr = index_arr + 1 |
181
|
|
|
|
182
|
|
|
# Just for safety neglect the last value in the index_arr so that one |
183
|
|
|
# will not go beyond the array. |
184
|
|
|
next_filtered_bin_arr = bin_trace[next_index_arr[:-1]] |
185
|
|
|
|
186
|
|
|
# calculate how many darkstates are present in the array, remember |
187
|
|
|
# filtered_arr contains all the bright states. |
188
|
|
|
num_dark_state = len(trace) - len(filtered_arr) |
189
|
|
|
num_bright_state = len(filtered_arr) |
190
|
|
|
|
191
|
|
|
# extract the number of state, which has been flipped to dark state |
192
|
|
|
# (True) started in the bright state (=False) |
193
|
|
|
num_flip_to_dark = len(np.where(next_filtered_bin_arr == True)[0]) |
194
|
|
|
|
195
|
|
|
# flip probability: |
196
|
|
|
# In the array filtered_bin_arr all states are in bright state meaning |
197
|
|
|
# that if you would perform for |
198
|
|
|
# filtered_bin_arr = bin_trace[index_arr] |
199
|
|
|
# the mean value with filtered_bin_arr.mean() then you should get 0.0 |
200
|
|
|
# since every entry in that array is False. By looking at the next index |
201
|
|
|
# it might be that some entries turn to True, i.e. a flip from bright to |
202
|
|
|
# dark occurred. Then you get a different mean value, which would |
203
|
|
|
# indicate how many states are flipped from bright (False) to dark (True). |
204
|
|
|
# If all the next states would be dark (True), then you would perform a |
205
|
|
|
# perfect flip into the dark state, meaning a flip probability of 1. |
206
|
|
|
flip_prob = next_filtered_bin_arr.mean() |
207
|
|
|
|
208
|
|
|
# put all the calculated parameters in a proper dict: |
209
|
|
|
param = OrderedDict() |
210
|
|
|
param['num_dark_state'] = num_dark_state # Number of Dark States |
211
|
|
|
param['num_bright_state'] = num_bright_state # Number of Bright States |
212
|
|
|
param['num_flip_to_dark'] = num_flip_to_dark # Number of flips from bright to dark |
213
|
|
|
param['fidelity'] = fidelity # Fidelity of Double Poissonian Fit |
214
|
|
|
param['threshold'] = threshold_fit # Threshold |
215
|
|
|
|
216
|
|
|
# add the fit parameter to the output parameter: |
217
|
|
|
param.update(fit_param) |
218
|
|
|
|
219
|
|
|
return flip_prob, param |
220
|
|
|
|
221
|
|
|
def analyze_flip_prob2(self, trace, threshold=1, analyze_mode='full'): |
222
|
|
|
"""General method, which analysis how often a value was changed from |
223
|
|
|
one data point to another in relation to a certain threshold. |
224
|
|
|
@param np.array trace: 1D trace of data |
225
|
|
|
@param int num_bins: optional, if a specific size for the histogram is |
226
|
|
|
desired, which is used to calculate the threshold. |
227
|
|
|
@param float threshold: optional, if a specific threshold is going to be |
228
|
|
|
used, otherwise the threshold is calculated from |
229
|
|
|
the data. |
230
|
|
|
@return tuple(flip_prop, param): |
231
|
|
|
float flip_prop: the actual flip probability |
232
|
|
|
int num_of_flips: the total number of flips |
233
|
|
|
float fidelity: the fidelity |
234
|
|
|
float threshold: the calculated or passed threshold |
235
|
|
|
float lifetime_dark: the lifetime in the dark state in s |
236
|
|
|
float lifetime_bright: lifetime in the bright state in s |
237
|
|
|
""" |
238
|
|
|
no_flip = 0.0 |
239
|
|
|
|
240
|
|
|
if analyze_mode == 'full': |
241
|
|
|
for ii in range(len(trace) - 1): |
242
|
|
|
if trace[ii] > threshold and trace[ii + 1] > threshold: |
243
|
|
|
no_flip = no_flip + 1 |
244
|
|
|
|
245
|
|
|
elif trace[ii] < threshold and trace[ii + 1] < threshold: |
246
|
|
|
no_flip = no_flip + 1 |
247
|
|
|
|
248
|
|
|
probability = 1.0 - (no_flip / len(trace)) |
249
|
|
|
lost_events = 0.0 |
250
|
|
|
|
251
|
|
|
if analyze_mode == 'dark': |
252
|
|
|
dark_counter = 0.0 |
253
|
|
|
for ii in range(len(trace) - 1): |
254
|
|
|
if trace[ii] < threshold: |
255
|
|
|
dark_counter = dark_counter + 1 |
256
|
|
|
if trace[ii + 1] < threshold: |
257
|
|
|
no_flip = no_flip + 1 |
258
|
|
|
probability = 1.0 - (no_flip / dark_counter) |
259
|
|
|
lost_events = (1.0 - (dark_counter / len(trace))) * 100 |
260
|
|
|
|
261
|
|
|
if analyze_mode == 'bright': |
262
|
|
|
bright_counter = 0.0 |
263
|
|
|
for ii in range(len(trace) - 1): |
264
|
|
|
if trace[ii] > threshold: |
265
|
|
|
bright_counter = bright_counter + 1 |
266
|
|
|
if trace[ii + 1] > threshold: |
267
|
|
|
no_flip = no_flip + 1 |
268
|
|
|
probability = 1.0 - (no_flip / bright_counter) |
269
|
|
|
lost_events = (1.0 - (bright_counter / len(trace))) * 100 |
270
|
|
|
|
271
|
|
|
return probability, lost_events |
272
|
|
|
|
273
|
|
|
def analyze_flip_prob3(self, trace, init_threshold=[1, 1], ana_threshold=[1, 1], analyze_mode='full'): |
274
|
|
|
"""General method, which analysis how often a value was changed from |
275
|
|
|
one data point to another in relation to a certain threshold. |
276
|
|
|
@param np.array trace: 1D trace of data |
277
|
|
|
@param float threshold: optional, if a specific threshold is going to be |
278
|
|
|
used, otherwise the threshold is calculated from |
279
|
|
|
the data. |
280
|
|
|
@return tuple(flip_prop, param): |
281
|
|
|
float flip_prop: the actual flip probability |
282
|
|
|
int num_of_flips: the total number of flips |
283
|
|
|
float fidelity: the fidelity |
284
|
|
|
float threshold: the calculated or passed threshold |
285
|
|
|
float lifetime_dark: the lifetime in the dark state in s |
286
|
|
|
float lifetime_bright: lifetime in the bright state in s |
287
|
|
|
""" |
288
|
|
|
no_flip = 0.0 |
289
|
|
|
flip = 0.0 |
290
|
|
|
|
291
|
|
|
# find all indices in the trace-array, where the value is above init_threshold[1] |
292
|
|
|
init_high = np.where(trace[:-1] > init_threshold[1])[0] |
293
|
|
|
# find all indices in the trace-array, where the value is below init_threshold[0] |
294
|
|
|
init_low = np.where(trace[:-1] < init_threshold[0])[0] |
295
|
|
|
# find all indices in the trace-array, where the value is above ana_threshold[1] |
296
|
|
|
ana_high = np.where(trace > ana_threshold[1])[0] |
297
|
|
|
# find all indices in the trace-array, where the value is below ana_threshold[0] |
298
|
|
|
ana_low = np.where(trace < ana_threshold[0])[0] |
299
|
|
|
|
300
|
|
|
if analyze_mode == 'bright' or analyze_mode == 'full': |
301
|
|
|
# analyze the trace where the data were the nuclear was initalized into one direction |
302
|
|
|
for index in init_high: |
303
|
|
|
# check if the following data point is in the analysis array |
304
|
|
|
if index + 1 in ana_high: |
305
|
|
|
no_flip = no_flip + 1 |
306
|
|
|
elif index + 1 in ana_low: |
307
|
|
|
flip = flip + 1 |
308
|
|
|
|
309
|
|
|
if analyze_mode == 'dark' or analyze_mode == 'full': |
310
|
|
|
# repeat the same if the nucleus was initalized into the other array |
311
|
|
|
for index in init_low: |
312
|
|
|
# check if the following data point is in the analysis array |
313
|
|
|
if index + 1 in ana_high: |
314
|
|
|
flip = flip + 1 |
315
|
|
|
elif index + 1 in ana_low: |
316
|
|
|
no_flip = no_flip + 1 |
317
|
|
|
|
318
|
|
|
# the flip probability is given by the number of flips divided by the total number of analyzed data points |
319
|
|
|
if (flip + no_flip) == 0: |
320
|
|
|
self.log.error('There is not enough data to anaylsis SSR!') |
321
|
|
|
else: |
322
|
|
|
probability = flip / (flip + no_flip) |
323
|
|
|
# the number of lost events is given by the length of the time_trace minus the number of analyzed data points |
324
|
|
|
lost_events = len(trace) - (flip + no_flip) |
325
|
|
|
|
326
|
|
|
return probability, lost_events |
327
|
|
|
|
328
|
|
|
def analyze_flip_prob4(self, trace, bins=30, init_threshold = [1,1], ana_threshold = [1,1], analyze_mode='full'): |
329
|
|
|
""" |
330
|
|
|
Method which calculates the histogram, the fidelity and the flip probability of a time trace. |
331
|
|
|
:param trace: |
332
|
|
|
:param bins: |
333
|
|
|
:param init_margin: |
334
|
|
|
:param ana_margin: |
335
|
|
|
:param analyze_mode: |
336
|
|
|
:return: |
337
|
|
|
""" |
338
|
|
|
|
339
|
|
|
self.calculate_histogram(trace, bins) |
340
|
|
|
axis = self.hist_data[0][:-1] + (self.hist_data[0][1] - self.hist_data[0][0]) / 2. |
341
|
|
|
data = self.hist_data[1] |
342
|
|
|
|
343
|
|
|
try: |
344
|
|
|
hist_fit_x, hist_fit_y, param_dict, fit_result = self.do_doublegaussian_fit(axis, data) |
345
|
|
|
fit_params = fit_result.best_values |
346
|
|
|
|
347
|
|
|
# calculate the fidelity for the left and right part from the threshold |
348
|
|
|
center1 = fit_params['g0_center'] |
349
|
|
|
center2 = fit_params['g1_center'] |
350
|
|
|
std1 = fit_params['g0_sigma'] |
351
|
|
|
std2 = fit_params['g1_sigma'] |
352
|
|
|
gaussian1 = lambda x: fit_params['g0_amplitude'] * np.exp(-(x - center1) ** 2 / (2 * std1 ** 2)) |
353
|
|
|
gaussian2 = lambda x: fit_params['g1_amplitude'] * np.exp(-(x - center2) ** 2 / (2 * std2 ** 2)) |
354
|
|
|
if center1 > center2: |
355
|
|
|
gaussian = gaussian1 |
356
|
|
|
gaussian1 = gaussian2 |
357
|
|
|
gaussian2 = gaussian |
358
|
|
|
area_left1 = integrate.quad(gaussian1, -np.inf, init_threshold[0]) |
359
|
|
|
area_left2 = integrate.quad(gaussian2, -np.inf, init_threshold[0]) |
360
|
|
|
area_right1 = integrate.quad(gaussian1, init_threshold[1], np.inf) |
361
|
|
|
area_right2 = integrate.quad(gaussian2, init_threshold[1], np.inf) |
362
|
|
|
self.fidelity_left = area_left1[0] / (area_left1[0] + area_left2[0]) |
363
|
|
|
self.fidelity_right = area_right2[0] / (area_right1[0] + area_right2[0]) |
364
|
|
|
except: |
365
|
|
|
self.log.warning('Not enough data points yet!') |
366
|
|
|
|
367
|
|
|
# calculate the flip probability |
368
|
|
|
no_flip = 0.0 |
369
|
|
|
flip = 0.0 |
370
|
|
|
# find all indices in the trace-array, where the value is above init_threshold[1] |
371
|
|
|
init_high = np.where(trace[:-1] > init_threshold[1])[0] |
372
|
|
|
# find all indices in the trace-array, where the value is below init_threshold[0] |
373
|
|
|
init_low = np.where(trace[:-1] < init_threshold[0])[0] |
374
|
|
|
# find all indices in the trace-array, where the value is above ana_threshold[1] |
375
|
|
|
ana_high = np.where(trace > ana_threshold[1])[0] |
376
|
|
|
# find all indices in the trace-array, where the value is below ana_threshold[0] |
377
|
|
|
ana_low = np.where(trace < ana_threshold[0])[0] |
378
|
|
|
|
379
|
|
|
if analyze_mode == 'bright' or analyze_mode == 'full': |
380
|
|
|
# analyze the trace where the data were the nuclear was initalized into one direction |
381
|
|
|
for index in init_high: |
382
|
|
|
# check if the following data point is in the analysis array |
383
|
|
|
if index + 1 in ana_high: |
384
|
|
|
no_flip = no_flip + 1 |
385
|
|
|
elif index + 1 in ana_low: |
386
|
|
|
flip = flip + 1 |
387
|
|
|
if analyze_mode == 'dark' or analyze_mode == 'full': |
388
|
|
|
# repeat the same if the nucleus was initalized into the other array |
389
|
|
|
for index in init_low: |
390
|
|
|
# check if the following data point is in the analysis array |
391
|
|
|
if index + 1 in ana_high: |
392
|
|
|
flip = flip + 1 |
393
|
|
|
elif index + 1 in ana_low: |
394
|
|
|
no_flip = no_flip + 1 |
395
|
|
|
|
396
|
|
|
# the flip probability is given by the number of flips divided by the total number of analyzed data points |
397
|
|
|
if (flip + no_flip) == 0: |
398
|
|
|
self.log.error('There is not enough data to anaylsis SSR!') |
399
|
|
|
else: |
400
|
|
|
self.spin_flip_prob = flip / (flip + no_flip) |
401
|
|
|
# the number of lost events is given by the length of the time_trace minus the number of analyzed data points |
402
|
|
|
lost_events = len(trace) - (flip + no_flip) |
403
|
|
|
|
404
|
|
|
results_dict = dict() |
405
|
|
|
results_dict['fidelity_left'] = self.fidelity_left |
406
|
|
|
results_dict['fidelity_right'] = self.fidelity_right |
407
|
|
|
results_dict['flip_prob'] = self.spin_flip_prob |
408
|
|
|
|
409
|
|
|
self.sigAnalysisResultsUpdated.emit() |
410
|
|
|
|
411
|
|
|
return self.spin_flip_prob, lost_events, hist_fit_x, hist_fit_y, fit_result |
412
|
|
|
|
413
|
|
|
def analyze_flip_prob_postselect(self): |
414
|
|
|
""" Post select the data trace so that the flip probability is only |
415
|
|
|
calculated from a jump from below a threshold value to an value |
416
|
|
|
above threshold. |
417
|
|
|
@return: |
418
|
|
|
""" |
419
|
|
|
pass |
420
|
|
|
|
421
|
|
|
def get_fit_functions(self): |
422
|
|
|
""" Return all fit functions, which are currently implemented for that module. |
423
|
|
|
@return list: with string entries denoting the name of the fit. |
424
|
|
|
""" |
425
|
|
|
return ['No Fit', 'Gaussian', 'Double Gaussian', 'Poisson', |
426
|
|
|
'Double Poisson'] |
427
|
|
|
|
428
|
|
|
|
429
|
|
|
def do_fit(self, fit_function=None): |
430
|
|
|
""" Makes the a fit of the current fit function. |
431
|
|
|
@param str fit_function: name of the chosen fit function. |
432
|
|
|
@return tuple(x_val, y_val, fit_results): |
433
|
|
|
x_val: a 1D numpy array containing the x values |
434
|
|
|
y_val: a 1D numpy array containing the y values |
435
|
|
|
fit_results: a string containing the information of the fit |
436
|
|
|
results. |
437
|
|
|
You can obtain with get_fit_methods all implemented fit methods. |
438
|
|
|
""" |
439
|
|
|
|
440
|
|
|
if self.hist_data is None: |
441
|
|
|
hist_fit_x = [] |
442
|
|
|
hist_fit_y = [] |
443
|
|
|
param_dict = OrderedDict() |
444
|
|
|
fit_result = None |
445
|
|
|
return hist_fit_x, hist_fit_y, param_dict, fit_result |
446
|
|
|
else: |
447
|
|
|
|
448
|
|
|
# self.log.debug((self.calculate_threshold(self.hist_data))) |
449
|
|
|
|
450
|
|
|
# shift x axis to middle of bin |
451
|
|
|
axis = self.hist_data[0][:-1] + (self.hist_data[0][1] - self.hist_data[0][0]) / 2. |
452
|
|
|
data = self.hist_data[1] |
453
|
|
|
|
454
|
|
|
if fit_function == 'No Fit': |
455
|
|
|
hist_fit_x, hist_fit_y, fit_param_dict, fit_result = self.do_no_fit() |
456
|
|
|
return hist_fit_x, hist_fit_y, fit_param_dict, fit_result |
457
|
|
|
elif fit_function == 'Gaussian': |
458
|
|
|
hist_fit_x, hist_fit_y, fit_param_dict, fit_result = self.do_gaussian_fit(axis, data) |
459
|
|
|
return hist_fit_x, hist_fit_y, fit_param_dict, fit_result |
460
|
|
|
elif fit_function == 'Double Gaussian': |
461
|
|
|
hist_fit_x, hist_fit_y, fit_param_dict, fit_result = self.do_doublegaussian_fit(axis, data) |
462
|
|
|
return hist_fit_x, hist_fit_y, fit_param_dict, fit_result |
463
|
|
|
elif fit_function == 'Poisson': |
464
|
|
|
hist_fit_x, hist_fit_y, fit_param_dict, fit_result = self.do_possonian_fit(axis, data) |
465
|
|
|
return hist_fit_x, hist_fit_y, fit_param_dict, fit_result |
466
|
|
|
elif fit_function == 'Double Poisson': |
467
|
|
|
hist_fit_x, hist_fit_y, fit_param_dict, fit_result = self.do_doublepossonian_fit(axis, data) |
468
|
|
|
return hist_fit_x, hist_fit_y, fit_param_dict, fit_result |
469
|
|
|
|
470
|
|
|
def do_no_fit(self): |
471
|
|
|
""" Perform no fit, basically return an empty array. |
472
|
|
|
@return tuple(x_val, y_val, fit_results): |
473
|
|
|
x_val: a 1D numpy array containing the x values |
474
|
|
|
y_val: a 1D numpy array containing the y values |
475
|
|
|
fit_results: a string containing the information of the fit |
476
|
|
|
results. |
477
|
|
|
""" |
478
|
|
|
hist_fit_x = [] |
479
|
|
|
hist_fit_y = [] |
480
|
|
|
param_dict = {} |
481
|
|
|
fit_result = None |
482
|
|
|
return hist_fit_x, hist_fit_y, param_dict, fit_result |
483
|
|
|
|
484
|
|
|
def analyze_lifetime(self, trace, dt, method='postselect', |
485
|
|
|
distr='gaussian_normalized', state='|-1>', num_bins=50): |
486
|
|
|
""" Perform an lifetime analysis of a 1D time trace. The analysis is |
487
|
|
|
based on the method provided ( for now only post select is implemented ). |
488
|
|
|
@param numpy array trace: 1 D array |
489
|
|
|
@param string method: The method used for the lifetime analysis |
490
|
|
|
@param string distr: distribution used for analysis |
491
|
|
|
@param string state: State that the mw was applied to |
492
|
|
|
@param int num_bins: number of bins used in the histogram to determine the threshold before digitalisation |
493
|
|
|
of data |
494
|
|
|
@return: dictionary containing the lifetimes of the different states |0>, |1>, |-1> in the case of the HMM method |
495
|
|
|
For the postselect method only lifetime for bright and darkstate is returned, keys are 'bright_state' and |
496
|
|
|
'dark_state' |
497
|
|
|
""" |
498
|
|
|
lifetime_dict = {} |
499
|
|
|
|
500
|
|
|
if method == 'postselect': |
501
|
|
|
if distr == 'gaussian_normalized': |
502
|
|
|
hist_y_val, hist_x_val = np.histogram(trace, num_bins) |
503
|
|
|
hist_data = np.array([hist_x_val, hist_y_val]) |
504
|
|
|
threshold_fit, fidelity, param_dict = self.calculate_threshold(hist_data=hist_data, |
505
|
|
|
distr='gaussian_normalized') |
506
|
|
|
threshold = threshold_fit |
507
|
|
|
|
508
|
|
|
# helper functions to get and analyze the timetrace |
509
|
|
|
def analog_digitial_converter(cut_off, data): |
510
|
|
|
digital_trace = [] |
511
|
|
|
for data_point in data: |
512
|
|
|
if data_point >= cut_off: |
513
|
|
|
digital_trace.append(1) |
514
|
|
|
else: |
515
|
|
|
digital_trace.append(0) |
516
|
|
|
return digital_trace |
517
|
|
|
|
518
|
|
|
def time_in_high_low(digital_trace, dt): |
519
|
|
|
""" |
520
|
|
|
What I need this function to do is to get all consecutive {1, ... , n} 1s or 0s and add |
521
|
|
|
them up and put into a list to later make a histogram from them. |
522
|
|
|
""" |
523
|
|
|
occurances = [] |
524
|
|
|
index = 0 |
525
|
|
|
index2 = 0 |
526
|
|
|
|
527
|
|
|
while (index < len(digital_trace)): |
528
|
|
|
occurances.append(0) |
529
|
|
|
# start following the consecutive 1s |
530
|
|
|
while (digital_trace[index] == 1): |
531
|
|
|
occurances[index2] += 1 |
532
|
|
|
if index == (len(digital_trace) - 1): |
533
|
|
|
occurances = np.array(occurances) |
534
|
|
|
return occurances * dt |
535
|
|
|
else: |
536
|
|
|
index += 1 |
537
|
|
|
if digital_trace[index - 1] == 1: |
538
|
|
|
index2 += 1 |
539
|
|
|
occurances.append(0) |
540
|
|
|
# start following the consecutive 0s |
541
|
|
|
while (digital_trace[index] == 0): |
542
|
|
|
occurances[index2] -= 1 |
543
|
|
|
if index == (len(digital_trace) - 1): |
544
|
|
|
occurances = np.array(occurances) |
545
|
|
|
return occurances * dt |
546
|
|
|
else: |
547
|
|
|
index += 1 |
548
|
|
|
index2 += 1 |
549
|
|
|
|
550
|
|
|
digital_trace = analog_digitial_converter(threshold, trace) |
551
|
|
|
time_array = time_in_high_low(digital_trace, dt) |
552
|
|
|
|
553
|
|
|
# now we need to make a histogram as well as a fit |
554
|
|
|
# what would be a good estimate for the number of bins |
555
|
|
|
|
556
|
|
|
# longest = np.max(np.array(occurances)) |
557
|
|
|
# number of steps in between, rather not use that for now |
558
|
|
|
# est_bins = np.int(longest/dt) |
559
|
|
|
|
560
|
|
|
time_array_high = np.array([ii for ii in filter(lambda x: x > 0, time_array)]) |
561
|
|
|
time_array_low = np.array([ii for ii in filter(lambda x: x < 0, time_array)]) |
562
|
|
|
|
563
|
|
|
# get lifetime of bright state |
564
|
|
|
time_hist_high = np.histogram(time_array_high, bins=num_bins) |
565
|
|
|
vals = [i for i in filter(lambda x: x[1] > 0, enumerate(time_hist_high[0][0:num_bins]))] |
566
|
|
|
|
567
|
|
|
indices = np.array([val[0] for val in vals]) |
568
|
|
|
indices = np.array([np.int(indice) for indice in indices]) |
569
|
|
|
self.log.debug('threshold {0}'.format(threshold)) |
570
|
|
|
self.log.debug('time_array:{0}'.format(time_array)) |
571
|
|
|
self.log.debug('time_array_high:{0}'.format(time_array_high)) |
572
|
|
|
self.log.debug('time_hist_high:{0}'.format(time_hist_high)) |
573
|
|
|
self.log.debug('indices: {0}'.format(indices)) |
574
|
|
|
self.debug_lifetime_x = time_hist_high[1][indices] |
575
|
|
|
self.debug_lifetime_y = time_hist_high[0][indices] |
576
|
|
|
para = dict() |
577
|
|
|
para['offset'] = {"value": 0.0, "vary": False} |
578
|
|
|
result = self._fit_logic.make_decayexponential_fit(time_hist_high[1][indices], |
579
|
|
|
time_hist_high[0][indices], |
580
|
|
|
self._fit_logic.estimate_decayexponential, |
581
|
|
|
add_params=para) |
582
|
|
|
bright_liftime = result.params['lifetime'] |
583
|
|
|
# for debug purposes give also the results back of the fits for now |
584
|
|
|
lifetime_dict['result_bright'] = result |
585
|
|
|
# also give back the data used for the fit |
586
|
|
|
lifetime_dict['bright_raw'] = np.array([time_hist_high[1][indices], time_hist_high[0][indices]]) |
587
|
|
|
|
588
|
|
|
# get lifetime of dark state |
589
|
|
|
time_hist_low = np.histogram(time_array_low, bins=num_bins) |
590
|
|
|
vals = [i for i in filter(lambda x: x[1] > 0, enumerate(time_hist_low[0][0:num_bins]))] |
591
|
|
|
indices = np.array([val[0] for val in vals]) |
592
|
|
|
indices = np.array([np.int(indice) for indice in indices]) |
593
|
|
|
values = np.array([val[1] for val in vals]) |
594
|
|
|
# positive axis |
595
|
|
|
mirror_axis = -time_hist_low[1][indices] |
596
|
|
|
result = self._fit_logic.make_decayexponential_fit(mirror_axis, |
597
|
|
|
values, |
598
|
|
|
self._fit_logic.estimate_decayexponential, |
599
|
|
|
add_params=para) |
600
|
|
|
dark_liftime = result.params['lifetime'] |
601
|
|
|
lifetime_dict['result_dark'] = result |
602
|
|
|
|
603
|
|
|
lifetime_dict['bright_state'] = bright_liftime.value |
604
|
|
|
lifetime_dict['dark_state'] = dark_liftime.value |
605
|
|
|
# also give back the data used for the fit |
606
|
|
|
lifetime_dict['dark_raw'] = np.array([mirror_axis, values]) |
607
|
|
|
|
608
|
|
|
return lifetime_dict |
609
|
|
|
|
610
|
|
|
def do_gaussian_fit(self, axis, data): |
611
|
|
|
""" Perform a gaussian fit. |
612
|
|
|
@param axis: |
613
|
|
|
@param data: |
614
|
|
|
@return: |
615
|
|
|
""" |
616
|
|
|
model, params = self._fit_logic.make_gaussian_model() |
617
|
|
|
if len(axis) < len(params): |
618
|
|
|
self.log.warning('Fit could not be performed because number of ' |
619
|
|
|
'parameters is larger than data points.') |
620
|
|
|
return self.do_no_fit() |
621
|
|
|
|
622
|
|
|
else: |
623
|
|
|
|
624
|
|
|
parameters_to_substitute = dict() |
625
|
|
|
update_dict = dict() |
626
|
|
|
|
627
|
|
|
# TODO: move this to "gated counter" estimator in fitlogic |
628
|
|
|
# make the filter an extra function shared and usable for other |
629
|
|
|
# functions |
630
|
|
|
gauss = gaussian(10, 10) |
631
|
|
|
data_smooth = filters.convolve1d(data, gauss / gauss.sum(), mode='mirror') |
632
|
|
|
|
633
|
|
|
# integral of data corresponds to sqrt(2) * Amplitude * Sigma |
634
|
|
|
function = InterpolatedUnivariateSpline(axis, data_smooth, k=1) |
635
|
|
|
Integral = function.integral(axis[0], axis[-1]) |
636
|
|
|
amp = data_smooth.max() |
637
|
|
|
sigma = Integral / amp / np.sqrt(2 * np.pi) |
638
|
|
|
amplitude = amp * sigma * np.sqrt(2 * np.pi) |
639
|
|
|
|
640
|
|
|
update_dict['offset'] = {'min': 0, 'max': data.max(), 'value': 1e-15, 'vary': False} |
641
|
|
|
update_dict['center'] = {'min': axis.min(), 'max': axis.max(), 'value': axis[np.argmax(data)]} |
642
|
|
|
update_dict['sigma'] = {'min': -np.inf, 'max': np.inf, 'value': sigma} |
643
|
|
|
update_dict['amplitude'] = {'min': 0, 'max': np.inf, 'value': amplitude} |
644
|
|
|
|
645
|
|
|
result = self._fit_logic.make_gaussian_fit(x_axis=axis, |
646
|
|
|
data=data, |
647
|
|
|
estimator=self._fit_logic.estimate_gaussian_peak, |
648
|
|
|
units=None, # TODO |
649
|
|
|
add_params=update_dict) |
650
|
|
|
# 1000 points in x axis for smooth fit data |
651
|
|
|
hist_fit_x = np.linspace(axis[0], axis[-1], 1000) |
652
|
|
|
hist_fit_y = model.eval(x=hist_fit_x, params=result.params) |
653
|
|
|
|
654
|
|
|
param_dict = OrderedDict() |
655
|
|
|
|
656
|
|
|
# create the proper param_dict with the values: |
657
|
|
|
param_dict['sigma_0'] = {'value': result.params['sigma'].value, |
658
|
|
|
'error': result.params['sigma'].stderr, |
659
|
|
|
'unit': 'Occurrences'} |
660
|
|
|
|
661
|
|
|
param_dict['FWHM'] = {'value': result.params['fwhm'].value, |
662
|
|
|
'error': result.params['fwhm'].stderr, |
663
|
|
|
'unit': 'Counts/s'} |
664
|
|
|
|
665
|
|
|
param_dict['Center'] = {'value': result.params['center'].value, |
666
|
|
|
'error': result.params['center'].stderr, |
667
|
|
|
'unit': 'Counts/s'} |
668
|
|
|
|
669
|
|
|
param_dict['Amplitude'] = {'value': result.params['amplitude'].value, |
670
|
|
|
'error': result.params['amplitude'].stderr, |
671
|
|
|
'unit': 'Occurrences'} |
672
|
|
|
|
673
|
|
|
param_dict['chi_sqr'] = {'value': result.chisqr, 'unit': ''} |
674
|
|
|
|
675
|
|
|
return hist_fit_x, hist_fit_y, param_dict, result |
676
|
|
|
|
677
|
|
|
def do_doublegaussian_fit(self, axis, data): |
678
|
|
|
model, params = self._fit_logic.make_gaussiandouble_model() |
679
|
|
|
|
680
|
|
|
update_dict = dict() |
681
|
|
|
update_dict['offset'] = {'min': 0, 'max': data.max(), 'value': 1e-15, 'vary': False} |
682
|
|
|
#update_dict['g0_center'] = {'min': axis.min(), 'max': axis.max()} |
683
|
|
|
#update_dict['g1_center'] = {'min': axis.min(), 'max': axis.max()} |
684
|
|
|
#update_dict['g0_amplitude'] = {'min': 0, 'max': 2 * data.max()} |
685
|
|
|
#update_dict['g1_amplitude'] = {'min': 0, 'max': 2 * data.max()} |
686
|
|
|
|
687
|
|
|
if len(axis) < len(params): |
688
|
|
|
self.log.warning('Fit could not be performed because number of ' |
689
|
|
|
'parameters is larger than data points') |
690
|
|
|
return self.do_no_fit() |
691
|
|
|
|
692
|
|
|
else: |
693
|
|
|
result = self._fit_logic.make_gaussiandouble_fit(axis, data, self._fit_logic.estimate_gaussiandouble_peak, |
694
|
|
|
add_params=update_dict) |
695
|
|
|
|
696
|
|
|
# 1000 points in x axis for smooth fit data |
697
|
|
|
hist_fit_x = np.linspace(axis[0], axis[-1], 1000) |
698
|
|
|
hist_fit_y = model.eval(x=hist_fit_x, params=result.params) |
699
|
|
|
|
700
|
|
|
# this dict will be passed to the formatting method |
701
|
|
|
param_dict = OrderedDict() |
702
|
|
|
|
703
|
|
|
# create the proper param_dict with the values: |
704
|
|
|
param_dict['sigma_0'] = {'value': result.params['g0_sigma'].value, |
705
|
|
|
'error': result.params['g0_sigma'].stderr, |
706
|
|
|
'unit': 'Counts/s'} |
707
|
|
|
|
708
|
|
|
param_dict['FWHM_0'] = {'value': result.params['g0_fwhm'].value, |
709
|
|
|
'error': result.params['g0_fwhm'].stderr, |
710
|
|
|
'unit': 'Counts/s'} |
711
|
|
|
|
712
|
|
|
param_dict['Center_0'] = {'value': result.params['g0_center'].value, |
713
|
|
|
'error': result.params['g0_center'].stderr, |
714
|
|
|
'unit': 'Counts/s'} |
715
|
|
|
|
716
|
|
|
param_dict['Amplitude_0'] = {'value': result.params['g0_amplitude'].value, |
717
|
|
|
'error': result.params['g0_amplitude'].stderr, |
718
|
|
|
'unit': 'Occurrences'} |
719
|
|
|
|
720
|
|
|
param_dict['sigma_1'] = {'value': result.params['g1_sigma'].value, |
721
|
|
|
'error': result.params['g1_sigma'].stderr, |
722
|
|
|
'unit': 'Counts/s'} |
723
|
|
|
|
724
|
|
|
param_dict['FWHM_1'] = {'value': result.params['g1_fwhm'].value, |
725
|
|
|
'error': result.params['g1_fwhm'].stderr, |
726
|
|
|
'unit': 'Counts/s'} |
727
|
|
|
|
728
|
|
|
param_dict['Center_1'] = {'value': result.params['g1_center'].value, |
729
|
|
|
'error': result.params['g1_center'].stderr, |
730
|
|
|
'unit': 'Counts/s'} |
731
|
|
|
|
732
|
|
|
param_dict['Amplitude_1'] = {'value': result.params['g1_amplitude'].value, |
733
|
|
|
'error': result.params['g1_amplitude'].stderr, |
734
|
|
|
'unit': 'Occurrences'} |
735
|
|
|
|
736
|
|
|
param_dict['chi_sqr'] = {'value': result.chisqr, 'unit': ''} |
737
|
|
|
|
738
|
|
|
return hist_fit_x, hist_fit_y, param_dict, result |
739
|
|
|
|
740
|
|
|
def do_doublepossonian_fit(self, axis, data): |
741
|
|
|
model, params = self._fit_logic.make_multiplepoissonian_model(no_of_functions=2) |
742
|
|
|
if len(axis) < len(params): |
743
|
|
|
self.log.warning('Fit could not be performed because number of ' |
744
|
|
|
'parameters is smaller than data points') |
745
|
|
|
return self.do_no_fit() |
746
|
|
|
|
747
|
|
|
else: |
748
|
|
|
result = self._fit_logic.make_doublepoissonian_fit(x_axis=axis, |
749
|
|
|
data=data, |
750
|
|
|
add_params=None) |
751
|
|
|
|
752
|
|
|
# 1000 points in x axis for smooth fit data |
753
|
|
|
hist_fit_x = np.linspace(axis[0], axis[-1], 1000) |
754
|
|
|
hist_fit_y = model.eval(x=hist_fit_x, params=result.params) |
755
|
|
|
|
756
|
|
|
# this dict will be passed to the formatting method |
757
|
|
|
param_dict = OrderedDict() |
758
|
|
|
|
759
|
|
|
# create the proper param_dict with the values: |
760
|
|
|
param_dict['lambda_0'] = {'value': result.params['p0_mu'].value, |
761
|
|
|
'error': result.params['p0_mu'].stderr, |
762
|
|
|
'unit': 'Counts/s'} |
763
|
|
|
param_dict['Amplitude_0'] = {'value': result.params['p0_amplitude'].value, |
764
|
|
|
'error': result.params['p0_amplitude'].stderr, |
765
|
|
|
'unit': 'Occurrences'} |
766
|
|
|
param_dict['lambda_1'] = {'value': result.params['p1_mu'].value, |
767
|
|
|
'error': result.params['p1_mu'].stderr, |
768
|
|
|
'unit': 'Counts/s'} |
769
|
|
|
param_dict['Amplitude_1'] = {'value': result.params['p1_amplitude'].value, |
770
|
|
|
'error': result.params['p1_amplitude'].stderr, |
771
|
|
|
'unit': 'Occurrences'} |
772
|
|
|
|
773
|
|
|
param_dict['chi_sqr'] = {'value': result.chisqr, 'unit': ''} |
774
|
|
|
# removed last return value <<result>> here, because function calculate_threshold only expected |
775
|
|
|
# three return values |
776
|
|
|
return hist_fit_x, hist_fit_y, param_dict |
777
|
|
|
|
778
|
|
|
def do_possonian_fit(self, axis, data): |
779
|
|
|
model, params = self._fit_logic.make_poissonian_model() |
780
|
|
|
if len(axis) < len(params): |
781
|
|
|
self.log.error('Fit could not be performed because number of ' |
782
|
|
|
'parameters is smaller than data points') |
783
|
|
|
return self.do_no_fit() |
784
|
|
|
else: |
785
|
|
|
result = self._fit_logic.make_poissonian_fit(x_axis=axis, data=data, |
786
|
|
|
estimator=self._fit_logic.estimate_poissonian, add_params=None) |
787
|
|
|
|
788
|
|
|
# 1000 points in x axis for smooth fit data |
789
|
|
|
hist_fit_x = np.linspace(axis[0], axis[-1], 1000) |
790
|
|
|
hist_fit_y = model.eval(x=hist_fit_x, params=result.params) |
791
|
|
|
|
792
|
|
|
# this dict will be passed to the formatting method |
793
|
|
|
param_dict = OrderedDict() |
794
|
|
|
|
795
|
|
|
# create the proper param_dict with the values: |
796
|
|
|
param_dict['lambda'] = {'value': result.params['mu'].value, |
797
|
|
|
'error': result.params['mu'].stderr, |
798
|
|
|
'unit': 'Counts/s'} |
799
|
|
|
|
800
|
|
|
param_dict['chi_sqr'] = {'value': result.chisqr, 'unit': ''} |
801
|
|
|
|
802
|
|
|
return hist_fit_x, hist_fit_y, param_dict, result |
803
|
|
|
|
804
|
|
|
def get_poissonian(self, x_val, mu, amplitude): |
805
|
|
|
""" Calculate, bases on the passed values a poisson distribution. |
806
|
|
|
@param float mu: expected value of poisson distribution |
807
|
|
|
@param float amplitude: Amplitude to which is multiplied on distribution |
808
|
|
|
@param int,float or np.array x_val: x values for poisson distribution, |
809
|
|
|
also works for numbers (int or float) |
810
|
|
|
@return np.array: a 1D array with the calculated poisson distribution, |
811
|
|
|
corresponding to given parameters/ x values |
812
|
|
|
Calculate a Poisson distribution according to: |
813
|
|
|
P(k) = mu^k * exp(-mu) / k! |
814
|
|
|
""" |
815
|
|
|
|
816
|
|
|
model, params = self._fit_logic.make_poissonian_model() |
817
|
|
|
|
818
|
|
|
return model.eval(x=np.array(x_val), poissonian_mu=mu, poissonian_amplitude=amplitude) |
819
|
|
|
|
820
|
|
|
def guess_threshold(self, hist_val=None, trace=None, max_ratio_value=0.1): |
821
|
|
|
""" Assume a distribution between two values and try to guess the threshold. |
822
|
|
|
@param np.array hist_val: 1D array which represent the y values of a |
823
|
|
|
histogram of a trace. Optional, if None |
824
|
|
|
is passed here, the passed trace will be |
825
|
|
|
used for calculations. |
826
|
|
|
@param np.array trace: optional, 1D array containing the y values of a |
827
|
|
|
meausured counter trace. If None is passed to |
828
|
|
|
hist_y_val then the threshold will be calculated |
829
|
|
|
from the trace. |
830
|
|
|
@param float max_ratio_value: the ratio how strong the lower y values |
831
|
|
|
will be cut off. For max_ratio_value=0.1 |
832
|
|
|
all the data which are 10% or less in |
833
|
|
|
amptitude compared to the maximal value |
834
|
|
|
are neglected. |
835
|
|
|
The guess procedure tries to find all values, which are |
836
|
|
|
max_ratio_value * maximum value of the histogram of the trace and |
837
|
|
|
selects those by indices. Then taking the first an the last might and |
838
|
|
|
assuming that the threshold is in the middle, gives a first estimate |
839
|
|
|
of the threshold value. |
840
|
|
|
FIXME: That guessing procedure can be improved! |
841
|
|
|
@return float: a guessed threshold |
842
|
|
|
""" |
843
|
|
|
|
844
|
|
|
if hist_val is None and trace is not None: |
845
|
|
|
hist_val = self.calculate_histogram(trace) |
846
|
|
|
|
847
|
|
|
hist_val = np.array(hist_val) # just to be sure to have a np.array |
848
|
|
|
indices_arr = np.where(hist_val[1] > hist_val[1].max() * max_ratio_value)[0] |
849
|
|
|
guessed_threshold = hist_val[0][int((indices_arr[-1] + indices_arr[0]) / 2)] |
850
|
|
|
|
851
|
|
|
return guessed_threshold |
852
|
|
|
|
853
|
|
|
def calculate_threshold(self, hist_data=None, distr='poissonian'): |
854
|
|
|
""" Calculate the threshold by minimizing its overlap with the poissonian fits. |
855
|
|
|
@param np.array hist_data: 2D array which represent the x and y values |
856
|
|
|
of a histogram of a trace. |
857
|
|
|
string distr: tells the function on what distribution it should calculate |
858
|
|
|
the threshold ( Added because it might happen that one normalizes data |
859
|
|
|
between (-1,1) and then a poissonian distribution won't work anymore. |
860
|
|
|
@return tuple(float, float): |
861
|
|
|
threshold: the calculated threshold between two overlapping |
862
|
|
|
poissonian distributed peaks. |
863
|
|
|
fidelity: the measure how good the two peaks are resolved |
864
|
|
|
according to the calculated threshold |
865
|
|
|
The calculation of the threshold relies on fitting two poissonian |
866
|
|
|
distributions to the count histogram and minimize a threshold with |
867
|
|
|
respect to the overlap area: |
868
|
|
|
""" |
869
|
|
|
# in any case calculate the hist data |
870
|
|
|
x_axis = hist_data[0][:-1] + (hist_data[0][1] - hist_data[0][0]) / 2. |
871
|
|
|
y_data = hist_data[1] |
872
|
|
|
if distr == 'poissonian': |
873
|
|
|
# perform the fit |
874
|
|
|
|
875
|
|
|
hist_fit_x, hist_fit_y, param_dict = self.do_doublepossonian_fit(x_axis, y_data) |
876
|
|
|
|
877
|
|
|
if param_dict.get('lambda_0') is None: |
878
|
|
|
self.log.error('The double poissonian fit does not work! Take at ' |
879
|
|
|
'least a dummy value, in order not to break the ' |
880
|
|
|
'routine.') |
881
|
|
|
amp0 = 1 |
882
|
|
|
amp1 = 1 |
883
|
|
|
|
884
|
|
|
param_dict['Amplitude_0'] = {'value': amp0, 'unit': 'occurences'} |
885
|
|
|
param_dict['Amplitude_1'] = {'value': amp0, 'unit': 'occurences'} |
886
|
|
|
|
887
|
|
|
# make them a bit different so that fit works. |
888
|
|
|
mu0 = hist_data[0][:].mean() - 0.1 |
889
|
|
|
mu1 = hist_data[0][:].mean() + 0.1 |
890
|
|
|
|
891
|
|
|
param_dict['lambda_0'] = {'value': mu0, 'unit': 'counts'} |
892
|
|
|
param_dict['lambda_1'] = {'value': mu1, 'unit': 'counts'} |
893
|
|
|
|
894
|
|
|
else: |
895
|
|
|
|
896
|
|
|
mu0 = param_dict['lambda_0']['value'] |
897
|
|
|
mu1 = param_dict['lambda_1']['value'] |
898
|
|
|
|
899
|
|
|
amp0 = param_dict['Amplitude_0']['value'] |
900
|
|
|
amp1 = param_dict['Amplitude_1']['value'] |
901
|
|
|
|
902
|
|
|
if mu0 < mu1: |
903
|
|
|
first_dist = self.get_poissonian(x_val=hist_data[0], mu=mu0, amplitude=amp0) |
904
|
|
|
sec_dist = self.get_poissonian(x_val=hist_data[0], mu=mu1, amplitude=amp1) |
905
|
|
|
else: |
906
|
|
|
first_dist = self.get_poissonian(x_val=hist_data[0], mu=mu1, amplitude=amp1) |
907
|
|
|
sec_dist = self.get_poissonian(x_val=hist_data[0], mu=mu0, amplitude=amp0) |
908
|
|
|
|
909
|
|
|
# create a two poissonian array, where the second poissonian |
910
|
|
|
# distribution is add as negative values. Now the transition from |
911
|
|
|
# positive to negative values will get the threshold: |
912
|
|
|
difference_poissonian = first_dist - sec_dist |
913
|
|
|
|
914
|
|
|
trans_index = 0 |
915
|
|
|
for i in range(len(difference_poissonian) - 1): |
916
|
|
|
# go through the combined histogram array and the point which |
917
|
|
|
# changes the sign. The transition from positive to negative values |
918
|
|
|
# will get the threshold: |
919
|
|
|
if difference_poissonian[i] < 0 and difference_poissonian[i + 1] >= 0: |
920
|
|
|
trans_index = i |
921
|
|
|
break |
922
|
|
|
elif difference_poissonian[i] > 0 and difference_poissonian[i + 1] <= 0: |
923
|
|
|
trans_index = i |
924
|
|
|
break |
925
|
|
|
|
926
|
|
|
threshold_fit = hist_data[0][trans_index] |
927
|
|
|
|
928
|
|
|
# Calculate also the readout fidelity, i.e. sum the area under the |
929
|
|
|
# first peak before the threshold of the first and second distribution |
930
|
|
|
# and take the ratio of that area. Do the same thing after the threshold |
931
|
|
|
# (of course with a reversed choice of the distribution). If the overlap |
932
|
|
|
# in both cases is very small, then the fidelity is good, if the overlap |
933
|
|
|
# is identical, then fidelity indicates a poor separation of the peaks. |
934
|
|
|
|
935
|
|
|
if mu0 < mu1: |
936
|
|
|
area0_low = self.get_poissonian(hist_data[0][0:trans_index], mu0, 1).sum() |
937
|
|
|
area0_high = self.get_poissonian(hist_data[0][trans_index:], mu0, 1).sum() |
938
|
|
|
area1_low = self.get_poissonian(hist_data[0][0:trans_index], mu1, 1).sum() |
939
|
|
|
area1_high = self.get_poissonian(hist_data[0][trans_index:], mu1, 1).sum() |
940
|
|
|
|
941
|
|
|
area0_low_amp = self.get_poissonian(hist_data[0][0:trans_index], mu0, amp0).sum() |
942
|
|
|
area0_high_amp = self.get_poissonian(hist_data[0][trans_index:], mu0, amp0).sum() |
943
|
|
|
area1_low_amp = self.get_poissonian(hist_data[0][0:trans_index], mu1, amp1).sum() |
944
|
|
|
area1_high_amp = self.get_poissonian(hist_data[0][trans_index:], mu1, amp1).sum() |
945
|
|
|
|
946
|
|
|
else: |
947
|
|
|
area1_low = self.get_poissonian(hist_data[0][0:trans_index], mu0, 1).sum() |
948
|
|
|
area1_high = self.get_poissonian(hist_data[0][trans_index:], mu0, 1).sum() |
949
|
|
|
area0_low = self.get_poissonian(hist_data[0][0:trans_index], mu1, 1).sum() |
950
|
|
|
area0_high = self.get_poissonian(hist_data[0][trans_index:], mu1, 1).sum() |
951
|
|
|
|
952
|
|
|
area1_low_amp = self.get_poissonian(hist_data[0][0:trans_index], mu0, amp0).sum() |
953
|
|
|
area1_high_amp = self.get_poissonian(hist_data[0][trans_index:], mu0, amp0).sum() |
954
|
|
|
area0_low_amp = self.get_poissonian(hist_data[0][0:trans_index], mu1, amp1).sum() |
955
|
|
|
area0_high_amp = self.get_poissonian(hist_data[0][trans_index:], mu1, amp1).sum() |
956
|
|
|
|
957
|
|
|
# Now calculate how big is the overlap relative to the sum of the other |
958
|
|
|
# part of the area, that will give the normalized fidelity: |
959
|
|
|
fidelity = 1 - (area1_low / area0_low + area0_high / area1_high) / 2 |
960
|
|
|
|
961
|
|
|
area0 = self.get_poissonian(hist_data[0][:], mu0, amp0).sum() |
962
|
|
|
area1 = self.get_poissonian(hist_data[0][:], mu1, amp1).sum() |
963
|
|
|
|
964
|
|
|
# try this new measure for the fidelity |
965
|
|
|
fidelity2 = 1 - ((area1_low_amp / area1) / (area0_low_amp / area0) + (area0_high_amp / area0) / ( |
966
|
|
|
area1_high_amp / area1)) / 2 |
967
|
|
|
|
968
|
|
|
param_dict['normalized_fidelity'] = fidelity2 |
969
|
|
|
|
970
|
|
|
return threshold_fit, fidelity, param_dict |
971
|
|
|
|
972
|
|
|
# this works if your data is normalized to the interval (-1,1) |
973
|
|
|
if distr == 'gaussian_normalized': |
974
|
|
|
# first some helper functions |
975
|
|
|
def two_gaussian_intersect(m1, m2, std1, std2, amp1, amp2): |
976
|
|
|
""" |
977
|
|
|
function to calculate intersection of two gaussians |
978
|
|
|
""" |
979
|
|
|
a = 1 / (2 * std1 ** 2) - 1 / (2 * std2 ** 2) |
980
|
|
|
b = m2 / (std2 ** 2) - m1 / (std1 ** 2) |
981
|
|
|
c = m1 ** 2 / (2 * std1 ** 2) - m2 ** 2 / (2 * std2 ** 2) - np.log(amp2 / amp1) |
982
|
|
|
return np.roots([a, b, c]) |
983
|
|
|
|
984
|
|
|
def gaussian(counts, amp, stdv, mean): |
985
|
|
|
return amp * np.exp(-(counts - mean) ** 2 / (2 * stdv ** 2)) / (stdv * np.sqrt(2 * np.pi)) |
986
|
|
|
|
987
|
|
|
try: |
988
|
|
|
result = self._fit_logic.make_gaussiandouble_fit(x_axis, y_data, |
989
|
|
|
self._fit_logic.estimate_gaussiandouble_peak) |
990
|
|
|
# calculating the threshold |
991
|
|
|
# NOTE the threshold is taken as the intersection of the two gaussians, while this should give |
992
|
|
|
# a good approximation I doubt it is mathematical exact. |
993
|
|
|
|
994
|
|
|
mu0 = result.params['g0_center'].value |
995
|
|
|
mu1 = result.params['g1_center'].value |
996
|
|
|
sigma0 = result.params['g0_sigma'].value |
997
|
|
|
sigma1 = result.params['g1_sigma'].value |
998
|
|
|
amp0 = result.params['g0_amplitude'].value / (sigma0 * np.sqrt(2 * np.pi)) |
999
|
|
|
amp1 = result.params['g1_amplitude'].value / (sigma1 * np.sqrt(2 * np.pi)) |
1000
|
|
|
candidates = two_gaussian_intersect(mu0, mu1, sigma0, sigma1, amp0, amp1) |
1001
|
|
|
|
1002
|
|
|
# we want to get the intersection that lies between the two peaks |
1003
|
|
|
if mu0 < mu1: |
1004
|
|
|
threshold = [i for i in filter(lambda x: (x > mu0) & (x < mu1), candidates)] |
1005
|
|
|
else: |
1006
|
|
|
threshold = [i for i in filter(lambda x: (x < mu0) & (x > mu1), candidates)] |
1007
|
|
|
|
1008
|
|
|
threshold = threshold[0] |
1009
|
|
|
|
1010
|
|
|
# now we want to get the readout fidelity |
1011
|
|
|
# of the bigger peak ( most likely the two states that aren't driven by the mw pi pulse ) |
1012
|
|
|
if mu0 < mu1: |
1013
|
|
|
gc0 = integrate.quad(lambda counts: gaussian(counts, amp1, sigma1, mu1), -1, 1) |
1014
|
|
|
gp0 = integrate.quad(lambda counts: gaussian(counts, amp1, sigma1, mu1), -1, threshold) |
1015
|
|
|
else: |
1016
|
|
|
gc0 = integrate.quad(lambda counts: gaussian(counts, amp0, sigma0, mu0), -1, 1) |
1017
|
|
|
gp0 = integrate.quad(lambda counts: gaussian(counts, amp0, sigma0, mu0), -1, threshold) |
1018
|
|
|
|
1019
|
|
|
# and then the same for the other peak ] |
1020
|
|
|
|
1021
|
|
|
if mu0 > mu1: |
1022
|
|
|
gc1 = integrate.quad(lambda counts: gaussian(counts, amp1, sigma1, mu1), -1, 1) |
1023
|
|
|
gp1 = integrate.quad(lambda counts: gaussian(counts, amp1, sigma1, mu1), threshold, 1) |
1024
|
|
|
else: |
1025
|
|
|
gc1 = integrate.quad(lambda counts: gaussian(counts, amp0, sigma0, mu0), -1, 1) |
1026
|
|
|
gp1 = integrate.quad(lambda counts: gaussian(counts, amp0, sigma0, mu0), threshold, 1) |
1027
|
|
|
|
1028
|
|
|
param_dict = {} |
1029
|
|
|
fidelity = 1 - (gp0[0] / gc0[0] + gp1[0] / gc1[0]) / 2 |
1030
|
|
|
fidelity1 = 1 - (gp0[0] / gc0[0]) |
1031
|
|
|
fidelity2 = 1 - gp1[0] / gc1[0] |
1032
|
|
|
threshold_fit = threshold |
1033
|
|
|
# if the fit worked, add also the result to the param_dict, which might be useful for debugging |
1034
|
|
|
param_dict['result'] = result |
1035
|
|
|
except: |
1036
|
|
|
self.log.error('could not fit the data') |
1037
|
|
|
error = True |
1038
|
|
|
fidelity = 0 |
1039
|
|
|
threshold_fit = 0 |
1040
|
|
|
param_dict = {} |
1041
|
|
|
new_dict = {} |
1042
|
|
|
new_dict['value'] = np.inf |
1043
|
|
|
param_dict['chi_sqr'] = new_dict |
1044
|
|
|
|
1045
|
|
|
return threshold_fit, fidelity, param_dict |
1046
|
|
|
|
1047
|
|
|
def calculate_binary_trace(self, trace, threshold): |
1048
|
|
|
""" Calculate for a given threshold all the trace values und output a |
1049
|
|
|
binary array, where |
1050
|
|
|
True = Below or equal Threshold |
1051
|
|
|
False = Above Threshold. |
1052
|
|
|
@param np.array trace: a 1D array containing the y data, e.g. ccunts |
1053
|
|
|
@param float threshold: value to decide whether a point in the trace |
1054
|
|
|
is below/equal (True) or above threshold (False). |
1055
|
|
|
@return np.array: 1D trace of the length(trace) but now with boolean |
1056
|
|
|
entries |
1057
|
|
|
""" |
1058
|
|
|
return trace <= threshold |
1059
|
|
|
|
1060
|
|
|
def extract_filtered_values(self, trace, threshold, below=True): |
1061
|
|
|
""" Extract only those values, which are below or equal a certain Threshold. |
1062
|
|
|
@param np.array trace: |
1063
|
|
|
@param float threshold: |
1064
|
|
|
@return tuple(index_array, filtered_array): |
1065
|
|
|
np.array index_array: 1D integer array containing the |
1066
|
|
|
indices of the passed trace array |
1067
|
|
|
which are equal or below the threshold |
1068
|
|
|
np.array filtered_array: the actual values of the trace, |
1069
|
|
|
which are equal or below threshold |
1070
|
|
|
""" |
1071
|
|
|
if below: |
1072
|
|
|
index_array = np.where(trace <= threshold)[0] |
1073
|
|
|
else: |
1074
|
|
|
index_array = np.where(trace > threshold)[0] |
1075
|
|
|
filtered_array = trace[index_array] |
1076
|
|
|
return index_array, filtered_array |
1077
|
|
|
|
1078
|
|
|
|