|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
""" |
|
4
|
|
|
This file contains the Qudi hardware module for the Tektronix DTG 5334. |
|
5
|
|
|
|
|
6
|
|
|
Qudi is free software: you can redistribute it and/or modify |
|
7
|
|
|
it under the terms of the GNU General Public License as published by |
|
8
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
9
|
|
|
(at your option) any later version. |
|
10
|
|
|
|
|
11
|
|
|
Qudi is distributed in the hope that it will be useful, |
|
12
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
13
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
14
|
|
|
GNU General Public License for more details. |
|
15
|
|
|
|
|
16
|
|
|
You should have received a copy of the GNU General Public License |
|
17
|
|
|
along with Qudi. If not, see <http://www.gnu.org/licenses/>. |
|
18
|
|
|
|
|
19
|
|
|
Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the |
|
20
|
|
|
top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> |
|
21
|
|
|
""" |
|
22
|
|
|
|
|
23
|
|
|
import ctypes |
|
24
|
|
|
from collections import OrderedDict |
|
25
|
|
|
import numpy as np |
|
26
|
|
|
import os |
|
27
|
|
|
import time |
|
28
|
|
|
import visa |
|
29
|
|
|
|
|
30
|
|
|
from interface.pulser_interface import PulserInterface, PulserConstraints |
|
31
|
|
|
from core.module import Base, ConfigOption |
|
32
|
|
|
|
|
33
|
|
|
|
|
34
|
|
|
class DTG5334(Base, PulserInterface): |
|
35
|
|
|
""" |
|
36
|
|
|
Tektronix DTG 5334 |
|
37
|
|
|
""" |
|
38
|
|
|
_modclass = 'dtg5334' |
|
39
|
|
|
_modtype = 'hardware' |
|
40
|
|
|
|
|
41
|
|
|
visa_address = ConfigOption('visa_address', missing='error') |
|
42
|
|
|
|
|
43
|
|
|
ch_map = { |
|
44
|
|
|
'd_ch1': ('A', 1), |
|
45
|
|
|
'd_ch2': ('A', 2), |
|
46
|
|
|
'd_ch3': ('B', 1), |
|
47
|
|
|
'd_ch4': ('B', 2), |
|
48
|
|
|
'd_ch5': ('C', 1), |
|
49
|
|
|
'd_ch6': ('C', 2), |
|
50
|
|
|
'd_ch7': ('D', 1), |
|
51
|
|
|
'd_ch8': ('D', 2) |
|
52
|
|
|
} |
|
53
|
|
|
|
|
54
|
|
|
modules_map = { |
|
55
|
|
|
-1: 'No module', |
|
56
|
|
|
1: 'DTGM10', |
|
57
|
|
|
2: 'DTGM20', |
|
58
|
|
|
3: 'DTGM30', |
|
59
|
|
|
4: 'DTGM31', |
|
60
|
|
|
5: 'DTGM31', |
|
61
|
|
|
6: 'DTGM32' |
|
62
|
|
|
} |
|
63
|
|
|
|
|
64
|
|
|
stb_values = { |
|
65
|
|
|
0: 'Wat' |
|
66
|
|
|
} |
|
67
|
|
|
|
|
68
|
|
|
def on_activate(self): |
|
69
|
|
|
""" Initialisation performed during activation of the module. |
|
70
|
|
|
""" |
|
71
|
|
|
self.current_loaded_assets = {} |
|
72
|
|
|
|
|
73
|
|
|
# connect to DTG |
|
74
|
|
|
self._rm = visa.ResourceManager('@py') |
|
75
|
|
|
|
|
76
|
|
|
self.dtg = self._rm.open_resource(self.visa_address, read_termination='\n\x00') |
|
77
|
|
|
|
|
78
|
|
|
# set timeout by default to 15 sec |
|
79
|
|
|
self.dtg.timeout = 15000 |
|
80
|
|
|
|
|
81
|
|
|
self.connected = True |
|
82
|
|
|
|
|
83
|
|
|
self._mfg, self._model, self._serial, self._fw , self._version = self._get_id() |
|
84
|
|
|
self.log.debug('Found the following model: {0} {1} {2} {3} {4}'.format( |
|
85
|
|
|
self._mfg, self._model, self._serial, self._fw, self._version)) |
|
86
|
|
|
self._modules = self._get_modules() |
|
87
|
|
|
self.log.debug('Found the following modules: {0}'.format(self._modules)) |
|
88
|
|
|
|
|
89
|
|
|
self.current_loaded_assets = {} |
|
90
|
|
|
self.current_loaded_asset_type = '' |
|
91
|
|
|
self.waveform_names = set() |
|
92
|
|
|
self.sequence_names = set() |
|
93
|
|
|
|
|
94
|
|
|
def on_deactivate(self): |
|
95
|
|
|
""" Required tasks to be performed during deactivation of the module. |
|
96
|
|
|
""" |
|
97
|
|
|
# Closes the connection to the DTG |
|
98
|
|
|
try: |
|
99
|
|
|
self.dtg.close() |
|
100
|
|
|
except: |
|
101
|
|
|
self.log.debug('Closing DTG connection using pyvisa failed.') |
|
102
|
|
|
self.log.info('Closed connection to DTG') |
|
103
|
|
|
self.connected = False |
|
104
|
|
|
return |
|
105
|
|
|
|
|
106
|
|
|
def get_constraints(self): |
|
107
|
|
|
""" |
|
108
|
|
|
Retrieve the hardware constrains from the Pulsing device. |
|
109
|
|
|
|
|
110
|
|
|
@return constraints object: object with pulser constraints as attributes. |
|
111
|
|
|
|
|
112
|
|
|
Provides all the constraints (e.g. sample_rate, amplitude, total_length_bins, |
|
113
|
|
|
channel_config, ...) related to the pulse generator hardware to the caller. |
|
114
|
|
|
|
|
115
|
|
|
SEE PulserConstraints CLASS IN pulser_interface.py FOR AVAILABLE CONSTRAINTS!!! |
|
116
|
|
|
|
|
117
|
|
|
If you are not sure about the meaning, look in other hardware files to get an impression. |
|
118
|
|
|
If still additional constraints are needed, then they have to be added to the |
|
119
|
|
|
PulserConstraints class. |
|
120
|
|
|
|
|
121
|
|
|
Each scalar parameter is an ScalarConstraints object defined in cor.util.interfaces. |
|
122
|
|
|
Essentially it contains min/max values as well as min step size, default value and unit of |
|
123
|
|
|
the parameter. |
|
124
|
|
|
|
|
125
|
|
|
PulserConstraints.activation_config differs, since it contain the channel |
|
126
|
|
|
configuration/activation information of the form: |
|
127
|
|
|
{<descriptor_str>: <channel_list>, |
|
128
|
|
|
<descriptor_str>: <channel_list>, |
|
129
|
|
|
...} |
|
130
|
|
|
|
|
131
|
|
|
If the constraints cannot be set in the pulsing hardware (e.g. because it might have no |
|
132
|
|
|
sequence mode) just leave it out so that the default is used (only zeros). |
|
133
|
|
|
""" |
|
134
|
|
|
# Example for configuration with default values: |
|
135
|
|
|
constraints = PulserConstraints() |
|
136
|
|
|
|
|
137
|
|
|
constraints.sample_rate.min = 50e3 |
|
138
|
|
|
constraints.sample_rate.max = 3.35e9 |
|
139
|
|
|
constraints.sample_rate.step = 1e3 |
|
140
|
|
|
constraints.sample_rate.default = 12.0e9 |
|
141
|
|
|
|
|
142
|
|
|
constraints.a_ch_amplitude.min = 0.0 |
|
143
|
|
|
constraints.a_ch_amplitude.max = 0.0 |
|
144
|
|
|
constraints.a_ch_amplitude.step = 0.0 |
|
145
|
|
|
constraints.a_ch_amplitude.default = 0.0 |
|
146
|
|
|
|
|
147
|
|
|
constraints.a_ch_offset.min = 0.0 |
|
148
|
|
|
constraints.a_ch_offset.max = 0.0 |
|
149
|
|
|
constraints.a_ch_offset.step = 0.0 |
|
150
|
|
|
constraints.a_ch_offset.default = 0.0 |
|
151
|
|
|
|
|
152
|
|
|
constraints.d_ch_low.min = -2.0 |
|
153
|
|
|
constraints.d_ch_low.max = 2.44 |
|
154
|
|
|
constraints.d_ch_low.step = 0.05 |
|
155
|
|
|
constraints.d_ch_low.default = 0.0 |
|
156
|
|
|
|
|
157
|
|
|
constraints.d_ch_high.min = -1.0 |
|
158
|
|
|
constraints.d_ch_high.max = 2.47 |
|
159
|
|
|
constraints.d_ch_high.step = 0.05 |
|
160
|
|
|
constraints.d_ch_high.default = 2.4 |
|
161
|
|
|
|
|
162
|
|
|
constraints.waveform_length.min = 80 |
|
163
|
|
|
constraints.waveform_length.max = 64800000 |
|
164
|
|
|
constraints.waveform_length.step = 1 |
|
165
|
|
|
constraints.waveform_length.default = 80 |
|
166
|
|
|
|
|
167
|
|
|
constraints.waveform_num.min = 1 |
|
168
|
|
|
constraints.waveform_num.max = 32000 |
|
169
|
|
|
constraints.waveform_num.step = 1 |
|
170
|
|
|
constraints.waveform_num.default = 1 |
|
171
|
|
|
|
|
172
|
|
|
constraints.sequence_num.min = 1 |
|
173
|
|
|
constraints.sequence_num.max = 8000 |
|
174
|
|
|
constraints.sequence_num.step = 1 |
|
175
|
|
|
constraints.sequence_num.default = 1 |
|
176
|
|
|
|
|
177
|
|
|
constraints.subsequence_num.min = 1 |
|
178
|
|
|
constraints.subsequence_num.max = 4000 |
|
179
|
|
|
constraints.subsequence_num.step = 1 |
|
180
|
|
|
constraints.subsequence_num.default = 1 |
|
181
|
|
|
|
|
182
|
|
|
# If sequencer mode is available then these should be specified |
|
183
|
|
|
constraints.repetitions.min = 0 |
|
184
|
|
|
constraints.repetitions.max = 65539 |
|
185
|
|
|
constraints.repetitions.step = 1 |
|
186
|
|
|
constraints.repetitions.default = 0 |
|
187
|
|
|
|
|
188
|
|
|
constraints.event_triggers = ['A', 'B'] |
|
189
|
|
|
constraints.flags = list() |
|
190
|
|
|
|
|
191
|
|
|
constraints.sequence_steps.min = 0 |
|
192
|
|
|
constraints.sequence_steps.max = 8000 |
|
193
|
|
|
constraints.sequence_steps.step = 1 |
|
194
|
|
|
constraints.sequence_steps.default = 0 |
|
195
|
|
|
|
|
196
|
|
|
# the name a_ch<num> and d_ch<num> are generic names, which describe UNAMBIGUOUSLY the |
|
197
|
|
|
# channels. Here all possible channel configurations are stated, where only the generic |
|
198
|
|
|
# names should be used. The names for the different configurations can be customary chosen. |
|
199
|
|
|
activation_conf = OrderedDict() |
|
200
|
|
|
activation_conf['A'] = {'d_ch1', 'd_ch2'} |
|
201
|
|
|
activation_conf['B'] = {'d_ch3', 'd_ch4'} |
|
202
|
|
|
activation_conf['C'] = {'d_ch5', 'd_ch6'} |
|
203
|
|
|
activation_conf['D'] = {'d_ch7', 'd_ch8'} |
|
204
|
|
|
activation_conf['AB'] = {'d_ch1', 'd_ch2', 'd_ch3', 'd_ch4'} |
|
205
|
|
|
activation_conf['ABC'] = {'d_ch1', 'd_ch2', 'd_ch3', 'd_ch4', 'd_ch5', 'd_ch6'} |
|
206
|
|
|
activation_conf['all'] = { |
|
207
|
|
|
'd_ch1', 'd_ch2', 'd_ch3', 'd_ch4', 'd_ch5', 'd_ch6', 'd_ch7', 'd_ch8' |
|
208
|
|
|
} |
|
209
|
|
|
constraints.activation_config = activation_conf |
|
210
|
|
|
return constraints |
|
211
|
|
|
|
|
212
|
|
|
def pulser_on(self): |
|
213
|
|
|
""" Switches the pulsing device on. |
|
214
|
|
|
|
|
215
|
|
|
@return int: error code (0:OK, -1:error) |
|
216
|
|
|
""" |
|
217
|
|
|
self.dtg.write('OUTP:STAT:ALL ON;*WAI') |
|
218
|
|
|
self.dtg.write('TBAS:RUN ON') |
|
219
|
|
|
state = 0 if int(self.dtg.query('TBAS:RUN?')) == 1 else -1 |
|
220
|
|
|
return state |
|
221
|
|
|
|
|
222
|
|
|
def pulser_off(self): |
|
223
|
|
|
""" Switches the pulsing device off. |
|
224
|
|
|
|
|
225
|
|
|
@return int: error code (0:OK, -1:error) |
|
226
|
|
|
""" |
|
227
|
|
|
self.dtg.write('OUTP:STAT:ALL OFF;*WAI') |
|
228
|
|
|
self.dtg.write('TBAS:RUN OFF') |
|
229
|
|
|
state = 0 if int(self.dtg.query('TBAS:RUN?')) == 0 else -1 |
|
230
|
|
|
return state |
|
231
|
|
|
|
|
232
|
|
|
def load_waveform(self, load_dict): |
|
233
|
|
|
""" Loads a waveform to the specified channel of the pulsing device. |
|
234
|
|
|
For devices that have a workspace (i.e. AWG) this will load the waveform from the device |
|
235
|
|
|
workspace into the channel. |
|
236
|
|
|
For a device without mass memory this will make the waveform/pattern that has been |
|
237
|
|
|
previously written with self.write_waveform ready to play. |
|
238
|
|
|
|
|
239
|
|
|
@param load_dict: dict|list, a dictionary with keys being one of the available channel |
|
240
|
|
|
index and values being the name of the already written |
|
241
|
|
|
waveform to load into the channel. |
|
242
|
|
|
Examples: {1: rabi_ch1, 2: rabi_ch2} or |
|
243
|
|
|
{1: rabi_ch2, 2: rabi_ch1} |
|
244
|
|
|
If just a list of waveform names if given, the channel |
|
245
|
|
|
association will be invoked from the channel |
|
246
|
|
|
suffix '_ch1', '_ch2' etc. |
|
247
|
|
|
|
|
248
|
|
|
@return dict: Dictionary containing the actually loaded waveforms per channel. |
|
249
|
|
|
""" |
|
250
|
|
|
pass |
|
251
|
|
|
|
|
252
|
|
|
def load_sequence(self, sequence_name): |
|
253
|
|
|
""" Loads a sequence to the channels of the device in order to be ready for playback. |
|
254
|
|
|
For devices that have a workspace (i.e. AWG) this will load the sequence from the device |
|
255
|
|
|
workspace into the channels. |
|
256
|
|
|
For a device without mass memory this will make the waveform/pattern that has been |
|
257
|
|
|
previously written with self.write_waveform ready to play. |
|
258
|
|
|
|
|
259
|
|
|
@param sequence_name: dict|list, a dictionary with keys being one of the available channel |
|
260
|
|
|
index and values being the name of the already written |
|
261
|
|
|
waveform to load into the channel. |
|
262
|
|
|
Examples: {1: rabi_ch1, 2: rabi_ch2} or |
|
263
|
|
|
{1: rabi_ch2, 2: rabi_ch1} |
|
264
|
|
|
If just a list of waveform names if given, the channel |
|
265
|
|
|
association will be invoked from the channel |
|
266
|
|
|
suffix '_ch1', '_ch2' etc. |
|
267
|
|
|
|
|
268
|
|
|
@return dict: Dictionary containing the actually loaded waveforms per channel. |
|
269
|
|
|
""" |
|
270
|
|
|
pass |
|
271
|
|
|
|
|
272
|
|
|
def get_loaded_assets(self): |
|
273
|
|
|
""" |
|
274
|
|
|
Retrieve the currently loaded asset names for each active channel of the device. |
|
275
|
|
|
|
|
276
|
|
|
@return (dict, str): Dictionary with keys being the channel number and values being the |
|
277
|
|
|
respective asset loaded into the channel, |
|
278
|
|
|
string describing the asset type ('waveform' or 'sequence') |
|
279
|
|
|
""" |
|
280
|
|
|
return self.current_loaded_assets, self.current_loaded_asset_type |
|
281
|
|
|
|
|
282
|
|
|
def clear_all(self): |
|
283
|
|
|
""" Clears all loaded waveforms from the pulse generators RAM/workspace. |
|
284
|
|
|
|
|
285
|
|
|
@return int: error code (0:OK, -1:error) |
|
286
|
|
|
""" |
|
287
|
|
|
self.dtg.write('GROUP:DEL:ALL;*WAI') |
|
288
|
|
|
self.dtg.write('BLOC:DEL:ALL;*WAI') |
|
289
|
|
|
self.current_loaded_assets = {} |
|
290
|
|
|
return 0 |
|
291
|
|
|
|
|
292
|
|
|
def get_status(self): |
|
293
|
|
|
""" Retrieves the status of the pulsing hardware |
|
294
|
|
|
|
|
295
|
|
|
@return (int, dict): tuple with an integer value of the current status and a corresponding |
|
296
|
|
|
dictionary containing status description for all the possible status |
|
297
|
|
|
variables of the pulse generator hardware. |
|
298
|
|
|
""" |
|
299
|
|
|
status = 0 |
|
300
|
|
|
return status, self.stb_values |
|
301
|
|
|
|
|
302
|
|
|
def get_sample_rate(self): |
|
303
|
|
|
""" Get the sample rate of the pulse generator hardware |
|
304
|
|
|
|
|
305
|
|
|
@return float: The current sample rate of the device (in Hz) |
|
306
|
|
|
|
|
307
|
|
|
Do not return a saved sample rate from an attribute, but instead retrieve the current |
|
308
|
|
|
sample rate directly from the device. |
|
309
|
|
|
""" |
|
310
|
|
|
return float(self.dtg.query('TBAS:FREQ?')) |
|
311
|
|
|
|
|
312
|
|
|
def set_sample_rate(self, sample_rate): |
|
313
|
|
|
""" Set the sample rate of the pulse generator hardware. |
|
314
|
|
|
|
|
315
|
|
|
@param float sample_rate: The sampling rate to be set (in Hz) |
|
316
|
|
|
|
|
317
|
|
|
@return float: the sample rate returned from the device (in Hz). |
|
318
|
|
|
|
|
319
|
|
|
Note: After setting the sampling rate of the device, use the actually set return value for |
|
320
|
|
|
further processing. |
|
321
|
|
|
""" |
|
322
|
|
|
self.dtg.write('TBAS:FREQ {0:e}'.format(sample_rate)) |
|
323
|
|
|
return self.get_sample_rate() |
|
324
|
|
|
|
|
325
|
|
|
def get_analog_level(self, amplitude=None, offset=None): |
|
326
|
|
|
""" Device has no analog channels. |
|
327
|
|
|
""" |
|
328
|
|
|
return {}, {} |
|
329
|
|
|
|
|
330
|
|
|
def set_analog_level(self, amplitude=None, offset=None): |
|
331
|
|
|
""" Device has no analog channels. |
|
332
|
|
|
""" |
|
333
|
|
|
return {}, {} |
|
334
|
|
|
|
|
335
|
|
|
def get_digital_level(self, low=None, high=None): |
|
336
|
|
|
""" Retrieve the digital low and high level of the provided/all channels. |
|
337
|
|
|
|
|
338
|
|
|
@param list low: optional, if the low value (in Volt) of a specific channel is desired. |
|
339
|
|
|
@param list high: optional, if the high value (in Volt) of a specific channel is desired. |
|
340
|
|
|
|
|
341
|
|
|
@return: (dict, dict): tuple of two dicts, with keys being the channel descriptor strings |
|
342
|
|
|
(i.e. 'd_ch1', 'd_ch2') and items being the values for those |
|
343
|
|
|
channels. Both low and high value of a channel is denoted in volts. |
|
344
|
|
|
|
|
345
|
|
|
Note: Do not return a saved low and/or high value but instead retrieve |
|
346
|
|
|
the current low and/or high value directly from the device. |
|
347
|
|
|
""" |
|
348
|
|
|
if low is None: |
|
349
|
|
|
low = self.get_constraints().activation_config['all'] |
|
350
|
|
|
if high is None: |
|
351
|
|
|
high = self.get_constraints().activation_config['all'] |
|
352
|
|
|
|
|
353
|
|
|
ch_low = { |
|
354
|
|
|
chan: |
|
355
|
|
|
float( |
|
356
|
|
|
self.dtg.query('PGEN{0}:CH{1}:LOW?'.format( |
|
357
|
|
|
*(self.ch_map[chan]) |
|
358
|
|
|
)) |
|
359
|
|
|
) |
|
360
|
|
|
for chan in low |
|
361
|
|
|
} |
|
362
|
|
|
|
|
363
|
|
|
ch_high = { |
|
364
|
|
|
chan: |
|
365
|
|
|
float( |
|
366
|
|
|
self.dtg.query('PGEN{0}:CH{1}:HIGH?'.format( |
|
367
|
|
|
*(self.ch_map[chan]) |
|
368
|
|
|
)) |
|
369
|
|
|
) |
|
370
|
|
|
for chan in high |
|
371
|
|
|
} |
|
372
|
|
|
|
|
373
|
|
|
return ch_high, ch_low |
|
374
|
|
|
|
|
375
|
|
|
def set_digital_level(self, low=None, high=None): |
|
376
|
|
|
""" Set low and/or high value of the provided digital channel. |
|
377
|
|
|
|
|
378
|
|
|
@param dict low: dictionary, with key being the channel descriptor string |
|
379
|
|
|
(i.e. 'd_ch1', 'd_ch2') and items being the low values (in volt) for the |
|
380
|
|
|
desired channel. |
|
381
|
|
|
@param dict high: dictionary, with key being the channel descriptor string |
|
382
|
|
|
(i.e. 'd_ch1', 'd_ch2') and items being the high values (in volt) for the |
|
383
|
|
|
desired channel. |
|
384
|
|
|
|
|
385
|
|
|
@return (dict, dict): tuple of two dicts where first dict denotes the current low value and |
|
386
|
|
|
the second dict the high value for ALL digital channels. |
|
387
|
|
|
Keys are the channel descriptor strings (i.e. 'd_ch1', 'd_ch2') |
|
388
|
|
|
|
|
389
|
|
|
If nothing is passed then the command will return the current voltage levels. |
|
390
|
|
|
|
|
391
|
|
|
Note: After setting the high and/or low values of the device, use the actual set return |
|
392
|
|
|
values for further processing. |
|
393
|
|
|
""" |
|
394
|
|
|
if low is None: |
|
395
|
|
|
low = {} |
|
396
|
|
|
if high is None: |
|
397
|
|
|
high = {} |
|
398
|
|
|
|
|
399
|
|
|
for chan, level in low.items(): |
|
400
|
|
|
gen, gen_ch = self.ch_map[chan] |
|
401
|
|
|
self.dtg.write('PGEN{0}:CH{1}:LOW {2}'.format(gen, gen_ch, level)) |
|
402
|
|
|
|
|
403
|
|
|
for chan, level in high.items(): |
|
404
|
|
|
gen, gen_ch = self.ch_map[chan] |
|
405
|
|
|
self.dtg.write('PGEN{0}:CH{1}:HIGH {2}'.format(gen, gen_ch, level)) |
|
406
|
|
|
|
|
407
|
|
|
return self.get_digital_level() |
|
408
|
|
|
|
|
409
|
|
|
def get_active_channels(self, ch=None): |
|
410
|
|
|
""" Get the active channels of the pulse generator hardware. |
|
411
|
|
|
|
|
412
|
|
|
@param list ch: optional, if specific analog or digital channels are needed to be asked |
|
413
|
|
|
without obtaining all the channels. |
|
414
|
|
|
|
|
415
|
|
|
@return dict: where keys denoting the channel string and items boolean expressions whether |
|
416
|
|
|
channel are active or not. |
|
417
|
|
|
|
|
418
|
|
|
If no parameter (or None) is passed to this method all channel states will be returned. |
|
419
|
|
|
""" |
|
420
|
|
|
if ch is None: |
|
421
|
|
|
chan_list = self.get_constraints().activation_config['all'] |
|
422
|
|
|
active_ch = {chan: 1 for chan in chan_list} |
|
423
|
|
|
|
|
424
|
|
|
return active_ch |
|
425
|
|
|
|
|
426
|
|
|
def set_active_channels(self, ch=None): |
|
427
|
|
|
""" Set the active channels for the pulse generator hardware. |
|
428
|
|
|
|
|
429
|
|
|
@param dict ch: dictionary with keys being the analog or digital string generic names for |
|
430
|
|
|
the channels (i.e. 'd_ch1', 'a_ch2') with items being a boolean value. |
|
431
|
|
|
True: Activate channel, False: Deactivate channel |
|
432
|
|
|
|
|
433
|
|
|
@return dict: with the actual set values for ALL active analog and digital channels |
|
434
|
|
|
|
|
435
|
|
|
If nothing is passed then the command will simply return the unchanged current state. |
|
436
|
|
|
""" |
|
437
|
|
|
for chan, state in ch.items(): |
|
438
|
|
|
gen, gen_ch = self.ch_map[chan] |
|
439
|
|
|
b_state = 1 if state else 0 |
|
440
|
|
|
self.dtg.write('PGEN{0}:CH{1}:OUTP {2}'.format(gen, gen_ch, b_state)) |
|
441
|
|
|
|
|
442
|
|
|
return self.get_active_channels() |
|
443
|
|
|
|
|
444
|
|
|
def write_waveform(self, name, analog_samples, digital_samples, is_first_chunk, is_last_chunk, |
|
445
|
|
|
total_number_of_samples): |
|
446
|
|
|
""" |
|
447
|
|
|
Write a new waveform or append samples to an already existing waveform on the device memory. |
|
448
|
|
|
The flags is_first_chunk and is_last_chunk can be used as indicator if a new waveform should |
|
449
|
|
|
be created or if the write process to a waveform should be terminated. |
|
450
|
|
|
|
|
451
|
|
|
@param name: str, the name of the waveform to be created/append to |
|
452
|
|
|
@param analog_samples: numpy.ndarray of type float32 containing the voltage samples |
|
453
|
|
|
@param digital_samples: numpy.ndarray of type bool containing the marker states |
|
454
|
|
|
(if analog channels are active, this must be the same length as |
|
455
|
|
|
analog_samples) |
|
456
|
|
|
@param is_first_chunk: bool, flag indicating if it is the first chunk to write. |
|
457
|
|
|
If True this method will create a new empty wavveform. |
|
458
|
|
|
If False the samples are appended to the existing waveform. |
|
459
|
|
|
@param is_last_chunk: bool, flag indicating if it is the last chunk to write. |
|
460
|
|
|
Some devices may need to know when to close the appending wfm. |
|
461
|
|
|
@param total_number_of_samples: int, The number of sample points for the entire waveform |
|
462
|
|
|
(not only the currently written chunk) |
|
463
|
|
|
|
|
464
|
|
|
@return: (int, list) number of samples written (-1 indicates failed process) and list of |
|
465
|
|
|
created waveform names |
|
466
|
|
|
""" |
|
467
|
|
|
# check input |
|
468
|
|
|
if not name: |
|
469
|
|
|
self.log.error('Please specify a name for waveform creation.') |
|
470
|
|
|
return -1 |
|
471
|
|
|
|
|
472
|
|
|
min_samples = 960 |
|
473
|
|
|
longest_channel = max([len(v) for k, v in digital_samples.items()]) |
|
474
|
|
|
print('Loading block with', longest_channel, 'samples') |
|
475
|
|
|
if longest_channel < min_samples: |
|
476
|
|
|
self.log.error('Minimum waveform length for DTG5334 series is {0} samples.\n' |
|
477
|
|
|
'Direct waveform creation for {1} failed.'.format(min_samples, name)) |
|
478
|
|
|
return -1 |
|
479
|
|
|
|
|
480
|
|
|
# determine active channels |
|
481
|
|
|
activation_dict = self.get_active_channels() |
|
482
|
|
|
active_chnl = [chnl for chnl in activation_dict if activation_dict[chnl]] |
|
483
|
|
|
active_digital = [chnl for chnl in active_chnl if 'd_ch' in chnl] |
|
484
|
|
|
active_digital.sort() |
|
485
|
|
|
print(active_digital) |
|
486
|
|
|
|
|
487
|
|
|
# Sanity check of channel numbers |
|
488
|
|
|
if set(active_digital) != set(digital_samples.keys()): |
|
489
|
|
|
self.log.error( |
|
490
|
|
|
'Mismatch of channel activation and sample array dimensions for direct ' |
|
491
|
|
|
'write.\nChannel activation is: {}.\n' |
|
492
|
|
|
'Sample arrays have: {}.' |
|
493
|
|
|
''.format(active_digital, list(digital_samples.keys()))) |
|
494
|
|
|
return -1 |
|
495
|
|
|
|
|
496
|
|
|
self._block_new(name, longest_channel) |
|
497
|
|
|
self.log.debug(self.dtg.query('BLOC:SEL?')) |
|
498
|
|
|
written = self._block_write(name, digital_samples) |
|
499
|
|
|
print(written) |
|
500
|
|
|
self.current_loaded_assets = {int(ch.split('_ch')[1]): name for ch in active_digital} |
|
501
|
|
|
self.current_loaded_asset_type = 'waveform' |
|
502
|
|
|
self.waveform_names.add(name) |
|
503
|
|
|
return max(written), [name] |
|
504
|
|
|
|
|
505
|
|
|
def write_sequence(self, name, sequence_parameters): |
|
506
|
|
|
""" |
|
507
|
|
|
Write a new sequence on the device memory. |
|
508
|
|
|
|
|
509
|
|
|
@param name: str, the name of the waveform to be created/append to |
|
510
|
|
|
@param sequence_parameters: dict, dictionary containing the parameters for a sequence |
|
511
|
|
|
|
|
512
|
|
|
@return: int, number of sequence steps written (-1 indicates failed process) |
|
513
|
|
|
""" |
|
514
|
|
|
num_steps = len(sequence_parameters) |
|
515
|
|
|
|
|
516
|
|
|
# Check if sequence already exists and delete if necessary. |
|
517
|
|
|
#if sequence_name in self._get_sequence_names_memory(): |
|
518
|
|
|
# self.dtg.write('BLOC:DEL "{0}"'.format(sequence_name)) |
|
519
|
|
|
self._set_sequence_length(num_steps) |
|
520
|
|
|
for line_nr, (wfms, params) in enumerate(sequence_parameters): |
|
521
|
|
|
print(line_nr, params) |
|
522
|
|
|
go_to = '' if params['go_to'] <= 0 else params['go_to'] |
|
523
|
|
|
jump_to = '' if params['event_jump_to'] <= 0 else params['event_jump_to'] |
|
524
|
|
|
reps = 0 if params['repetitions'] <= 0 else params['repetitions'] |
|
525
|
|
|
self._set_sequence_line( |
|
526
|
|
|
line_nr, |
|
527
|
|
|
'{0}'.format(line_nr + 1), |
|
528
|
|
|
0, |
|
529
|
|
|
params['name'][0].rsplit('.')[0], |
|
530
|
|
|
reps, |
|
531
|
|
|
jump_to, |
|
532
|
|
|
go_to |
|
533
|
|
|
) |
|
534
|
|
|
|
|
535
|
|
|
# Wait for everything to complete |
|
536
|
|
|
while int(self.dtg.query('*OPC?')) != 1: |
|
537
|
|
|
time.sleep(0.2) |
|
538
|
|
|
|
|
539
|
|
|
self.sequence_names.add(name) |
|
540
|
|
|
return 0 |
|
541
|
|
|
|
|
542
|
|
|
def get_waveform_names(self): |
|
543
|
|
|
""" Retrieve the names of all uploaded waveforms on the device. |
|
544
|
|
|
|
|
545
|
|
|
@return list: List of all uploaded waveform name strings in the device workspace. |
|
546
|
|
|
""" |
|
547
|
|
|
return list(sorted(self.waveform_names)) |
|
548
|
|
|
|
|
549
|
|
|
def get_sequence_names(self): |
|
550
|
|
|
""" Retrieve the names of all uploaded sequence on the device. |
|
551
|
|
|
|
|
552
|
|
|
@return list: List of all uploaded sequence name strings in the device workspace. |
|
553
|
|
|
""" |
|
554
|
|
|
return list(sorted(self.sequence_names)) |
|
555
|
|
|
|
|
556
|
|
|
def delete_waveform(self, waveform_name): |
|
557
|
|
|
""" Delete the waveform with name "waveform_name" from the device memory. |
|
558
|
|
|
|
|
559
|
|
|
@param str waveform_name: The name of the waveform to be deleted |
|
560
|
|
|
Optionally a list of waveform names can be passed. |
|
561
|
|
|
|
|
562
|
|
|
@return list: a list of deleted waveform names. |
|
563
|
|
|
""" |
|
564
|
|
|
return [] |
|
565
|
|
|
|
|
566
|
|
|
def delete_sequence(self, sequence_name): |
|
567
|
|
|
""" Delete the sequence with name "sequence_name" from the device memory. |
|
568
|
|
|
|
|
569
|
|
|
@param str sequence_name: The name of the sequence to be deleted |
|
570
|
|
|
Optionally a list of sequence names can be passed. |
|
571
|
|
|
|
|
572
|
|
|
@return list: a list of deleted sequence names. |
|
573
|
|
|
""" |
|
574
|
|
|
return [] |
|
575
|
|
|
|
|
576
|
|
|
def get_interleave(self): |
|
577
|
|
|
""" Check whether Interleave is ON or OFF in AWG. |
|
578
|
|
|
|
|
579
|
|
|
@return bool: True: ON, False: OFF |
|
580
|
|
|
|
|
581
|
|
|
Will always return False for pulse generator hardware without interleave. |
|
582
|
|
|
""" |
|
583
|
|
|
return False |
|
584
|
|
|
|
|
585
|
|
|
def set_interleave(self, state=False): |
|
586
|
|
|
""" Turns the interleave of an AWG on or off. |
|
587
|
|
|
|
|
588
|
|
|
@param bool state: The state the interleave should be set to |
|
589
|
|
|
(True: ON, False: OFF) |
|
590
|
|
|
|
|
591
|
|
|
@return bool: actual interleave status (True: ON, False: OFF) |
|
592
|
|
|
|
|
593
|
|
|
Unused for pulse generator hardware other than an AWG. |
|
594
|
|
|
""" |
|
595
|
|
|
return False |
|
596
|
|
|
|
|
597
|
|
|
def write(self, command): |
|
598
|
|
|
""" Sends a command string to the device. |
|
599
|
|
|
|
|
600
|
|
|
@param string command: string containing the command |
|
601
|
|
|
|
|
602
|
|
|
@return int: error code (0:OK, -1:error) |
|
603
|
|
|
""" |
|
604
|
|
|
self.dtg.write(command) |
|
605
|
|
|
|
|
606
|
|
|
def query(self, question): |
|
607
|
|
|
""" Asks the device a 'question' and receive and return an answer from it. |
|
608
|
|
|
|
|
609
|
|
|
@param string question: string containing the command |
|
610
|
|
|
|
|
611
|
|
|
@return string: the answer of the device to the 'question' in a string |
|
612
|
|
|
""" |
|
613
|
|
|
return self.dtg.query(question) |
|
614
|
|
|
|
|
615
|
|
|
def reset(self): |
|
616
|
|
|
""" Reset the device. |
|
617
|
|
|
|
|
618
|
|
|
@return int: error code (0:OK, -1:error) |
|
619
|
|
|
""" |
|
620
|
|
|
self.dtg.write('*RST') |
|
621
|
|
|
|
|
622
|
|
|
def has_sequence_mode(self): |
|
623
|
|
|
""" Asks the pulse generator whether sequence mode exists. |
|
624
|
|
|
|
|
625
|
|
|
@return: bool, True for yes, False for no. |
|
626
|
|
|
""" |
|
627
|
|
|
return True |
|
628
|
|
|
|
|
629
|
|
|
def _get_id(self): |
|
630
|
|
|
result = self.dtg.query('*IDN?') |
|
631
|
|
|
version = self.dtg.query('SYSTEM:VERSION?') |
|
632
|
|
|
ret = result.replace('\n', '').split(',') |
|
633
|
|
|
ret.append(version.replace('\n', '')) |
|
634
|
|
|
return ret |
|
635
|
|
|
|
|
636
|
|
|
def _get_modules(self): |
|
637
|
|
|
a = self.modules_map[int(self.dtg.query('PGENA:ID?'))] |
|
638
|
|
|
b = self.modules_map[int(self.dtg.query('PGENB:ID?'))] |
|
639
|
|
|
c = self.modules_map[int(self.dtg.query('PGENC:ID?'))] |
|
640
|
|
|
d = self.modules_map[int(self.dtg.query('PGEND:ID?'))] |
|
641
|
|
|
return [a, b, c, d] |
|
642
|
|
|
|
|
643
|
|
|
def _is_output_on(self): |
|
644
|
|
|
return int(self.dtg.query('TBAS:RUN?')) == 1 |
|
645
|
|
|
|
|
646
|
|
|
def _block_length(self, name): |
|
647
|
|
|
return int(self.dtg.query('BLOC:LENG? "{0}"'.format(name))) |
|
648
|
|
|
|
|
649
|
|
|
def _block_exists(self, name): |
|
650
|
|
|
return self._block_length(name) != -1 |
|
651
|
|
|
|
|
652
|
|
|
def _block_delete(self, name): |
|
653
|
|
|
self.dtg.write('BLOC:DEL "{0}"'.format(name)) |
|
654
|
|
|
|
|
655
|
|
|
def _block_new(self, name, length): |
|
656
|
|
|
if self._block_exists(name): |
|
657
|
|
|
self._block_delete(name) |
|
658
|
|
|
|
|
659
|
|
|
self.dtg.write('BLOC:NEW "{0}", {1}'.format(name, length)) |
|
660
|
|
|
self.dtg.query('*OPC?') |
|
661
|
|
|
self.dtg.write('BLOC:SEL "{0}"'.format(name)) |
|
662
|
|
|
self.dtg.query('*OPC?') |
|
663
|
|
|
|
|
664
|
|
|
def _block_write(self, name, digital_samples): |
|
665
|
|
|
written = [] |
|
666
|
|
|
self.dtg.write('BLOC:SEL "{0}"'.format(name)) |
|
667
|
|
|
|
|
668
|
|
|
for ch, data in sorted(digital_samples.items()): |
|
669
|
|
|
written.append(self._channel_write_binary(ch, data)) |
|
670
|
|
|
|
|
671
|
|
|
self.dtg.query('*OPC?') |
|
672
|
|
|
return written |
|
673
|
|
|
|
|
674
|
|
|
def _channel_write(self, channel, data): |
|
675
|
|
|
c = self.ch_map[channel] |
|
676
|
|
|
max_blocksize = 500 |
|
677
|
|
|
dlen = len(data) |
|
678
|
|
|
written = 0 |
|
679
|
|
|
start = 0 |
|
680
|
|
|
|
|
681
|
|
|
# when there is more than 1MB of data to transfer, split it up |
|
682
|
|
|
print('Starting chunked transfer') |
|
683
|
|
|
while dlen >= max_blocksize: |
|
684
|
|
|
end = start + max_blocksize |
|
685
|
|
|
datstr = ''.join(map(lambda x: str(int(x)), data[start:end])) |
|
686
|
|
|
print(channel, 'loop', dlen, len(datstr)) |
|
687
|
|
|
self.dtg.write('PGEN{0}:CH{1}:DATA {2},{3},"{4}"'.format( |
|
688
|
|
|
c[0], c[1], start, end - start, datstr)) |
|
689
|
|
|
self.dtg.query('*OPC?') |
|
690
|
|
|
written += end - start |
|
691
|
|
|
dlen -= end - start |
|
692
|
|
|
start = end |
|
693
|
|
|
|
|
694
|
|
|
end = start + dlen |
|
695
|
|
|
if dlen > 0: |
|
696
|
|
|
datstr = ''.join(map(lambda x: str(int(x)), data[start:end])) |
|
697
|
|
|
print(channel, 'last', len(datstr)) |
|
698
|
|
|
self.dtg.write( |
|
699
|
|
|
'PGEN{0}:CH{1}:DATA {2},{3},"{4}"'.format( |
|
700
|
|
|
c[0], c[1], start, end - start, datstr) |
|
701
|
|
|
) |
|
702
|
|
|
self.dtg.query('*OPC?') |
|
703
|
|
|
written += end - start |
|
704
|
|
|
return written |
|
705
|
|
|
|
|
706
|
|
|
def _channel_write_binary(self, channel, data): |
|
707
|
|
|
c = self.ch_map[channel] |
|
708
|
|
|
max_blocksize = 8 * 800 |
|
709
|
|
|
dlen = len(data) |
|
710
|
|
|
written = 0 |
|
711
|
|
|
start = 0 |
|
712
|
|
|
|
|
713
|
|
|
# when there is more than 1MB of data to transfer, split it up |
|
714
|
|
|
while dlen >= max_blocksize - 8: |
|
715
|
|
|
end = start + max_blocksize |
|
716
|
|
|
bytestr = np.packbits(np.fliplr(np.reshape(data[start:end], (-1, 8)))) |
|
717
|
|
|
print(channel, '->', c, 'start', start, 'end', end, 'len', dlen, 'packed', len(bytestr)) |
|
718
|
|
|
#print(bytestr) |
|
719
|
|
|
self.dtg.write_binary_values( |
|
720
|
|
|
'PGEN{0}:CH{1}:BDATA {2},{3},'.format(c[0], c[1], start, end - start), |
|
721
|
|
|
bytestr, |
|
722
|
|
|
datatype='B' |
|
723
|
|
|
) |
|
724
|
|
|
print(self.dtg.query('*OPC?')) |
|
725
|
|
|
written += end - start |
|
726
|
|
|
dlen -= end - start |
|
727
|
|
|
start = end |
|
728
|
|
|
|
|
729
|
|
|
end = start + dlen |
|
730
|
|
|
if dlen > 0: |
|
731
|
|
|
to_pad = 8 - dlen % 8 if dlen % 8 != 0 else 0 |
|
732
|
|
|
|
|
733
|
|
|
padded_bytes = np.packbits( |
|
734
|
|
|
np.fliplr( |
|
735
|
|
|
np.reshape( |
|
736
|
|
|
np.pad(data[start:end], (0, to_pad), 'constant'), |
|
737
|
|
|
(-1, 8) |
|
738
|
|
|
) |
|
739
|
|
|
) |
|
740
|
|
|
) |
|
741
|
|
|
#print(padded_bytes) |
|
742
|
|
|
print(channel, '-->', c, 'start', start, 'end', end, |
|
743
|
|
|
'len', dlen, 'padded', len(padded_bytes)) |
|
744
|
|
|
self.dtg.write_binary_values( |
|
745
|
|
|
'PGEN{0}:CH{1}:BDATA {2},{3},'.format(c[0], c[1], start, end - start), |
|
746
|
|
|
padded_bytes, |
|
747
|
|
|
datatype='B' |
|
748
|
|
|
) |
|
749
|
|
|
print(self.dtg.query('*OPC?')) |
|
750
|
|
|
written += end - start |
|
751
|
|
|
return written |
|
752
|
|
|
|
|
753
|
|
|
def _get_sequence_line(self, line_nr): |
|
754
|
|
|
fields = self.dtg.query('SEQ:DATA? {0}'.format(line_nr)).split(', ') |
|
755
|
|
|
print(fields) |
|
756
|
|
|
label, trigger, block, repeat, jump, goto = fields |
|
757
|
|
|
return ( |
|
758
|
|
|
label.strip('"'), |
|
759
|
|
|
int(trigger), |
|
760
|
|
|
block.strip('"'), |
|
761
|
|
|
int(repeat), |
|
762
|
|
|
jump.strip('"'), |
|
763
|
|
|
goto.strip('"') |
|
764
|
|
|
) |
|
765
|
|
|
|
|
766
|
|
|
def _set_sequence_line(self, line_nr, label, trigger, block, repeat, jump, goto): |
|
767
|
|
|
print(line_nr, label, trigger, block, repeat, jump, goto) |
|
768
|
|
|
self.dtg.write('SEQ:DATA {0}, "{1}", {2}, "{3}", {4}, "{5}", "{6}"'.format( |
|
769
|
|
|
line_nr, label, trigger, block, repeat, jump, goto |
|
770
|
|
|
)) |
|
771
|
|
|
|
|
772
|
|
|
def _get_sequence_length(self): |
|
773
|
|
|
return int(self.dtg.query('SEQ:LENG?')) |
|
774
|
|
|
|
|
775
|
|
|
def _set_sequence_length(self, length): |
|
776
|
|
|
self.dtg.write('SEQ:LENG {0}'.format(length)) |
|
777
|
|
|
|
|
778
|
|
|
def _get_sequencer_mode(self): |
|
779
|
|
|
return self.dtg.query('TBAS:SMODE?') |
|
780
|
|
|
|