1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
""" |
3
|
|
|
Use OK FPGA as a digital pulse sequence generator. |
4
|
|
|
|
5
|
|
|
Qudi is free software: you can redistribute it and/or modify |
6
|
|
|
it under the terms of the GNU General Public License as published by |
7
|
|
|
the Free Software Foundation, either version 3 of the License, or |
8
|
|
|
(at your option) any later version. |
9
|
|
|
|
10
|
|
|
Qudi is distributed in the hope that it will be useful, |
11
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
12
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13
|
|
|
GNU General Public License for more details. |
14
|
|
|
|
15
|
|
|
You should have received a copy of the GNU General Public License |
16
|
|
|
along with Qudi. If not, see <http://www.gnu.org/licenses/>. |
17
|
|
|
|
18
|
|
|
Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the |
19
|
|
|
top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
from core.module import Base, ConfigOption, StatusVar |
23
|
|
|
from core.util.modules import get_main_dir |
24
|
|
|
from interface.pulser_interface import PulserInterface, PulserConstraints |
25
|
|
|
import okfrontpanel as ok |
26
|
|
|
import numpy as np |
27
|
|
|
import time |
28
|
|
|
import os |
29
|
|
|
from collections import OrderedDict |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
class OkFpgaPulser(Base, PulserInterface): |
33
|
|
|
"""Methods to control Pulse Generator running on OK FPGA. |
34
|
|
|
|
35
|
|
|
Chan PIN |
36
|
|
|
---------- |
37
|
|
|
Ch1 A3 |
38
|
|
|
Ch2 C5 |
39
|
|
|
Ch3 D6 |
40
|
|
|
Ch4 B6 |
41
|
|
|
Ch5 C7 |
42
|
|
|
Ch6 B8 |
43
|
|
|
Ch7 D9 |
44
|
|
|
Ch8 C9 |
45
|
|
|
""" |
46
|
|
|
_modclass = 'pulserinterface' |
47
|
|
|
_modtype = 'hardware' |
48
|
|
|
|
49
|
|
|
_fpga_serial = ConfigOption(name='fpga_serial', missing='error') |
50
|
|
|
_fpga_type = ConfigOption(name='fpga_type', default='XEM6310_LX150', missing='warn') |
51
|
|
|
|
52
|
|
|
__current_waveform = StatusVar(name='current_waveform', default=np.zeros(1, dtype='uint8')) |
53
|
|
|
__current_waveform_name = StatusVar(name='current_waveform_name', default='') |
54
|
|
|
__sample_rate = StatusVar(name='sample_rate', default=950e6) |
55
|
|
|
|
56
|
|
|
def __init__(self, config, **kwargs): |
57
|
|
|
super().__init__(config=config, **kwargs) |
58
|
|
|
|
59
|
|
|
self.__current_status = -1 |
60
|
|
|
self.__currently_loaded_waveform = '' # loaded and armed waveform name |
61
|
|
|
self.__samples_written = 0 |
62
|
|
|
self.fpga = None # Reference to the OK FrontPanel instance |
63
|
|
|
|
64
|
|
|
def on_activate(self): |
65
|
|
|
self.__samples_written = 0 |
66
|
|
|
self.__currently_loaded_waveform = '' |
67
|
|
|
self.fpga = ok.FrontPanel() |
68
|
|
|
self._connect_fpga() |
69
|
|
|
self.set_sample_rate(self.__sample_rate) |
70
|
|
|
|
71
|
|
|
def on_deactivate(self): |
72
|
|
|
self._disconnect_fpga() |
73
|
|
|
|
74
|
|
|
@__current_waveform.representer |
75
|
|
|
def _convert_current_waveform(self, waveform_bytearray): |
76
|
|
|
return np.frombuffer(waveform_bytearray, dtype='uint8') |
77
|
|
|
|
78
|
|
|
@__current_waveform.constructor |
79
|
|
|
def _recover_current_waveform(self, waveform_nparray): |
80
|
|
|
return bytearray(waveform_nparray.tobytes()) |
81
|
|
|
|
82
|
|
|
def get_constraints(self): |
83
|
|
|
""" |
84
|
|
|
Retrieve the hardware constrains from the Pulsing device. |
85
|
|
|
|
86
|
|
|
@return constraints object: object with pulser constraints as attributes. |
87
|
|
|
|
88
|
|
|
Provides all the constraints (e.g. sample_rate, amplitude, total_length_bins, |
89
|
|
|
channel_config, ...) related to the pulse generator hardware to the caller. |
90
|
|
|
|
91
|
|
|
SEE PulserConstraints CLASS IN pulser_interface.py FOR AVAILABLE CONSTRAINTS!!! |
92
|
|
|
|
93
|
|
|
If you are not sure about the meaning, look in other hardware files to get an impression. |
94
|
|
|
If still additional constraints are needed, then they have to be added to the |
95
|
|
|
PulserConstraints class. |
96
|
|
|
|
97
|
|
|
Each scalar parameter is an ScalarConstraints object defined in cor.util.interfaces. |
98
|
|
|
Essentially it contains min/max values as well as min step size, default value and unit of |
99
|
|
|
the parameter. |
100
|
|
|
|
101
|
|
|
PulserConstraints.activation_config differs, since it contain the channel |
102
|
|
|
configuration/activation information of the form: |
103
|
|
|
{<descriptor_str>: <channel_set>, |
104
|
|
|
<descriptor_str>: <channel_set>, |
105
|
|
|
...} |
106
|
|
|
|
107
|
|
|
If the constraints cannot be set in the pulsing hardware (e.g. because it might have no |
108
|
|
|
sequence mode) just leave it out so that the default is used (only zeros). |
109
|
|
|
""" |
110
|
|
|
constraints = PulserConstraints() |
111
|
|
|
|
112
|
|
|
constraints.sample_rate.min = 500e6 |
113
|
|
|
constraints.sample_rate.max = 950e6 |
114
|
|
|
constraints.sample_rate.step = 450e6 |
115
|
|
|
constraints.sample_rate.default = 950e6 |
116
|
|
|
|
117
|
|
|
constraints.a_ch_amplitude.min = 0.0 |
118
|
|
|
constraints.a_ch_amplitude.max = 0.0 |
119
|
|
|
constraints.a_ch_amplitude.step = 0.0 |
120
|
|
|
constraints.a_ch_amplitude.default = 0.0 |
121
|
|
|
|
122
|
|
|
constraints.a_ch_offset.min = 0.0 |
123
|
|
|
constraints.a_ch_offset.max = 0.0 |
124
|
|
|
constraints.a_ch_offset.step = 0.0 |
125
|
|
|
constraints.a_ch_offset.default = 0.0 |
126
|
|
|
|
127
|
|
|
constraints.d_ch_low.min = 0.0 |
128
|
|
|
constraints.d_ch_low.max = 0.0 |
129
|
|
|
constraints.d_ch_low.step = 0.0 |
130
|
|
|
constraints.d_ch_low.default = 0.0 |
131
|
|
|
|
132
|
|
|
constraints.d_ch_high.min = 3.3 |
133
|
|
|
constraints.d_ch_high.max = 3.3 |
134
|
|
|
constraints.d_ch_high.step = 0.0 |
135
|
|
|
constraints.d_ch_high.default = 3.3 |
136
|
|
|
|
137
|
|
|
constraints.waveform_length.min = 1024 |
138
|
|
|
constraints.waveform_length.max = 134217728 |
139
|
|
|
constraints.waveform_length.step = 1 |
140
|
|
|
constraints.waveform_length.default = 1024 |
141
|
|
|
|
142
|
|
|
# the name a_ch<num> and d_ch<num> are generic names, which describe UNAMBIGUOUSLY the |
143
|
|
|
# channels. Here all possible channel configurations are stated, where only the generic |
144
|
|
|
# names should be used. The names for the different configurations can be customary chosen. |
145
|
|
|
activation_config = OrderedDict() |
146
|
|
|
activation_config['all'] = {'d_ch1', 'd_ch2', 'd_ch3', 'd_ch4', |
147
|
|
|
'd_ch5', 'd_ch6', 'd_ch7', 'd_ch8'} |
148
|
|
|
constraints.activation_config = activation_config |
149
|
|
|
return constraints |
150
|
|
|
|
151
|
|
|
def pulser_on(self): |
152
|
|
|
""" Switches the pulsing device on. |
153
|
|
|
|
154
|
|
|
@return int: error code (0:OK, -1:error) |
155
|
|
|
""" |
156
|
|
|
return self.write(0x01) |
157
|
|
|
|
158
|
|
|
def pulser_off(self): |
159
|
|
|
""" Switches the pulsing device off. |
160
|
|
|
|
161
|
|
|
@return int: error code (0:OK, -1:error) |
162
|
|
|
""" |
163
|
|
|
return self.write(0x00) |
164
|
|
|
|
165
|
|
|
def load_waveform(self, load_dict): |
166
|
|
|
""" Loads a waveform to the specified channel of the pulsing device. |
167
|
|
|
For devices that have a workspace (i.e. AWG) this will load the waveform from the device |
168
|
|
|
workspace into the channel. |
169
|
|
|
For a device without mass memory this will make the waveform/pattern that has been |
170
|
|
|
previously written with self.write_waveform ready to play. |
171
|
|
|
|
172
|
|
|
@param load_dict: dict|list, a dictionary with keys being one of the available channel |
173
|
|
|
index and values being the name of the already written |
174
|
|
|
waveform to load into the channel. |
175
|
|
|
Examples: {1: rabi_ch1, 2: rabi_ch2} or |
176
|
|
|
{1: rabi_ch2, 2: rabi_ch1} |
177
|
|
|
If just a list of waveform names if given, the channel |
178
|
|
|
association will be invoked from the channel |
179
|
|
|
suffix '_ch1', '_ch2' etc. |
180
|
|
|
|
181
|
|
|
@return dict: Dictionary containing the actually loaded waveforms per channel. |
182
|
|
|
""" |
183
|
|
|
# Since only one waveform can be present at a time check if only a single name is given |
184
|
|
|
if isinstance(load_dict, list): |
185
|
|
|
waveforms = list(set(load_dict)) |
186
|
|
|
elif isinstance(load_dict, dict): |
187
|
|
|
waveforms = list(set(load_dict.values())) |
188
|
|
|
else: |
189
|
|
|
self.log.error('Method load_waveform expects a list of waveform names or a dict.') |
190
|
|
|
return self.get_loaded_assets() |
191
|
|
|
|
192
|
|
|
if len(waveforms) != 1: |
193
|
|
|
self.log.error('FPGA pulser expects exactly one waveform name for load_waveform.') |
194
|
|
|
return self.get_loaded_assets() |
195
|
|
|
|
196
|
|
|
waveform = waveforms[0] |
197
|
|
|
if waveform != self.__current_waveform_name: |
198
|
|
|
self.log.error('No waveform by the name "{0}" generated for FPGA pulser.\n' |
199
|
|
|
'Only one waveform at a time can be held.'.format(waveform)) |
200
|
|
|
return self.get_loaded_assets() |
201
|
|
|
|
202
|
|
|
# calculate size of the two bytearrays to be transmitted. The biggest part is tranfered |
203
|
|
|
# in 1024 byte blocks and the rest is transfered in 32 byte blocks |
204
|
|
|
big_bytesize = (len(self.__current_waveform) // 1024) * 1024 |
205
|
|
|
small_bytesize = len(self.__current_waveform) - big_bytesize |
206
|
|
|
|
207
|
|
|
# try repeatedly to upload the samples to the FPGA RAM |
208
|
|
|
# stop if the upload was successful |
209
|
|
|
loop_count = 0 |
210
|
|
|
while True: |
211
|
|
|
loop_count += 1 |
212
|
|
|
# reset FPGA |
213
|
|
|
self.reset() |
214
|
|
|
# upload sequence |
215
|
|
|
if big_bytesize != 0: |
216
|
|
|
# enable sequence write mode in FPGA |
217
|
|
|
self.write((255 << 24) + 2) |
218
|
|
|
# write to FPGA DDR2-RAM |
219
|
|
|
self.fpga.WriteToBlockPipeIn(0x80, 1024, self.__current_waveform[0:big_bytesize]) |
220
|
|
|
if small_bytesize != 0: |
221
|
|
|
# enable sequence write mode in FPGA |
222
|
|
|
self.write((8 << 24) + 2) |
223
|
|
|
# write to FPGA DDR2-RAM |
224
|
|
|
self.fpga.WriteToBlockPipeIn(0x80, 32, self.__current_waveform[big_bytesize:]) |
225
|
|
|
|
226
|
|
|
# check if upload was successful |
227
|
|
|
self.write(0x00) |
228
|
|
|
# start the pulse sequence |
229
|
|
|
self.write(0x01) |
230
|
|
|
# wait for 600ms |
231
|
|
|
time.sleep(0.6) |
232
|
|
|
# get status flags from FPGA |
233
|
|
|
flags = self.query() |
234
|
|
|
self.write(0x00) |
235
|
|
|
# check if the memory readout works. |
236
|
|
|
if flags == 0: |
237
|
|
|
self.log.info('Loading of waveform "{0}" to FPGA was successful.\n' |
238
|
|
|
'Upload attempts needed: {1}'.format(waveform, loop_count)) |
239
|
|
|
self.__currently_loaded_waveform = waveform |
240
|
|
|
break |
241
|
|
|
if loop_count == 10: |
242
|
|
|
self.log.error('Unable to upload waveform to FPGA.\n' |
243
|
|
|
'Abort loading after 10 failed attempts.') |
244
|
|
|
self.reset() |
245
|
|
|
break |
246
|
|
|
return self.get_loaded_assets()[0] |
247
|
|
|
|
248
|
|
|
def load_sequence(self, sequence_name): |
249
|
|
|
""" Loads a sequence to the channels of the device in order to be ready for playback. |
250
|
|
|
For devices that have a workspace (i.e. AWG) this will load the sequence from the device |
251
|
|
|
workspace into the channels. |
252
|
|
|
For a device without mass memory this will make the waveform/pattern that has been |
253
|
|
|
previously written with self.write_waveform ready to play. |
254
|
|
|
|
255
|
|
|
@param sequence_name: dict|list, a dictionary with keys being one of the available channel |
256
|
|
|
index and values being the name of the already written |
257
|
|
|
waveform to load into the channel. |
258
|
|
|
Examples: {1: rabi_ch1, 2: rabi_ch2} or |
259
|
|
|
{1: rabi_ch2, 2: rabi_ch1} |
260
|
|
|
If just a list of waveform names if given, the channel |
261
|
|
|
association will be invoked from the channel |
262
|
|
|
suffix '_ch1', '_ch2' etc. |
263
|
|
|
|
264
|
|
|
@return dict: Dictionary containing the actually loaded waveforms per channel. |
265
|
|
|
""" |
266
|
|
|
self.log.warning('FPGA digital pulse generator has no sequencing capabilities.\n' |
267
|
|
|
'load_sequence call ignored.') |
268
|
|
|
return |
269
|
|
|
|
270
|
|
|
def get_loaded_assets(self): |
271
|
|
|
""" |
272
|
|
|
Retrieve the currently loaded asset names for each active channel of the device. |
273
|
|
|
The returned dictionary will have the channel numbers as keys. |
274
|
|
|
In case of loaded waveforms the dictionary values will be the waveform names. |
275
|
|
|
In case of a loaded sequence the values will be the sequence name appended by a suffix |
276
|
|
|
representing the track loaded to the respective channel (i.e. '<sequence_name>_1'). |
277
|
|
|
|
278
|
|
|
@return (dict, str): Dictionary with keys being the channel number and values being the |
279
|
|
|
respective asset loaded into the channel, |
280
|
|
|
string describing the asset type ('waveform' or 'sequence') |
281
|
|
|
""" |
282
|
|
|
asset_type = 'waveform' if self.__currently_loaded_waveform else None |
283
|
|
|
asset_dict = {chnl_num: self.__currently_loaded_waveform for chnl_num in range(1, 9)} |
284
|
|
|
return asset_dict, asset_type |
285
|
|
|
|
286
|
|
|
def clear_all(self): |
287
|
|
|
""" Clears all loaded waveforms from the pulse generators RAM/workspace. |
288
|
|
|
|
289
|
|
|
@return int: error code (0:OK, -1:error) |
290
|
|
|
""" |
291
|
|
|
self.__currently_loaded_waveform = '' |
292
|
|
|
self.__current_waveform_name = '' |
293
|
|
|
self.__current_waveform = bytearray([0]) |
294
|
|
|
return 0 |
295
|
|
|
|
296
|
|
|
def get_status(self): |
297
|
|
|
""" Retrieves the status of the pulsing hardware |
298
|
|
|
|
299
|
|
|
@return (int, dict): tuple with an interger value of the current status |
300
|
|
|
and a corresponding dictionary containing status |
301
|
|
|
description for all the possible status variables |
302
|
|
|
of the pulse generator hardware. |
303
|
|
|
""" |
304
|
|
|
status_dic = dict() |
305
|
|
|
status_dic[-1] = 'Failed Request or Failed Communication with device.' |
306
|
|
|
status_dic[0] = 'Device has stopped, but can receive commands.' |
307
|
|
|
status_dic[1] = 'Device is active and running.' |
308
|
|
|
|
309
|
|
|
return self.__current_status, status_dic |
310
|
|
|
|
311
|
|
|
def get_sample_rate(self): |
312
|
|
|
""" Get the sample rate of the pulse generator hardware |
313
|
|
|
|
314
|
|
|
@return float: The current sample rate of the device (in Hz) |
315
|
|
|
""" |
316
|
|
|
return self.__sample_rate |
317
|
|
|
|
318
|
|
|
def set_sample_rate(self, sample_rate): |
319
|
|
|
""" Set the sample rate of the pulse generator hardware. |
320
|
|
|
|
321
|
|
|
@param float sample_rate: The sampling rate to be set (in Hz) |
322
|
|
|
|
323
|
|
|
@return float: the sample rate returned from the device (in Hz). |
324
|
|
|
|
325
|
|
|
Note: After setting the sampling rate of the device, use the actually set return value for |
326
|
|
|
further processing. |
327
|
|
|
""" |
328
|
|
|
# Round sample rate either to 500MHz or 950MHz since no other values are possible. |
329
|
|
|
if sample_rate < 725e6: |
330
|
|
|
self.__sample_rate = 500e6 |
331
|
|
|
bitfile_name = 'pulsegen_8chnl_500MHz_{0}.bit'.format(self._fpga_type.split('_')[1]) |
332
|
|
|
else: |
333
|
|
|
self.__sample_rate = 950e6 |
334
|
|
|
bitfile_name = 'pulsegen_8chnl_950MHz_{0}.bit'.format(self._fpga_type.split('_')[1]) |
335
|
|
|
|
336
|
|
|
bitfile_path = os.path.join(get_main_dir(), 'thirdparty', 'qo_fpga', bitfile_name) |
337
|
|
|
|
338
|
|
|
self.fpga.ConfigureFPGA(bitfile_path) |
339
|
|
|
self.log.debug('FPGA pulse generator configured with {0}'.format(bitfile_path)) |
340
|
|
|
return self.__sample_rate |
341
|
|
|
|
342
|
|
|
def get_analog_level(self, amplitude=None, offset=None): |
343
|
|
|
""" Retrieve the analog amplitude and offset of the provided channels. |
344
|
|
|
|
345
|
|
|
@param list amplitude: optional, if the amplitude value (in Volt peak to peak, i.e. the |
346
|
|
|
full amplitude) of a specific channel is desired. |
347
|
|
|
@param list offset: optional, if the offset value (in Volt) of a specific channel is |
348
|
|
|
desired. |
349
|
|
|
|
350
|
|
|
@return: (dict, dict): tuple of two dicts, with keys being the channel descriptor string |
351
|
|
|
(i.e. 'a_ch1') and items being the values for those channels. |
352
|
|
|
Amplitude is always denoted in Volt-peak-to-peak and Offset in volts. |
353
|
|
|
|
354
|
|
|
Note: Do not return a saved amplitude and/or offset value but instead retrieve the current |
355
|
|
|
amplitude and/or offset directly from the device. |
356
|
|
|
|
357
|
|
|
If nothing (or None) is passed then the levels of all channels will be returned. If no |
358
|
|
|
analog channels are present in the device, return just empty dicts. |
359
|
|
|
|
360
|
|
|
Example of a possible input: |
361
|
|
|
amplitude = ['a_ch1', 'a_ch4'], offset = None |
362
|
|
|
to obtain the amplitude of channel 1 and 4 and the offset of all channels |
363
|
|
|
{'a_ch1': -0.5, 'a_ch4': 2.0} {'a_ch1': 0.0, 'a_ch2': 0.0, 'a_ch3': 1.0, 'a_ch4': 0.0} |
364
|
|
|
""" |
365
|
|
|
return dict(), dict() |
366
|
|
|
|
367
|
|
|
def set_analog_level(self, amplitude=None, offset=None): |
368
|
|
|
""" Set amplitude and/or offset value of the provided analog channel(s). |
369
|
|
|
|
370
|
|
|
@param dict amplitude: dictionary, with key being the channel descriptor string |
371
|
|
|
(i.e. 'a_ch1', 'a_ch2') and items being the amplitude values |
372
|
|
|
(in Volt peak to peak, i.e. the full amplitude) for the desired |
373
|
|
|
channel. |
374
|
|
|
@param dict offset: dictionary, with key being the channel descriptor string |
375
|
|
|
(i.e. 'a_ch1', 'a_ch2') and items being the offset values |
376
|
|
|
(in absolute volt) for the desired channel. |
377
|
|
|
|
378
|
|
|
@return (dict, dict): tuple of two dicts with the actual set values for amplitude and |
379
|
|
|
offset for ALL channels. |
380
|
|
|
|
381
|
|
|
If nothing is passed then the command will return the current amplitudes/offsets. |
382
|
|
|
|
383
|
|
|
Note: After setting the amplitude and/or offset values of the device, use the actual set |
384
|
|
|
return values for further processing. |
385
|
|
|
""" |
386
|
|
|
return {}, {} |
387
|
|
|
|
388
|
|
|
def get_digital_level(self, low=None, high=None): |
389
|
|
|
""" Retrieve the digital low and high level of the provided/all channels. |
390
|
|
|
|
391
|
|
|
@param list low: optional, if the low value (in Volt) of a specific channel is desired. |
392
|
|
|
@param list high: optional, if the high value (in Volt) of a specific channel is desired. |
393
|
|
|
|
394
|
|
|
@return: (dict, dict): tuple of two dicts, with keys being the channel descriptor strings |
395
|
|
|
(i.e. 'd_ch1', 'd_ch2') and items being the values for those |
396
|
|
|
channels. Both low and high value of a channel is denoted in volts. |
397
|
|
|
|
398
|
|
|
Note: Do not return a saved low and/or high value but instead retrieve |
399
|
|
|
the current low and/or high value directly from the device. |
400
|
|
|
|
401
|
|
|
If nothing (or None) is passed then the levels of all channels are being returned. |
402
|
|
|
If no digital channels are present, return just an empty dict. |
403
|
|
|
|
404
|
|
|
Example of a possible input: |
405
|
|
|
low = ['d_ch1', 'd_ch4'] |
406
|
|
|
to obtain the low voltage values of digital channel 1 an 4. A possible answer might be |
407
|
|
|
{'d_ch1': -0.5, 'd_ch4': 2.0} {'d_ch1': 1.0, 'd_ch2': 1.0, 'd_ch3': 1.0, 'd_ch4': 4.0} |
408
|
|
|
Since no high request was performed, the high values for ALL channels are returned (here 4). |
409
|
|
|
""" |
410
|
|
|
if low: |
411
|
|
|
low_dict = {chnl: 0.0 for chnl in low} |
412
|
|
|
else: |
413
|
|
|
low_dict = {'d_ch{0:d}'.format(chnl + 1): 0.0 for chnl in range(8)} |
414
|
|
|
|
415
|
|
|
if high: |
416
|
|
|
high_dict = {chnl: 3.3 for chnl in high} |
417
|
|
|
else: |
418
|
|
|
high_dict = {'d_ch{0:d}'.format(chnl + 1): 3.3 for chnl in range(8)} |
419
|
|
|
|
420
|
|
|
return low_dict, high_dict |
421
|
|
|
|
422
|
|
|
def set_digital_level(self, low=None, high=None): |
423
|
|
|
""" Set low and/or high value of the provided digital channel. |
424
|
|
|
|
425
|
|
|
@param dict low: dictionary, with key being the channel descriptor string |
426
|
|
|
(i.e. 'd_ch1', 'd_ch2') and items being the low values (in volt) for the |
427
|
|
|
desired channel. |
428
|
|
|
@param dict high: dictionary, with key being the channel descriptor string |
429
|
|
|
(i.e. 'd_ch1', 'd_ch2') and items being the high values (in volt) for the |
430
|
|
|
desired channel. |
431
|
|
|
|
432
|
|
|
@return (dict, dict): tuple of two dicts where first dict denotes the current low value and |
433
|
|
|
the second dict the high value for ALL digital channels. |
434
|
|
|
Keys are the channel descriptor strings (i.e. 'd_ch1', 'd_ch2') |
435
|
|
|
|
436
|
|
|
If nothing is passed then the command will return the current voltage levels. |
437
|
|
|
|
438
|
|
|
Note: After setting the high and/or low values of the device, use the actual set return |
439
|
|
|
values for further processing. |
440
|
|
|
""" |
441
|
|
|
self.log.warning('FPGA pulse generator logic level cannot be adjusted!') |
442
|
|
|
return self.get_digital_level() |
443
|
|
|
|
444
|
|
|
def get_active_channels(self, ch=None): |
445
|
|
|
""" Get the active channels of the pulse generator hardware. |
446
|
|
|
|
447
|
|
|
@param list ch: optional, if specific analog or digital channels are needed to be asked |
448
|
|
|
without obtaining all the channels. |
449
|
|
|
|
450
|
|
|
@return dict: where keys denoting the channel string and items boolean expressions whether |
451
|
|
|
channel are active or not. |
452
|
|
|
|
453
|
|
|
Example for an possible input (order is not important): |
454
|
|
|
ch = ['a_ch2', 'd_ch2', 'a_ch1', 'd_ch5', 'd_ch1'] |
455
|
|
|
then the output might look like |
456
|
|
|
{'a_ch2': True, 'd_ch2': False, 'a_ch1': False, 'd_ch5': True, 'd_ch1': False} |
457
|
|
|
|
458
|
|
|
If no parameter (or None) is passed to this method all channel states will be returned. |
459
|
|
|
""" |
460
|
|
|
if ch: |
461
|
|
|
d_ch_dict = {chnl: True for chnl in ch} |
462
|
|
|
else: |
463
|
|
|
d_ch_dict = {'d_ch1': True, |
464
|
|
|
'd_ch2': True, |
465
|
|
|
'd_ch3': True, |
466
|
|
|
'd_ch4': True, |
467
|
|
|
'd_ch5': True, |
468
|
|
|
'd_ch6': True, |
469
|
|
|
'd_ch7': True, |
470
|
|
|
'd_ch8': True} |
471
|
|
|
return d_ch_dict |
472
|
|
|
|
473
|
|
|
def set_active_channels(self, ch=None): |
474
|
|
|
""" Set the active channels for the pulse generator hardware. |
475
|
|
|
|
476
|
|
|
@param dict ch: dictionary with keys being the analog or digital string generic names for |
477
|
|
|
the channels (i.e. 'd_ch1', 'a_ch2') with items being a boolean value. |
478
|
|
|
True: Activate channel, False: Deactivate channel |
479
|
|
|
|
480
|
|
|
@return dict: with the actual set values for ALL active analog and digital channels |
481
|
|
|
|
482
|
|
|
If nothing is passed then the command will simply return the unchanged current state. |
483
|
|
|
|
484
|
|
|
Note: After setting the active channels of the device, |
485
|
|
|
use the returned dict for further processing. |
486
|
|
|
|
487
|
|
|
Example for possible input: |
488
|
|
|
ch={'a_ch2': True, 'd_ch1': False, 'd_ch3': True, 'd_ch4': True} |
489
|
|
|
to activate analog channel 2 digital channel 3 and 4 and to deactivate |
490
|
|
|
digital channel 1. |
491
|
|
|
|
492
|
|
|
The hardware itself has to handle, whether separate channel activation is possible. |
493
|
|
|
""" |
494
|
|
|
return self.get_active_channels() |
495
|
|
|
|
496
|
|
|
def write_waveform(self, name, analog_samples, digital_samples, is_first_chunk, is_last_chunk, |
497
|
|
|
total_number_of_samples): |
498
|
|
|
""" |
499
|
|
|
Write a new waveform or append samples to an already existing waveform on the device memory. |
500
|
|
|
The flags is_first_chunk and is_last_chunk can be used as indicator if a new waveform should |
501
|
|
|
be created or if the write process to a waveform should be terminated. |
502
|
|
|
|
503
|
|
|
@param name: str, the name of the waveform to be created/append to |
504
|
|
|
@param analog_samples: numpy.ndarray of type float32 containing the voltage samples |
505
|
|
|
@param digital_samples: numpy.ndarray of type bool containing the marker states |
506
|
|
|
(if analog channels are active, this must be the same length as |
507
|
|
|
analog_samples) |
508
|
|
|
@param is_first_chunk: bool, flag indicating if it is the first chunk to write. |
509
|
|
|
If True this method will create a new empty wavveform. |
510
|
|
|
If False the samples are appended to the existing waveform. |
511
|
|
|
@param is_last_chunk: bool, flag indicating if it is the last chunk to write. |
512
|
|
|
Some devices may need to know when to close the appending wfm. |
513
|
|
|
@param total_number_of_samples: int, The number of sample points for the entire waveform |
514
|
|
|
(not only the currently written chunk) |
515
|
|
|
|
516
|
|
|
@return: (int, list) number of samples written (-1 indicates failed process) and list of |
517
|
|
|
created waveform names |
518
|
|
|
""" |
519
|
|
|
if analog_samples: |
520
|
|
|
self.log.error('FPGA pulse generator is purely digital and does not support waveform ' |
521
|
|
|
'generation with analog samples.') |
522
|
|
|
return -1, list() |
523
|
|
|
if not digital_samples: |
524
|
|
|
if total_number_of_samples > 0: |
525
|
|
|
self.log.warning('No samples handed over for waveform generation.') |
526
|
|
|
return -1, list() |
527
|
|
|
else: |
528
|
|
|
self.__current_waveform = bytearray([0]) |
529
|
|
|
self.__current_waveform_name = '' |
530
|
|
|
return 0, list() |
531
|
|
|
|
532
|
|
|
# Initialize waveform array if this is the first chunk to write |
533
|
|
|
# Also append zero-timebins to waveform if the length is no integer multiple of 32 |
534
|
|
|
if is_first_chunk: |
535
|
|
|
self.__samples_written = 0 |
536
|
|
|
self.__current_waveform_name = name |
537
|
|
|
if total_number_of_samples % 32 != 0: |
538
|
|
|
number_of_zeros = 32 - (total_number_of_samples % 32) |
539
|
|
|
self.__current_waveform = np.zeros(total_number_of_samples + number_of_zeros, |
540
|
|
|
dtype='uint8') |
541
|
|
|
self.log.warning('FPGA pulse sequence length is no integer multiple of 32 samples.' |
542
|
|
|
'\nAppending {0:d} zero-samples to the sequence.' |
543
|
|
|
''.format(number_of_zeros)) |
544
|
|
|
else: |
545
|
|
|
self.__current_waveform = np.zeros(total_number_of_samples, dtype='uint8') |
546
|
|
|
|
547
|
|
|
# Determine which part of the waveform array should be written |
548
|
|
|
chunk_length = len(digital_samples[list(digital_samples)[0]]) |
549
|
|
|
write_end_index = self.__samples_written + chunk_length |
550
|
|
|
|
551
|
|
|
# Encode samples for each channel in bit mask and create waveform array |
552
|
|
|
for chnl, samples in digital_samples.items(): |
553
|
|
|
# get channel index in range 0..7 |
554
|
|
|
chnl_ind = int(chnl.rsplit('ch', 1)[1]) - 1 |
555
|
|
|
# Represent bool values as np.uint8 |
556
|
|
|
uint8_samples = samples.view('uint8') |
557
|
|
|
# left shift 0/1 values to bit position corresponding to channel index |
558
|
|
|
np.left_shift(uint8_samples, chnl_ind, out=uint8_samples) |
559
|
|
|
# Add samples to waveform array |
560
|
|
|
np.add(self.__current_waveform[self.__samples_written:write_end_index], |
561
|
|
|
uint8_samples, |
562
|
|
|
out=self.__current_waveform[self.__samples_written:write_end_index]) |
563
|
|
|
|
564
|
|
|
# Convert numpy array to bytearray |
565
|
|
|
self.__current_waveform = bytearray(self.__current_waveform.tobytes()) |
566
|
|
|
|
567
|
|
|
# increment the current write index |
568
|
|
|
self.__samples_written += chunk_length |
569
|
|
|
return chunk_length, [self.__current_waveform_name] |
570
|
|
|
|
571
|
|
|
def write_sequence(self, name, sequence_parameters): |
572
|
|
|
""" |
573
|
|
|
Write a new sequence on the device memory. |
574
|
|
|
|
575
|
|
|
@param name: str, the name of the waveform to be created/append to |
576
|
|
|
@param sequence_parameters: dict, dictionary containing the parameters for a sequence |
577
|
|
|
|
578
|
|
|
@return: int, number of sequence steps written (-1 indicates failed process) |
579
|
|
|
""" |
580
|
|
|
self.log.warning('FPGA digital pulse generator has no sequencing capabilities.\n' |
581
|
|
|
'write_sequence call ignored.') |
582
|
|
|
return -1 |
583
|
|
|
|
584
|
|
|
def get_waveform_names(self): |
585
|
|
|
""" Retrieve the names of all uploaded waveforms on the device. |
586
|
|
|
|
587
|
|
|
@return list: List of all uploaded waveform name strings in the device workspace. |
588
|
|
|
""" |
589
|
|
|
return |
590
|
|
|
|
591
|
|
|
def get_sequence_names(self): |
592
|
|
|
""" Retrieve the names of all uploaded sequence on the device. |
593
|
|
|
|
594
|
|
|
@return list: List of all uploaded sequence name strings in the device workspace. |
595
|
|
|
""" |
596
|
|
|
return list() |
597
|
|
|
|
598
|
|
|
def delete_waveform(self, waveform_name): |
599
|
|
|
""" Delete the waveform with name "waveform_name" from the device memory. |
600
|
|
|
|
601
|
|
|
@param str waveform_name: The name of the waveform to be deleted |
602
|
|
|
Optionally a list of waveform names can be passed. |
603
|
|
|
|
604
|
|
|
@return list: a list of deleted waveform names. |
605
|
|
|
""" |
606
|
|
|
return |
607
|
|
|
|
608
|
|
|
def delete_sequence(self, sequence_name): |
609
|
|
|
""" Delete the sequence with name "sequence_name" from the device memory. |
610
|
|
|
|
611
|
|
|
@param str sequence_name: The name of the sequence to be deleted |
612
|
|
|
Optionally a list of sequence names can be passed. |
613
|
|
|
|
614
|
|
|
@return list: a list of deleted sequence names. |
615
|
|
|
""" |
616
|
|
|
return list() |
617
|
|
|
|
618
|
|
|
def get_interleave(self): |
619
|
|
|
""" Check whether Interleave is ON or OFF in AWG. |
620
|
|
|
|
621
|
|
|
@return bool: True: ON, False: OFF |
622
|
|
|
|
623
|
|
|
Will always return False for pulse generator hardware without interleave. |
624
|
|
|
""" |
625
|
|
|
return False |
626
|
|
|
|
627
|
|
|
def set_interleave(self, state=False): |
628
|
|
|
""" Turns the interleave of an AWG on or off. |
629
|
|
|
|
630
|
|
|
@param bool state: The state the interleave should be set to |
631
|
|
|
(True: ON, False: OFF) |
632
|
|
|
|
633
|
|
|
@return bool: actual interleave status (True: ON, False: OFF) |
634
|
|
|
|
635
|
|
|
Note: After setting the interleave of the device, retrieve the |
636
|
|
|
interleave again and use that information for further processing. |
637
|
|
|
|
638
|
|
|
Unused for pulse generator hardware other than an AWG. |
639
|
|
|
""" |
640
|
|
|
if state: |
641
|
|
|
self.log.error('No interleave functionality available in FPGA pulser.\n' |
642
|
|
|
'Interleave state is always False.') |
643
|
|
|
return False |
644
|
|
|
|
645
|
|
|
def write(self, command): |
646
|
|
|
""" Sends a command string to the device. |
647
|
|
|
|
648
|
|
|
@param string command: string containing the command |
649
|
|
|
|
650
|
|
|
@return int: error code (0:OK, -1:error) |
651
|
|
|
""" |
652
|
|
|
if not isinstance(command, int): |
653
|
|
|
return -1 |
654
|
|
|
self.fpga.SetWireInValue(0x00, command) |
655
|
|
|
self.fpga.UpdateWireIns() |
656
|
|
|
return 0 |
657
|
|
|
|
658
|
|
|
def query(self, question=None): |
659
|
|
|
""" Asks the device a 'question' and receive and return an answer from it. |
660
|
|
|
|
661
|
|
|
@param string question: string containing the command |
662
|
|
|
|
663
|
|
|
@return string: the answer of the device to the 'question' in a string |
664
|
|
|
""" |
665
|
|
|
self.fpga.UpdateWireOuts() |
666
|
|
|
return self.fpga.GetWireOutValue(0x20) |
667
|
|
|
|
668
|
|
|
def reset(self): |
669
|
|
|
""" Reset the device. |
670
|
|
|
|
671
|
|
|
@return int: error code (0:OK, -1:error) |
672
|
|
|
""" |
673
|
|
|
self.write(0x04) |
674
|
|
|
self.write(0x00) |
675
|
|
|
self.clear_all() |
676
|
|
|
return 0 |
677
|
|
|
|
678
|
|
|
def has_sequence_mode(self): |
679
|
|
|
""" Asks the pulse generator whether sequence mode exists. |
680
|
|
|
|
681
|
|
|
@return: bool, True for yes, False for no. |
682
|
|
|
""" |
683
|
|
|
return False |
684
|
|
|
|
685
|
|
|
def _connect_fpga(self): |
686
|
|
|
# connect to FPGA by serial number |
687
|
|
|
self.fpga.OpenBySerial(self._fpga_serial) |
688
|
|
|
# upload configuration bitfile to FPGA |
689
|
|
|
self.set_sample_rate(self.sample_rate) |
690
|
|
|
|
691
|
|
|
# Check connection |
692
|
|
|
if not self.fpga.IsFrontPanelEnabled(): |
693
|
|
|
self.current_status = -1 |
694
|
|
|
self.log.error('ERROR: FrontPanel is not enabled in FPGA pulse generator!') |
695
|
|
|
return -1 |
696
|
|
|
else: |
697
|
|
|
self.current_status = 0 |
698
|
|
|
self.log.info('FPGA pulse generator connected') |
699
|
|
|
return 0 |
700
|
|
|
|
701
|
|
|
def _disconnect_fpga(self): |
702
|
|
|
""" |
703
|
|
|
stop FPGA and disconnect |
704
|
|
|
""" |
705
|
|
|
# set FPGA in reset state |
706
|
|
|
self.write(0x04) |
707
|
|
|
self.current_status = -1 |
708
|
|
|
del self.fpga |
709
|
|
|
return 0 |
710
|
|
|
|