| Total Complexity | 216 |
| Total Lines | 1402 |
| Duplicated Lines | 3.5 % |
| Changes | 28 | ||
| Bugs | 5 | Features | 1 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like PulsedMeasurementLogic often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 38 | class PulsedMeasurementLogic(GenericLogic): |
||
| 39 | """ |
||
| 40 | This is the Logic class for the control of pulsed measurements. |
||
| 41 | """ |
||
| 42 | _modclass = 'PulsedMeasurementLogic' |
||
| 43 | _modtype = 'logic' |
||
| 44 | |||
| 45 | ## declare connectors |
||
| 46 | fitlogic = Connector(interface='FitLogic') |
||
| 47 | savelogic = Connector(interface='SaveLogic') |
||
| 48 | fastcounter = Connector(interface='FastCounterInterface') |
||
| 49 | microwave = Connector(interface='MWInterface') |
||
| 50 | pulsegenerator = Connector(interface='PulserInterface') |
||
| 51 | |||
| 52 | # Config options |
||
| 53 | # Optional additional paths to import from |
||
| 54 | extraction_import_path = ConfigOption(name='additional_extraction_path', default=None) |
||
| 55 | analysis_import_path = ConfigOption(name='additional_analysis_path', default=None) |
||
| 56 | # Optional file type descriptor for saving raw data to file |
||
| 57 | _raw_data_save_type = ConfigOption(name='raw_data_save_type', default='text') |
||
| 58 | |||
| 59 | # status variables |
||
| 60 | # ext. microwave settings |
||
| 61 | __microwave_power = StatusVar(default=-30.0) |
||
| 62 | __microwave_freq = StatusVar(default=2870e6) |
||
| 63 | __use_ext_microwave = StatusVar(default=False) |
||
| 64 | |||
| 65 | # fast counter settings |
||
| 66 | __fast_counter_record_length = StatusVar(default=3.0e-6) |
||
| 67 | __fast_counter_binwidth = StatusVar(default=1.0e-9) |
||
| 68 | __fast_counter_gates = StatusVar(default=0) |
||
| 69 | |||
| 70 | # measurement timer settings |
||
| 71 | __timer_interval = StatusVar(default=5) |
||
| 72 | |||
| 73 | # Pulsed measurement settings |
||
| 74 | _invoke_settings_from_sequence = StatusVar(default=False) |
||
| 75 | _number_of_lasers = StatusVar(default=50) |
||
| 76 | _controlled_variable = StatusVar(default=list(range(50))) |
||
| 77 | _alternating = StatusVar(default=False) |
||
| 78 | _laser_ignore_list = StatusVar(default=list()) |
||
| 79 | _data_units = StatusVar(default=('s', '')) |
||
| 80 | |||
| 81 | # PulseExtractor settings |
||
| 82 | extraction_parameters = StatusVar(default=None) |
||
| 83 | analysis_parameters = StatusVar(default=None) |
||
| 84 | |||
| 85 | # Container to store measurement information about the currently loaded sequence |
||
| 86 | _measurement_information = StatusVar(default=dict()) |
||
| 87 | # Container to store information about the sampled waveform/sequence currently loaded |
||
| 88 | _sampling_information = StatusVar(default=dict()) |
||
| 89 | |||
| 90 | # alternative signal computation settings: |
||
| 91 | _alternative_data_type = StatusVar(default=None) |
||
| 92 | zeropad = StatusVar(default=0) |
||
| 93 | psd = StatusVar(default=False) |
||
| 94 | window = StatusVar(default='none') |
||
| 95 | base_corr = StatusVar(default=True) |
||
| 96 | |||
| 97 | # notification signals for master module (i.e. GUI) |
||
| 98 | sigMeasurementDataUpdated = QtCore.Signal() |
||
| 99 | sigTimerUpdated = QtCore.Signal(float, int, float) |
||
| 100 | sigFitUpdated = QtCore.Signal(str, np.ndarray, object) |
||
| 101 | sigMeasurementStatusUpdated = QtCore.Signal(bool, bool) |
||
| 102 | sigPulserRunningUpdated = QtCore.Signal(bool) |
||
| 103 | sigExtMicrowaveRunningUpdated = QtCore.Signal(bool) |
||
| 104 | sigExtMicrowaveSettingsUpdated = QtCore.Signal(dict) |
||
| 105 | sigFastCounterSettingsUpdated = QtCore.Signal(dict) |
||
| 106 | sigMeasurementSettingsUpdated = QtCore.Signal(dict) |
||
| 107 | sigAnalysisSettingsUpdated = QtCore.Signal(dict) |
||
| 108 | sigExtractionSettingsUpdated = QtCore.Signal(dict) |
||
| 109 | # Internal signals |
||
| 110 | sigStartTimer = QtCore.Signal() |
||
| 111 | sigStopTimer = QtCore.Signal() |
||
| 112 | |||
| 113 | def __init__(self, config, **kwargs): |
||
| 114 | super().__init__(config=config, **kwargs) |
||
| 115 | |||
| 116 | self.log.debug('The following configuration was found.') |
||
| 117 | # checking for the right configuration |
||
| 118 | for key in config.keys(): |
||
| 119 | self.log.debug('{0}: {1}'.format(key, config[key])) |
||
| 120 | |||
| 121 | # timer for measurement |
||
| 122 | self.__analysis_timer = None |
||
| 123 | self.__start_time = 0 |
||
| 124 | self.__elapsed_time = 0 |
||
| 125 | self.__elapsed_sweeps = 0 # FIXME: unused |
||
| 126 | |||
| 127 | # threading |
||
| 128 | self._threadlock = Mutex() |
||
| 129 | |||
| 130 | # measurement data |
||
| 131 | self.signal_data = np.empty((2, 0), dtype=float) |
||
| 132 | self.signal_alt_data = np.empty((2, 0), dtype=float) |
||
| 133 | self.measurement_error = np.empty((2, 0), dtype=float) |
||
| 134 | self.laser_data = np.zeros((10, 20), dtype='int64') |
||
| 135 | self.raw_data = np.zeros((10, 20), dtype='int64') |
||
| 136 | |||
| 137 | self._saved_raw_data = OrderedDict() # temporary saved raw data |
||
| 138 | self._recalled_raw_data_tag = None # the currently recalled raw data dict key |
||
| 139 | |||
| 140 | # Paused measurement flag |
||
| 141 | self.__is_paused = False |
||
| 142 | |||
| 143 | # for fit: |
||
| 144 | self.fc = None # Fit container |
||
| 145 | self.signal_fit_data = np.empty((2, 0), dtype=float) # The x,y data of the fit result |
||
| 146 | return |
||
| 147 | |||
| 148 | def on_activate(self): |
||
| 149 | """ Initialisation performed during activation of the module. |
||
| 150 | """ |
||
| 151 | # Create an instance of PulseExtractor |
||
| 152 | self._pulseextractor = PulseExtractor(pulsedmeasurementlogic=self) |
||
| 153 | self._pulseanalyzer = PulseAnalyzer(pulsedmeasurementlogic=self) |
||
| 154 | |||
| 155 | # QTimer must be created here instead of __init__ because otherwise the timer will not run |
||
| 156 | # in this logic's thread but in the manager instead. |
||
| 157 | self.__analysis_timer = QtCore.QTimer() |
||
| 158 | self.__analysis_timer.setSingleShot(False) |
||
| 159 | self.__analysis_timer.setInterval(round(1000. * self.__timer_interval)) |
||
| 160 | self.__analysis_timer.timeout.connect(self._pulsed_analysis_loop, |
||
| 161 | QtCore.Qt.QueuedConnection) |
||
| 162 | |||
| 163 | # Fitting |
||
| 164 | self.fc = self.fitlogic().make_fit_container('pulsed', '1d') |
||
| 165 | self.fc.set_units(['s', 'arb.u.']) |
||
| 166 | |||
| 167 | # Recall saved status variables |
||
| 168 | if 'fits' in self._statusVariables and isinstance(self._statusVariables.get('fits'), dict): |
||
| 169 | self.fc.load_from_dict(self._statusVariables['fits']) |
||
| 170 | |||
| 171 | # Turn off pulse generator |
||
| 172 | self.pulse_generator_off() |
||
| 173 | |||
| 174 | # Check and configure fast counter |
||
| 175 | binning_constraints = self.fastcounter().get_constraints()['hardware_binwidth_list'] |
||
| 176 | if self.__fast_counter_binwidth not in binning_constraints: |
||
| 177 | self.__fast_counter_binwidth = binning_constraints[0] |
||
| 178 | if self.__fast_counter_record_length <= 0: |
||
| 179 | self.__fast_counter_record_length = 3e-6 |
||
| 180 | self.fast_counter_off() |
||
| 181 | self.set_fast_counter_settings() |
||
| 182 | |||
| 183 | # Check and configure external microwave |
||
| 184 | if self.__use_ext_microwave: |
||
| 185 | self.microwave_off() |
||
| 186 | self.set_microwave_settings(frequency=self.__microwave_freq, |
||
| 187 | power=self.__microwave_power, |
||
| 188 | use_ext_microwave=True) |
||
| 189 | |||
| 190 | # Convert controlled variable list into numpy.ndarray |
||
| 191 | self._controlled_variable = np.array(self._controlled_variable, dtype=float) |
||
| 192 | |||
| 193 | # initialize arrays for the measurement data |
||
| 194 | self._initialize_data_arrays() |
||
| 195 | |||
| 196 | # recalled saved raw data dict key |
||
| 197 | self._recalled_raw_data_tag = None |
||
| 198 | |||
| 199 | # Connect internal signals |
||
| 200 | self.sigStartTimer.connect(self.__analysis_timer.start, QtCore.Qt.QueuedConnection) |
||
| 201 | self.sigStopTimer.connect(self.__analysis_timer.stop, QtCore.Qt.QueuedConnection) |
||
| 202 | return |
||
| 203 | |||
| 204 | def on_deactivate(self): |
||
| 205 | """ Deactivate the module properly. |
||
| 206 | """ |
||
| 207 | if self.module_state() == 'locked': |
||
| 208 | self.stop_pulsed_measurement() |
||
| 209 | |||
| 210 | self._statusVariables['_controlled_variable'] = list(self._controlled_variable) |
||
| 211 | if len(self.fc.fit_list) > 0: |
||
| 212 | self._statusVariables['fits'] = self.fc.save_to_dict() |
||
| 213 | |||
| 214 | self.extraction_parameters = self._pulseextractor.full_settings_dict |
||
| 215 | self.analysis_parameters = self._pulseanalyzer.full_settings_dict |
||
| 216 | |||
| 217 | self.__analysis_timer.timeout.disconnect() |
||
| 218 | self.sigStartTimer.disconnect() |
||
| 219 | self.sigStopTimer.disconnect() |
||
| 220 | return |
||
| 221 | |||
| 222 | ############################################################################ |
||
| 223 | # Fast counter control methods and properties |
||
| 224 | ############################################################################ |
||
| 225 | @property |
||
| 226 | def fast_counter_settings(self): |
||
| 227 | settings_dict = dict() |
||
| 228 | settings_dict['bin_width'] = float(self.__fast_counter_binwidth) |
||
| 229 | settings_dict['record_length'] = float(self.__fast_counter_record_length) |
||
| 230 | settings_dict['number_of_gates'] = int(self.__fast_counter_gates) |
||
| 231 | settings_dict['is_gated'] = bool(self.fastcounter().is_gated()) |
||
| 232 | return settings_dict |
||
| 233 | |||
| 234 | @fast_counter_settings.setter |
||
| 235 | def fast_counter_settings(self, settings_dict): |
||
| 236 | if isinstance(settings_dict, dict): |
||
| 237 | self.set_fast_counter_settings(settings_dict) |
||
| 238 | return |
||
| 239 | |||
| 240 | @property |
||
| 241 | def fastcounter_constraints(self): |
||
| 242 | return self.fastcounter().get_constraints() |
||
| 243 | |||
| 244 | @QtCore.Slot(dict) |
||
| 245 | def set_fast_counter_settings(self, settings_dict=None, **kwargs): |
||
| 246 | """ |
||
| 247 | Either accept a settings dictionary as positional argument or keyword arguments. |
||
| 248 | If both are present both are being used by updating the settings_dict with kwargs. |
||
| 249 | The keyword arguments take precedence over the items in settings_dict if there are |
||
| 250 | conflicting names. |
||
| 251 | |||
| 252 | @param settings_dict: |
||
| 253 | @param kwargs: |
||
| 254 | @return: |
||
| 255 | """ |
||
| 256 | # Check if fast counter is running and do nothing if that is the case |
||
| 257 | counter_status = self.fastcounter().get_status() |
||
| 258 | if not counter_status >= 2 and not counter_status < 0: |
||
| 259 | # Determine complete settings dictionary |
||
| 260 | if not isinstance(settings_dict, dict): |
||
| 261 | settings_dict = kwargs |
||
| 262 | else: |
||
| 263 | settings_dict.update(kwargs) |
||
| 264 | |||
| 265 | # Set parameters if present |
||
| 266 | if 'bin_width' in settings_dict: |
||
| 267 | self.__fast_counter_binwidth = float(settings_dict['bin_width']) |
||
| 268 | if 'record_length' in settings_dict: |
||
| 269 | self.__fast_counter_record_length = float(settings_dict['record_length']) |
||
| 270 | if 'number_of_gates' in settings_dict: |
||
| 271 | if self.fastcounter().is_gated(): |
||
| 272 | self.__fast_counter_gates = int(settings_dict['number_of_gates']) |
||
| 273 | else: |
||
| 274 | self.__fast_counter_gates = 0 |
||
| 275 | |||
| 276 | # Apply the settings to hardware |
||
| 277 | self.__fast_counter_binwidth, \ |
||
| 278 | self.__fast_counter_record_length, \ |
||
| 279 | self.__fast_counter_gates = self.fastcounter().configure(self.__fast_counter_binwidth, |
||
| 280 | self.__fast_counter_record_length, |
||
| 281 | self.__fast_counter_gates) |
||
| 282 | else: |
||
| 283 | self.log.warning('Fast counter is not idle (status: {0}).\n' |
||
| 284 | 'Unable to apply new settings.'.format(counter_status)) |
||
| 285 | |||
| 286 | # emit update signal for master (GUI or other logic module) |
||
| 287 | self.sigFastCounterSettingsUpdated.emit(self.fast_counter_settings) |
||
| 288 | return self.fast_counter_settings |
||
| 289 | |||
| 290 | def fast_counter_on(self): |
||
| 291 | """Switching on the fast counter |
||
| 292 | |||
| 293 | @return int: error code (0:OK, -1:error) |
||
| 294 | """ |
||
| 295 | return self.fastcounter().start_measure() |
||
| 296 | |||
| 297 | def fast_counter_off(self): |
||
| 298 | """Switching off the fast counter |
||
| 299 | |||
| 300 | @return int: error code (0:OK, -1:error) |
||
| 301 | """ |
||
| 302 | return self.fastcounter().stop_measure() |
||
| 303 | |||
| 304 | @QtCore.Slot(bool) |
||
| 305 | def toggle_fast_counter(self, switch_on): |
||
| 306 | """ |
||
| 307 | """ |
||
| 308 | if not isinstance(switch_on, bool): |
||
| 309 | return -1 |
||
| 310 | |||
| 311 | if switch_on: |
||
| 312 | err = self.fast_counter_on() |
||
| 313 | else: |
||
| 314 | err = self.fast_counter_off() |
||
| 315 | return err |
||
| 316 | |||
| 317 | def fast_counter_pause(self): |
||
| 318 | """Switching off the fast counter |
||
| 319 | |||
| 320 | @return int: error code (0:OK, -1:error) |
||
| 321 | """ |
||
| 322 | return self.fastcounter().pause_measure() |
||
| 323 | |||
| 324 | def fast_counter_continue(self): |
||
| 325 | """Switching off the fast counter |
||
| 326 | |||
| 327 | @return int: error code (0:OK, -1:error) |
||
| 328 | """ |
||
| 329 | return self.fastcounter().continue_measure() |
||
| 330 | |||
| 331 | @QtCore.Slot(bool) |
||
| 332 | def fast_counter_pause_continue(self, continue_counter): |
||
| 333 | """ |
||
| 334 | """ |
||
| 335 | if not isinstance(continue_counter, bool): |
||
| 336 | return -1 |
||
| 337 | |||
| 338 | if continue_counter: |
||
| 339 | err = self.fast_counter_continue() |
||
| 340 | else: |
||
| 341 | err = self.fast_counter_pause() |
||
| 342 | return err |
||
| 343 | ############################################################################ |
||
| 344 | |||
| 345 | ############################################################################ |
||
| 346 | # External microwave control methods and properties |
||
| 347 | ############################################################################ |
||
| 348 | @property |
||
| 349 | def ext_microwave_settings(self): |
||
| 350 | settings_dict = dict() |
||
| 351 | settings_dict['power'] = float(self.__microwave_power) |
||
| 352 | settings_dict['frequency'] = float(self.__microwave_freq) |
||
| 353 | settings_dict['use_ext_microwave'] = bool(self.__use_ext_microwave) |
||
| 354 | return settings_dict |
||
| 355 | |||
| 356 | @ext_microwave_settings.setter |
||
| 357 | def ext_microwave_settings(self, settings_dict): |
||
| 358 | if isinstance(settings_dict, dict): |
||
| 359 | self.set_microwave_settings(settings_dict) |
||
| 360 | return |
||
| 361 | |||
| 362 | @property |
||
| 363 | def ext_microwave_constraints(self): |
||
| 364 | return self.microwave().get_limits() |
||
| 365 | |||
| 366 | def microwave_on(self): |
||
| 367 | """ |
||
| 368 | Turns the external (CW) microwave output on. |
||
| 369 | |||
| 370 | :return int: error code (0:OK, -1:error) |
||
| 371 | """ |
||
| 372 | err = self.microwave().cw_on() |
||
| 373 | if err < 0: |
||
| 374 | self.log.error('Failed to turn on external CW microwave output.') |
||
| 375 | self.sigExtMicrowaveRunningUpdated.emit(self.microwave().get_status()[1]) |
||
| 376 | return err |
||
| 377 | |||
| 378 | def microwave_off(self): |
||
| 379 | """ |
||
| 380 | Turns the external (CW) microwave output off. |
||
| 381 | |||
| 382 | :return int: error code (0:OK, -1:error) |
||
| 383 | """ |
||
| 384 | err = self.microwave().off() |
||
| 385 | if err < 0: |
||
| 386 | self.log.error('Failed to turn off external CW microwave output.') |
||
| 387 | self.sigExtMicrowaveRunningUpdated.emit(self.microwave().get_status()[1]) |
||
| 388 | return err |
||
| 389 | |||
| 390 | @QtCore.Slot(bool) |
||
| 391 | def toggle_microwave(self, switch_on): |
||
| 392 | """ |
||
| 393 | Turn the external microwave output on/off. |
||
| 394 | |||
| 395 | :param switch_on: bool, turn microwave on (True) or off (False) |
||
| 396 | :return int: error code (0:OK, -1:error) |
||
| 397 | """ |
||
| 398 | if not isinstance(switch_on, bool): |
||
| 399 | return -1 |
||
| 400 | |||
| 401 | if switch_on: |
||
| 402 | err = self.microwave_on() |
||
| 403 | else: |
||
| 404 | err = self.microwave_off() |
||
| 405 | return err |
||
| 406 | |||
| 407 | @QtCore.Slot(dict) |
||
| 408 | def set_microwave_settings(self, settings_dict=None, **kwargs): |
||
| 409 | """ |
||
| 410 | Apply new settings to the external microwave device. |
||
| 411 | Either accept a settings dictionary as positional argument or keyword arguments. |
||
| 412 | If both are present both are being used by updating the settings_dict with kwargs. |
||
| 413 | The keyword arguments take precedence over the items in settings_dict if there are |
||
| 414 | conflicting names. |
||
| 415 | |||
| 416 | @param settings_dict: |
||
| 417 | @param kwargs: |
||
| 418 | @return: |
||
| 419 | """ |
||
| 420 | # Check if microwave is running and do nothing if that is the case |
||
| 421 | if self.microwave().get_status()[1]: |
||
| 422 | self.log.warning('Microwave device is running.\nUnable to apply new settings.') |
||
| 423 | else: |
||
| 424 | # Determine complete settings dictionary |
||
| 425 | if not isinstance(settings_dict, dict): |
||
| 426 | settings_dict = kwargs |
||
| 427 | else: |
||
| 428 | settings_dict.update(kwargs) |
||
| 429 | |||
| 430 | # Set parameters if present |
||
| 431 | if 'power' in settings_dict: |
||
| 432 | self.__microwave_power = float(settings_dict['power']) |
||
| 433 | if 'frequency' in settings_dict: |
||
| 434 | self.__microwave_freq = float(settings_dict['frequency']) |
||
| 435 | if 'use_ext_microwave' in settings_dict: |
||
| 436 | self.__use_ext_microwave = bool(settings_dict['use_ext_microwave']) |
||
| 437 | |||
| 438 | if self.__use_ext_microwave: |
||
| 439 | # Apply the settings to hardware |
||
| 440 | self.__microwave_freq, \ |
||
| 441 | self.__microwave_power, \ |
||
| 442 | dummy = self.microwave().set_cw(frequency=self.__microwave_freq, |
||
| 443 | power=self.__microwave_power) |
||
| 444 | |||
| 445 | # emit update signal for master (GUI or other logic module) |
||
| 446 | self.sigExtMicrowaveSettingsUpdated.emit({'power': self.__microwave_power, |
||
| 447 | 'frequency': self.__microwave_freq, |
||
| 448 | 'use_ext_microwave': self.__use_ext_microwave}) |
||
| 449 | return self.__microwave_freq, self.__microwave_power, self.__use_ext_microwave |
||
| 450 | ############################################################################ |
||
| 451 | |||
| 452 | ############################################################################ |
||
| 453 | # Pulse generator control methods and properties |
||
| 454 | ############################################################################ |
||
| 455 | @property |
||
| 456 | def pulse_generator_constraints(self): |
||
| 457 | return self.pulsegenerator().get_constraints() |
||
| 458 | |||
| 459 | def pulse_generator_on(self): |
||
| 460 | """Switching on the pulse generator. """ |
||
| 461 | err = self.pulsegenerator().pulser_on() |
||
| 462 | if err < 0: |
||
| 463 | self.log.error('Failed to turn on pulse generator output.') |
||
| 464 | self.sigPulserRunningUpdated.emit(False) |
||
| 465 | else: |
||
| 466 | self.sigPulserRunningUpdated.emit(True) |
||
| 467 | return err |
||
| 468 | |||
| 469 | def pulse_generator_off(self): |
||
| 470 | """Switching off the pulse generator. """ |
||
| 471 | err = self.pulsegenerator().pulser_off() |
||
| 472 | if err < 0: |
||
| 473 | self.log.error('Failed to turn off pulse generator output.') |
||
| 474 | self.sigPulserRunningUpdated.emit(True) |
||
| 475 | else: |
||
| 476 | self.sigPulserRunningUpdated.emit(False) |
||
| 477 | return err |
||
| 478 | |||
| 479 | @QtCore.Slot(bool) |
||
| 480 | def toggle_pulse_generator(self, switch_on): |
||
| 481 | """ |
||
| 482 | Switch the pulse generator on or off. |
||
| 483 | |||
| 484 | :param switch_on: bool, turn the pulse generator on (True) or off (False) |
||
| 485 | :return int: error code (0: OK, -1: error) |
||
| 486 | """ |
||
| 487 | if not isinstance(switch_on, bool): |
||
| 488 | return -1 |
||
| 489 | |||
| 490 | if switch_on: |
||
| 491 | err = self.pulse_generator_on() |
||
| 492 | else: |
||
| 493 | err = self.pulse_generator_off() |
||
| 494 | return err |
||
| 495 | ############################################################################ |
||
| 496 | |||
| 497 | ############################################################################ |
||
| 498 | # Measurement control methods and properties |
||
| 499 | ############################################################################ |
||
| 500 | @property |
||
| 501 | def measurement_settings(self): |
||
| 502 | settings_dict = dict() |
||
| 503 | settings_dict['invoke_settings'] = bool(self._invoke_settings_from_sequence) |
||
| 504 | settings_dict['controlled_variable'] = np.array(self._controlled_variable, |
||
| 505 | dtype=float).copy() |
||
| 506 | settings_dict['number_of_lasers'] = int(self._number_of_lasers) |
||
| 507 | settings_dict['laser_ignore_list'] = list(self._laser_ignore_list).copy() |
||
| 508 | settings_dict['alternating'] = bool(self._alternating) |
||
| 509 | settings_dict['units'] = self._data_units |
||
| 510 | return settings_dict |
||
| 511 | |||
| 512 | @measurement_settings.setter |
||
| 513 | def measurement_settings(self, settings_dict): |
||
| 514 | if isinstance(settings_dict, dict): |
||
| 515 | self.set_measurement_settings(settings_dict) |
||
| 516 | return |
||
| 517 | |||
| 518 | @property |
||
| 519 | def measurement_information(self): |
||
| 520 | return self._measurement_information |
||
| 521 | |||
| 522 | @measurement_information.setter |
||
| 523 | def measurement_information(self, info_dict): |
||
| 524 | # Check if mandatory params to invoke settings are missing and set empty dict in that case. |
||
| 525 | mand_params = ('number_of_lasers', |
||
| 526 | 'controlled_variable', |
||
| 527 | 'laser_ignore_list', |
||
| 528 | 'alternating', |
||
| 529 | 'counting_length') |
||
| 530 | if not isinstance(info_dict, dict) or not all(param in info_dict for param in mand_params): |
||
| 531 | self._measurement_information = dict() |
||
| 532 | return |
||
| 533 | |||
| 534 | # Set measurement_information dict |
||
| 535 | self._measurement_information = info_dict.copy() |
||
| 536 | |||
| 537 | # invoke settings if needed |
||
| 538 | if self._invoke_settings_from_sequence and self._measurement_information: |
||
| 539 | self._apply_invoked_settings() |
||
| 540 | self.sigMeasurementSettingsUpdated.emit(self.measurement_settings) |
||
| 541 | return |
||
| 542 | |||
| 543 | @property |
||
| 544 | def sampling_information(self): |
||
| 545 | return self._sampling_information |
||
| 546 | |||
| 547 | @sampling_information.setter |
||
| 548 | def sampling_information(self, info_dict): |
||
| 549 | if isinstance(info_dict, dict): |
||
| 550 | self._sampling_information = info_dict |
||
| 551 | else: |
||
| 552 | self._sampling_information = dict() |
||
| 553 | return |
||
| 554 | |||
| 555 | @property |
||
| 556 | def timer_interval(self): |
||
| 557 | return float(self.__timer_interval) |
||
| 558 | |||
| 559 | @timer_interval.setter |
||
| 560 | def timer_interval(self, value): |
||
| 561 | if isinstance(value, (int, float)): |
||
| 562 | self.set_timer_interval(value) |
||
| 563 | return |
||
| 564 | |||
| 565 | @property |
||
| 566 | def alternative_data_type(self): |
||
| 567 | return str(self._alternative_data_type) |
||
| 568 | |||
| 569 | @alternative_data_type.setter |
||
| 570 | def alternative_data_type(self, alt_data_type): |
||
| 571 | if isinstance(alt_data_type, str) or alt_data_type is None: |
||
| 572 | self.set_alternative_data_type(alt_data_type) |
||
| 573 | return |
||
| 574 | |||
| 575 | @property |
||
| 576 | def analysis_methods(self): |
||
| 577 | return self._pulseanalyzer.analysis_methods |
||
| 578 | |||
| 579 | @property |
||
| 580 | def extraction_methods(self): |
||
| 581 | return self._pulseextractor.extraction_methods |
||
| 582 | |||
| 583 | @property |
||
| 584 | def analysis_settings(self): |
||
| 585 | return self._pulseanalyzer.analysis_settings |
||
| 586 | |||
| 587 | @analysis_settings.setter |
||
| 588 | def analysis_settings(self, settings_dict): |
||
| 589 | if isinstance(settings_dict, dict): |
||
| 590 | self.set_analysis_settings(settings_dict) |
||
| 591 | return |
||
| 592 | |||
| 593 | @property |
||
| 594 | def extraction_settings(self): |
||
| 595 | return self._pulseextractor.extraction_settings |
||
| 596 | |||
| 597 | @extraction_settings.setter |
||
| 598 | def extraction_settings(self, settings_dict): |
||
| 599 | if isinstance(settings_dict, dict): |
||
| 600 | self.set_extraction_settings(settings_dict) |
||
| 601 | return |
||
| 602 | |||
| 603 | @QtCore.Slot(dict) |
||
| 604 | def set_analysis_settings(self, settings_dict=None, **kwargs): |
||
| 605 | """ |
||
| 606 | Apply new analysis settings. |
||
| 607 | Either accept a settings dictionary as positional argument or keyword arguments. |
||
| 608 | If both are present both are being used by updating the settings_dict with kwargs. |
||
| 609 | The keyword arguments take precedence over the items in settings_dict if there are |
||
| 610 | conflicting names. |
||
| 611 | |||
| 612 | @param settings_dict: |
||
| 613 | @param kwargs: |
||
| 614 | @return: |
||
| 615 | """ |
||
| 616 | # Determine complete settings dictionary |
||
| 617 | if not isinstance(settings_dict, dict): |
||
| 618 | settings_dict = kwargs |
||
| 619 | else: |
||
| 620 | settings_dict.update(kwargs) |
||
| 621 | |||
| 622 | # Use threadlock to update settings during a running measurement |
||
| 623 | with self._threadlock: |
||
| 624 | self._pulseanalyzer.analysis_settings = settings_dict |
||
| 625 | self.sigAnalysisSettingsUpdated.emit(self.analysis_settings) |
||
| 626 | return |
||
| 627 | |||
| 628 | @QtCore.Slot(dict) |
||
| 629 | def set_extraction_settings(self, settings_dict=None, **kwargs): |
||
| 630 | """ |
||
| 631 | Apply new analysis settings. |
||
| 632 | Either accept a settings dictionary as positional argument or keyword arguments. |
||
| 633 | If both are present both are being used by updating the settings_dict with kwargs. |
||
| 634 | The keyword arguments take precedence over the items in settings_dict if there are |
||
| 635 | conflicting names. |
||
| 636 | |||
| 637 | @param settings_dict: |
||
| 638 | @param kwargs: |
||
| 639 | @return: |
||
| 640 | """ |
||
| 641 | # Determine complete settings dictionary |
||
| 642 | if not isinstance(settings_dict, dict): |
||
| 643 | settings_dict = kwargs |
||
| 644 | else: |
||
| 645 | settings_dict.update(kwargs) |
||
| 646 | |||
| 647 | # Use threadlock to update settings during a running measurement |
||
| 648 | with self._threadlock: |
||
| 649 | self._pulseextractor.extraction_settings = settings_dict |
||
| 650 | self.sigExtractionSettingsUpdated.emit(self.extraction_settings) |
||
| 651 | return |
||
| 652 | |||
| 653 | @QtCore.Slot(dict) |
||
| 654 | def set_measurement_settings(self, settings_dict=None, **kwargs): |
||
| 655 | """ |
||
| 656 | Apply new measurement settings. |
||
| 657 | Either accept a settings dictionary as positional argument or keyword arguments. |
||
| 658 | If both are present both are being used by updating the settings_dict with kwargs. |
||
| 659 | The keyword arguments take precedence over the items in settings_dict if there are |
||
| 660 | conflicting names. |
||
| 661 | |||
| 662 | @param settings_dict: |
||
| 663 | @param kwargs: |
||
| 664 | @return: |
||
| 665 | """ |
||
| 666 | # Determine complete settings dictionary |
||
| 667 | if not isinstance(settings_dict, dict): |
||
| 668 | settings_dict = kwargs |
||
| 669 | else: |
||
| 670 | settings_dict.update(kwargs) |
||
| 671 | |||
| 672 | # Check if invoke_settings flag has changed |
||
| 673 | if 'invoke_settings' in settings_dict: |
||
| 674 | self._invoke_settings_from_sequence = bool(settings_dict.get('invoke_settings')) |
||
| 675 | |||
| 676 | # Invoke settings if measurement_information is present and flag is set |
||
| 677 | if self._invoke_settings_from_sequence: |
||
| 678 | if self._measurement_information: |
||
| 679 | self._apply_invoked_settings() |
||
| 680 | else: |
||
| 681 | # Apply settings that can be changed while a measurement is running |
||
| 682 | with self._threadlock: |
||
| 683 | if 'units' in settings_dict: |
||
| 684 | self._data_units = settings_dict.get('units') |
||
| 685 | |||
| 686 | if self.module_state() == 'idle': |
||
| 687 | # Get all other parameters if present |
||
| 688 | if 'controlled_variable' in settings_dict: |
||
| 689 | self._controlled_variable = np.array(settings_dict.get('controlled_variable'), |
||
| 690 | dtype=float) |
||
| 691 | if 'number_of_lasers' in settings_dict: |
||
| 692 | self._number_of_lasers = int(settings_dict.get('number_of_lasers')) |
||
| 693 | if self.fastcounter().is_gated(): |
||
| 694 | self.set_fast_counter_settings(number_of_gates=self._number_of_lasers) |
||
| 695 | if 'laser_ignore_list' in settings_dict: |
||
| 696 | self._laser_ignore_list = sorted(settings_dict.get('laser_ignore_list')) |
||
| 697 | if 'alternating' in settings_dict: |
||
| 698 | self._alternating = bool(settings_dict.get('alternating')) |
||
| 699 | |||
| 700 | # Perform sanity checks on settings |
||
| 701 | self._measurement_settings_sanity_check() |
||
| 702 | |||
| 703 | # emit update signal for master (GUI or other logic module) |
||
| 704 | self.sigMeasurementSettingsUpdated.emit(self.measurement_settings) |
||
| 705 | return self.measurement_settings |
||
| 706 | |||
| 707 | @QtCore.Slot(bool, str) |
||
| 708 | def toggle_pulsed_measurement(self, start, stash_raw_data_tag=''): |
||
| 709 | """ |
||
| 710 | Convenience method to start/stop measurement |
||
| 711 | |||
| 712 | @param bool start: Start the measurement (True) or stop the measurement (False) |
||
| 713 | """ |
||
| 714 | if start: |
||
| 715 | self.start_pulsed_measurement(stash_raw_data_tag) |
||
| 716 | else: |
||
| 717 | self.stop_pulsed_measurement(stash_raw_data_tag) |
||
| 718 | return |
||
| 719 | |||
| 720 | @QtCore.Slot(str) |
||
| 721 | def start_pulsed_measurement(self, stashed_raw_data_tag=''): |
||
| 722 | """Start the analysis loop.""" |
||
| 723 | self.sigMeasurementStatusUpdated.emit(True, False) |
||
| 724 | |||
| 725 | # Check if measurement settings need to be invoked |
||
| 726 | if self._invoke_settings_from_sequence: |
||
| 727 | if self._measurement_information: |
||
| 728 | self._apply_invoked_settings() |
||
| 729 | self.sigMeasurementSettingsUpdated.emit(self.measurement_settings) |
||
| 730 | else: |
||
| 731 | # abort measurement if settings could not be invoked |
||
| 732 | self.log.error('Unable to invoke measurement settings.\nThis feature can only be ' |
||
| 733 | 'used when creating the pulse sequence via predefined methods.\n' |
||
| 734 | 'Aborting measurement start.') |
||
| 735 | self.set_measurement_settings(invoke_settings=False) |
||
| 736 | self.sigMeasurementStatusUpdated.emit(False, False) |
||
| 737 | return |
||
| 738 | |||
| 739 | with self._threadlock: |
||
| 740 | if self.module_state() == 'idle': |
||
| 741 | # Lock module state |
||
| 742 | self.module_state.lock() |
||
| 743 | |||
| 744 | # Clear previous fits |
||
| 745 | self.fc.clear_result() |
||
| 746 | |||
| 747 | # initialize data arrays |
||
| 748 | self._initialize_data_arrays() |
||
| 749 | |||
| 750 | # recall stashed raw data |
||
| 751 | if stashed_raw_data_tag in self._saved_raw_data: |
||
| 752 | self._recalled_raw_data_tag = stashed_raw_data_tag |
||
| 753 | self.log.info('Starting pulsed measurement with stashed raw data "{0}".' |
||
| 754 | ''.format(stashed_raw_data_tag)) |
||
| 755 | else: |
||
| 756 | self._recalled_raw_data_tag = None |
||
| 757 | |||
| 758 | # start microwave source |
||
| 759 | if self.__use_ext_microwave: |
||
| 760 | self.microwave_on() |
||
| 761 | # start fast counter |
||
| 762 | self.fast_counter_on() |
||
| 763 | # start pulse generator |
||
| 764 | self.pulse_generator_on() |
||
| 765 | |||
| 766 | # initialize analysis_timer |
||
| 767 | self.__elapsed_time = 0.0 |
||
| 768 | self.sigTimerUpdated.emit(self.__elapsed_time, |
||
| 769 | self.__elapsed_sweeps, |
||
| 770 | self.__timer_interval) |
||
| 771 | |||
| 772 | # Set starting time and start timer (if present) |
||
| 773 | self.__start_time = time.time() |
||
| 774 | self.sigStartTimer.emit() |
||
| 775 | |||
| 776 | # Set measurement paused flag |
||
| 777 | self.__is_paused = False |
||
| 778 | else: |
||
| 779 | self.log.warning('Unable to start pulsed measurement. Measurement already running.') |
||
| 780 | return |
||
| 781 | |||
| 782 | @QtCore.Slot(str) |
||
| 783 | def stop_pulsed_measurement(self, stash_raw_data_tag=''): |
||
| 784 | """ |
||
| 785 | Stop the measurement |
||
| 786 | """ |
||
| 787 | # Get raw data and analyze it a last time just before stopping the measurement. |
||
| 788 | try: |
||
| 789 | self._pulsed_analysis_loop() |
||
| 790 | except: |
||
| 791 | pass |
||
| 792 | |||
| 793 | with self._threadlock: |
||
| 794 | if self.module_state() == 'locked': |
||
| 795 | # stopping the timer |
||
| 796 | self.sigStopTimer.emit() |
||
| 797 | # Turn off fast counter |
||
| 798 | self.fast_counter_off() |
||
| 799 | # Turn off pulse generator |
||
| 800 | self.pulse_generator_off() |
||
| 801 | # Turn off microwave source |
||
| 802 | if self.__use_ext_microwave: |
||
| 803 | self.microwave_off() |
||
| 804 | |||
| 805 | # stash raw data if requested |
||
| 806 | if stash_raw_data_tag: |
||
| 807 | self.log.info('Raw data saved with tag "{0}" to continue measurement at a ' |
||
| 808 | 'later point.') |
||
| 809 | self._saved_raw_data[stash_raw_data_tag] = self.raw_data.copy() |
||
| 810 | self._recalled_raw_data_tag = None |
||
| 811 | |||
| 812 | # Set measurement paused flag |
||
| 813 | self.__is_paused = False |
||
| 814 | |||
| 815 | self.module_state.unlock() |
||
| 816 | self.sigMeasurementStatusUpdated.emit(False, False) |
||
| 817 | return |
||
| 818 | |||
| 819 | @QtCore.Slot(bool) |
||
| 820 | def toggle_measurement_pause(self, pause): |
||
| 821 | """ |
||
| 822 | Convenience method to pause/continue measurement |
||
| 823 | |||
| 824 | @param bool pause: Pause the measurement (True) or continue the measurement (False) |
||
| 825 | """ |
||
| 826 | if pause: |
||
| 827 | self.pause_pulsed_measurement() |
||
| 828 | else: |
||
| 829 | self.continue_pulsed_measurement() |
||
| 830 | View Code Duplication | return |
|
|
|
|||
| 831 | |||
| 832 | @QtCore.Slot() |
||
| 833 | def pause_pulsed_measurement(self): |
||
| 834 | """ |
||
| 835 | Pauses the measurement |
||
| 836 | """ |
||
| 837 | with self._threadlock: |
||
| 838 | if self.module_state() == 'locked': |
||
| 839 | # pausing the timer |
||
| 840 | if self.__analysis_timer.isActive(): |
||
| 841 | # stopping the timer |
||
| 842 | self.sigStopTimer.emit() |
||
| 843 | |||
| 844 | self.fast_counter_pause() |
||
| 845 | self.pulse_generator_off() |
||
| 846 | if self.__use_ext_microwave: |
||
| 847 | self.microwave_off() |
||
| 848 | |||
| 849 | # Set measurement paused flag |
||
| 850 | self.__is_paused = True |
||
| 851 | |||
| 852 | self.sigMeasurementStatusUpdated.emit(True, True) |
||
| 853 | else: |
||
| 854 | self.log.warning('Unable to pause pulsed measurement. No measurement running.') |
||
| 855 | self.sigMeasurementStatusUpdated.emit(False, False) |
||
| 856 | View Code Duplication | return |
|
| 857 | |||
| 858 | @QtCore.Slot() |
||
| 859 | def continue_pulsed_measurement(self): |
||
| 860 | """ |
||
| 861 | Continues the measurement |
||
| 862 | """ |
||
| 863 | with self._threadlock: |
||
| 864 | if self.module_state() == 'locked': |
||
| 865 | if self.__use_ext_microwave: |
||
| 866 | self.microwave_on() |
||
| 867 | self.fast_counter_continue() |
||
| 868 | self.pulse_generator_on() |
||
| 869 | |||
| 870 | # un-pausing the timer |
||
| 871 | if not self.__analysis_timer.isActive(): |
||
| 872 | self.sigStartTimer.emit() |
||
| 873 | |||
| 874 | # Set measurement paused flag |
||
| 875 | self.__is_paused = False |
||
| 876 | |||
| 877 | self.sigMeasurementStatusUpdated.emit(True, False) |
||
| 878 | else: |
||
| 879 | self.log.warning('Unable to continue pulsed measurement. No measurement running.') |
||
| 880 | self.sigMeasurementStatusUpdated.emit(False, False) |
||
| 881 | return |
||
| 882 | |||
| 883 | @QtCore.Slot(float) |
||
| 884 | @QtCore.Slot(int) |
||
| 885 | def set_timer_interval(self, interval): |
||
| 886 | """ |
||
| 887 | Change the interval of the measurement analysis timer |
||
| 888 | |||
| 889 | @param int|float interval: Interval of the timer in s |
||
| 890 | """ |
||
| 891 | with self._threadlock: |
||
| 892 | self.__timer_interval = interval |
||
| 893 | if self.__timer_interval > 0: |
||
| 894 | self.__analysis_timer.setInterval(int(1000. * self.__timer_interval)) |
||
| 895 | if self.module_state() == 'locked' and not self.__is_paused: |
||
| 896 | self.sigStartTimer.emit() |
||
| 897 | else: |
||
| 898 | self.sigStopTimer.emit() |
||
| 899 | |||
| 900 | self.sigTimerUpdated.emit(self.__elapsed_time, self.__elapsed_sweeps, |
||
| 901 | self.__timer_interval) |
||
| 902 | return |
||
| 903 | |||
| 904 | @QtCore.Slot(str) |
||
| 905 | def set_alternative_data_type(self, alt_data_type): |
||
| 906 | """ |
||
| 907 | |||
| 908 | @param alt_data_type: |
||
| 909 | @return: |
||
| 910 | """ |
||
| 911 | with self._threadlock: |
||
| 912 | if alt_data_type == 'Delta' and not self._alternating: |
||
| 913 | if self._alternative_data_type == 'Delta': |
||
| 914 | self._alternative_data_type = None |
||
| 915 | self.log.error('Can not set "Delta" as alternative data calculation if measurement is ' |
||
| 916 | 'not alternating.\n' |
||
| 917 | 'Setting to previous type "{0}".'.format(self.alternative_data_type)) |
||
| 918 | else: |
||
| 919 | self._alternative_data_type = alt_data_type |
||
| 920 | |||
| 921 | self._compute_alt_data() |
||
| 922 | self.sigMeasurementDataUpdated.emit() |
||
| 923 | return |
||
| 924 | |||
| 925 | @QtCore.Slot() |
||
| 926 | def manually_pull_data(self): |
||
| 927 | """ Analyse and display the data |
||
| 928 | """ |
||
| 929 | if self.module_state() == 'locked': |
||
| 930 | self._pulsed_analysis_loop() |
||
| 931 | return |
||
| 932 | |||
| 933 | @QtCore.Slot(str) |
||
| 934 | @QtCore.Slot(str, np.ndarray) |
||
| 935 | def do_fit(self, fit_method, data=None): |
||
| 936 | """ |
||
| 937 | Performs the chosen fit on the measured data. |
||
| 938 | |||
| 939 | @param str fit_method: name of the fit method to use |
||
| 940 | @param 2D numpy.ndarray data: the x and y data points for the fit (shape=(2,X)) |
||
| 941 | |||
| 942 | @return (2D numpy.ndarray, result object): the resulting fit data and the fit result object |
||
| 943 | """ |
||
| 944 | # Set current fit |
||
| 945 | self.fc.set_current_fit(fit_method) |
||
| 946 | |||
| 947 | if data is None: |
||
| 948 | data = self.signal_data |
||
| 949 | update_fit_data = True |
||
| 950 | else: |
||
| 951 | update_fit_data = False |
||
| 952 | |||
| 953 | x_fit, y_fit, result = self.fc.do_fit(data[0], data[1]) |
||
| 954 | |||
| 955 | fit_data = np.array([x_fit, y_fit]) |
||
| 956 | fit_name = self.fc.current_fit |
||
| 957 | fit_result = self.fc.current_fit_result |
||
| 958 | |||
| 959 | if update_fit_data: |
||
| 960 | self.signal_fit_data = fit_data |
||
| 961 | self.sigFitUpdated.emit(fit_name, self.signal_fit_data, fit_result) |
||
| 962 | |||
| 963 | return fit_data, fit_result |
||
| 964 | |||
| 965 | def _apply_invoked_settings(self): |
||
| 966 | """ |
||
| 967 | """ |
||
| 968 | if not isinstance(self._measurement_information, dict) or not self._measurement_information: |
||
| 969 | self.log.warning('Can\'t invoke measurement settings from sequence information ' |
||
| 970 | 'since no measurement_information container is given.') |
||
| 971 | return |
||
| 972 | |||
| 973 | # First try to set parameters that can be changed during a running measurement |
||
| 974 | if 'units' in self._measurement_information: |
||
| 975 | with self._threadlock: |
||
| 976 | self._data_units = self._measurement_information.get('units') |
||
| 977 | |||
| 978 | # Check if a measurement is running and apply following settings if this is not the case |
||
| 979 | if self.module_state() == 'locked': |
||
| 980 | return |
||
| 981 | |||
| 982 | if 'number_of_lasers' in self._measurement_information: |
||
| 983 | self._number_of_lasers = int(self._measurement_information.get('number_of_lasers')) |
||
| 984 | else: |
||
| 985 | self.log.error('Unable to invoke setting for "number_of_lasers".\n' |
||
| 986 | 'Measurement information container is incomplete/invalid.') |
||
| 987 | return |
||
| 988 | |||
| 989 | if 'laser_ignore_list' in self._measurement_information: |
||
| 990 | self._laser_ignore_list = sorted(self._measurement_information.get('laser_ignore_list')) |
||
| 991 | else: |
||
| 992 | self.log.error('Unable to invoke setting for "laser_ignore_list".\n' |
||
| 993 | 'Measurement information container is incomplete/invalid.') |
||
| 994 | return |
||
| 995 | |||
| 996 | if 'alternating' in self._measurement_information: |
||
| 997 | self._alternating = bool(self._measurement_information.get('alternating')) |
||
| 998 | else: |
||
| 999 | self.log.error('Unable to invoke setting for "alternating".\n' |
||
| 1000 | 'Measurement information container is incomplete/invalid.') |
||
| 1001 | return |
||
| 1002 | |||
| 1003 | if 'controlled_variable' in self._measurement_information: |
||
| 1004 | self._controlled_variable = np.array( |
||
| 1005 | self._measurement_information.get('controlled_variable'), dtype=float) |
||
| 1006 | else: |
||
| 1007 | self.log.error('Unable to invoke setting for "controlled_variable".\n' |
||
| 1008 | 'Measurement information container is incomplete/invalid.') |
||
| 1009 | return |
||
| 1010 | |||
| 1011 | if 'counting_length' in self._measurement_information: |
||
| 1012 | fast_counter_record_length = self._measurement_information.get('counting_length') |
||
| 1013 | else: |
||
| 1014 | self.log.error('Unable to invoke setting for "counting_length".\n' |
||
| 1015 | 'Measurement information container is incomplete/invalid.') |
||
| 1016 | return |
||
| 1017 | |||
| 1018 | if self.fastcounter().is_gated(): |
||
| 1019 | self.set_fast_counter_settings(number_of_gates=self._number_of_lasers, |
||
| 1020 | record_length=fast_counter_record_length) |
||
| 1021 | else: |
||
| 1022 | self.set_fast_counter_settings(record_length=fast_counter_record_length) |
||
| 1023 | return |
||
| 1024 | |||
| 1025 | def _measurement_settings_sanity_check(self): |
||
| 1026 | number_of_analyzed_lasers = self._number_of_lasers - len(self._laser_ignore_list) |
||
| 1027 | if len(self._controlled_variable) < 1: |
||
| 1028 | self.log.error('Tried to set empty controlled variables array. This can not work.') |
||
| 1029 | |||
| 1030 | if self._alternating and (number_of_analyzed_lasers // 2) != len(self._controlled_variable): |
||
| 1031 | self.log.error('Half of the number of laser pulses to analyze ({0}) does not match the ' |
||
| 1032 | 'number of controlled_variable ticks ({1:d}).' |
||
| 1033 | ''.format(number_of_analyzed_lasers // 2, |
||
| 1034 | len(self._controlled_variable))) |
||
| 1035 | elif not self._alternating and number_of_analyzed_lasers != len(self._controlled_variable): |
||
| 1036 | self.log.error('Number of laser pulses to analyze ({0:d}) does not match the number of ' |
||
| 1037 | 'controlled_variable ticks ({1:d}).' |
||
| 1038 | ''.format(number_of_analyzed_lasers, len(self._controlled_variable))) |
||
| 1039 | |||
| 1040 | if self.fastcounter().is_gated() and self._number_of_lasers != self.__fast_counter_gates: |
||
| 1041 | self.log.error('Gated fast counter gate number differs from number of laser pulses ' |
||
| 1042 | 'configured in measurement settings.') |
||
| 1043 | return |
||
| 1044 | |||
| 1045 | def _pulsed_analysis_loop(self): |
||
| 1046 | """ Acquires laser pulses from fast counter, |
||
| 1047 | calculates fluorescence signal and creates plots. |
||
| 1048 | """ |
||
| 1049 | with self._threadlock: |
||
| 1050 | if self.module_state() == 'locked': |
||
| 1051 | # Update elapsed time |
||
| 1052 | self.__elapsed_time = time.time() - self.__start_time |
||
| 1053 | |||
| 1054 | # Get counter raw data (including recalled raw data from previous measurement) |
||
| 1055 | self.raw_data = self._get_raw_data() |
||
| 1056 | |||
| 1057 | # extract laser pulses from raw data |
||
| 1058 | return_dict = self._pulseextractor.extract_laser_pulses(self.raw_data) |
||
| 1059 | self.laser_data = return_dict['laser_counts_arr'] |
||
| 1060 | |||
| 1061 | # analyze pulses and get data points for signal array. Also check if extraction |
||
| 1062 | # worked (non-zero array returned). |
||
| 1063 | if self.laser_data.any(): |
||
| 1064 | tmp_signal, tmp_error = self._pulseanalyzer.analyse_laser_pulses( |
||
| 1065 | self.laser_data) |
||
| 1066 | else: |
||
| 1067 | tmp_signal = np.zeros(self.laser_data.shape[0]) |
||
| 1068 | tmp_error = np.zeros(self.laser_data.shape[0]) |
||
| 1069 | |||
| 1070 | # exclude laser pulses to ignore |
||
| 1071 | if len(self._laser_ignore_list) > 0: |
||
| 1072 | # Convert relative negative indices into absolute positive indices |
||
| 1073 | while self._laser_ignore_list[0] < 0: |
||
| 1074 | neg_index = self._laser_ignore_list[0] |
||
| 1075 | self._laser_ignore_list[0] = len(tmp_signal) + neg_index |
||
| 1076 | self._laser_ignore_list.sort() |
||
| 1077 | |||
| 1078 | tmp_signal = np.delete(tmp_signal, self._laser_ignore_list) |
||
| 1079 | tmp_error = np.delete(tmp_error, self._laser_ignore_list) |
||
| 1080 | |||
| 1081 | # order data according to alternating flag |
||
| 1082 | if self._alternating: |
||
| 1083 | self.signal_data[1] = tmp_signal[::2] |
||
| 1084 | self.signal_data[2] = tmp_signal[1::2] |
||
| 1085 | self.measurement_error[1] = tmp_error[::2] |
||
| 1086 | self.measurement_error[2] = tmp_error[1::2] |
||
| 1087 | else: |
||
| 1088 | self.signal_data[1] = tmp_signal |
||
| 1089 | self.measurement_error[1] = tmp_error |
||
| 1090 | |||
| 1091 | # Compute alternative data array from signal |
||
| 1092 | self._compute_alt_data() |
||
| 1093 | |||
| 1094 | # emit signals |
||
| 1095 | self.sigTimerUpdated.emit(self.__elapsed_time, self.__elapsed_sweeps, |
||
| 1096 | self.__timer_interval) |
||
| 1097 | self.sigMeasurementDataUpdated.emit() |
||
| 1098 | return |
||
| 1099 | |||
| 1100 | def _get_raw_data(self): |
||
| 1101 | """ |
||
| 1102 | Get the raw count data from the fast counting hardware and perform sanity checks. |
||
| 1103 | Also add recalled raw data to the newly received data. |
||
| 1104 | :return numpy.ndarray: The count data (1D for ungated, 2D for gated counter) |
||
| 1105 | """ |
||
| 1106 | # get raw data from fast counter |
||
| 1107 | fc_data = netobtain(self.fastcounter().get_data_trace()) |
||
| 1108 | |||
| 1109 | # add old raw data from previous measurements if necessary |
||
| 1110 | if self._saved_raw_data.get(self._recalled_raw_data_tag) is not None: |
||
| 1111 | self.log.info('Found old saved raw data with tag "{0}".' |
||
| 1112 | ''.format(self._recalled_raw_data_tag)) |
||
| 1113 | if not fc_data.any(): |
||
| 1114 | self.log.warning('Only zeros received from fast counter!\n' |
||
| 1115 | 'Using recalled raw data only.') |
||
| 1116 | fc_data = self._saved_raw_data[self._recalled_raw_data_tag] |
||
| 1117 | elif self._saved_raw_data[self._recalled_raw_data_tag].shape == fc_data.shape: |
||
| 1118 | self.log.debug('Recalled raw data has the same shape as current data.') |
||
| 1119 | fc_data = self._saved_raw_data[self._recalled_raw_data_tag] + fc_data |
||
| 1120 | else: |
||
| 1121 | self.log.warning('Recalled raw data has not the same shape as current data.' |
||
| 1122 | '\nDid NOT add recalled raw data to current time trace.') |
||
| 1123 | elif not fc_data.any(): |
||
| 1124 | self.log.warning('Only zeros received from fast counter!') |
||
| 1125 | fc_data = np.zeros(fc_data.shape, dtype='int64') |
||
| 1126 | return fc_data |
||
| 1127 | |||
| 1128 | def _initialize_data_arrays(self): |
||
| 1129 | """ |
||
| 1130 | Initializing the signal, error, laser and raw data arrays. |
||
| 1131 | """ |
||
| 1132 | # Determine signal array dimensions |
||
| 1133 | signal_dim = 3 if self._alternating else 2 |
||
| 1134 | |||
| 1135 | self.signal_data = np.zeros((signal_dim, len(self._controlled_variable)), dtype=float) |
||
| 1136 | self.signal_data[0] = self._controlled_variable |
||
| 1137 | |||
| 1138 | self.signal_alt_data = np.zeros((signal_dim, len(self._controlled_variable)), dtype=float) |
||
| 1139 | self.signal_alt_data[0] = self._controlled_variable |
||
| 1140 | |||
| 1141 | self.measurement_error = np.zeros((signal_dim, len(self._controlled_variable)), dtype=float) |
||
| 1142 | self.measurement_error[0] = self._controlled_variable |
||
| 1143 | |||
| 1144 | number_of_bins = int(self.__fast_counter_record_length / self.__fast_counter_binwidth) |
||
| 1145 | laser_length = number_of_bins if self.__fast_counter_gates > 0 else 500 |
||
| 1146 | self.laser_data = np.zeros((self._number_of_lasers, laser_length), dtype='int64') |
||
| 1147 | |||
| 1148 | if self.__fast_counter_gates > 0: |
||
| 1149 | self.raw_data = np.zeros((self._number_of_lasers, number_of_bins), dtype='int64') |
||
| 1150 | else: |
||
| 1151 | self.raw_data = np.zeros(number_of_bins, dtype='int64') |
||
| 1152 | |||
| 1153 | self.sigMeasurementDataUpdated.emit() |
||
| 1154 | return |
||
| 1155 | |||
| 1156 | # FIXME: Revise everything below |
||
| 1157 | |||
| 1158 | ############################################################################ |
||
| 1159 | @QtCore.Slot(str, bool) |
||
| 1160 | def save_measurement_data(self, tag=None, with_error=True): |
||
| 1161 | """ |
||
| 1162 | Prepare data to be saved and create a proper plot of the data |
||
| 1163 | |||
| 1164 | @param str tag: a filetag which will be included in the filename |
||
| 1165 | @param bool with_error: select whether errors should be saved/plotted |
||
| 1166 | |||
| 1167 | @return str: filepath where data were saved |
||
| 1168 | """ |
||
| 1169 | filepath = self.savelogic().get_path_for_module('PulsedMeasurement') |
||
| 1170 | timestamp = datetime.datetime.now() |
||
| 1171 | |||
| 1172 | ##################################################################### |
||
| 1173 | #### Save extracted laser pulses #### |
||
| 1174 | ##################################################################### |
||
| 1175 | if tag is not None and len(tag) > 0: |
||
| 1176 | filelabel = tag + '_laser_pulses' |
||
| 1177 | else: |
||
| 1178 | filelabel = 'laser_pulses' |
||
| 1179 | |||
| 1180 | # prepare the data in a dict or in an OrderedDict: |
||
| 1181 | data = OrderedDict() |
||
| 1182 | laser_trace = self.laser_data |
||
| 1183 | data['Signal (counts)'.format()] = laser_trace.transpose() |
||
| 1184 | |||
| 1185 | # write the parameters: |
||
| 1186 | parameters = OrderedDict() |
||
| 1187 | parameters['bin width (s)'] = self.__fast_counter_binwidth |
||
| 1188 | parameters['record length (s)'] = self.__fast_counter_record_length |
||
| 1189 | parameters['gated counting'] = self.fast_counter_settings['is_gated'] |
||
| 1190 | parameters['extraction parameters'] = self.extraction_settings |
||
| 1191 | |||
| 1192 | self.savelogic().save_data(data, |
||
| 1193 | timestamp=timestamp, |
||
| 1194 | parameters=parameters, |
||
| 1195 | filepath=filepath, |
||
| 1196 | filelabel=filelabel, |
||
| 1197 | filetype='text', |
||
| 1198 | fmt='%d', |
||
| 1199 | delimiter='\t') |
||
| 1200 | |||
| 1201 | ##################################################################### |
||
| 1202 | #### Save measurement data #### |
||
| 1203 | ##################################################################### |
||
| 1204 | if tag is not None and len(tag) > 0: |
||
| 1205 | filelabel = tag + '_pulsed_measurement' |
||
| 1206 | else: |
||
| 1207 | filelabel = 'pulsed_measurement' |
||
| 1208 | |||
| 1209 | # prepare the data in a dict or in an OrderedDict: |
||
| 1210 | header_str = 'Controlled variable({0})\tSignal({1})\t'.format(*self._data_units) |
||
| 1211 | if self._alternating: |
||
| 1212 | header_str += 'Signal2({0})'.format(self._data_units[1]) |
||
| 1213 | if with_error: |
||
| 1214 | header_str += 'Error({0})'.format(self._data_units[1]) |
||
| 1215 | if self._alternating: |
||
| 1216 | header_str += 'Error2({0})'.format(self._data_units[1]) |
||
| 1217 | data = OrderedDict() |
||
| 1218 | if with_error: |
||
| 1219 | data[header_str] = np.vstack((self.signal_data, self.measurement_error)).transpose() |
||
| 1220 | else: |
||
| 1221 | data[header_str] = self.signal_data.transpose() |
||
| 1222 | |||
| 1223 | # write the parameters: |
||
| 1224 | parameters = OrderedDict() |
||
| 1225 | parameters['Approx. measurement time (s)'] = self.__elapsed_time |
||
| 1226 | parameters['Measurement sweeps'] = self.__elapsed_sweeps |
||
| 1227 | parameters['Number of laser pulses'] = self._number_of_lasers |
||
| 1228 | parameters['Laser ignore indices'] = self._laser_ignore_list |
||
| 1229 | parameters['alternating'] = self._alternating |
||
| 1230 | parameters['analysis parameters'] = self.analysis_settings |
||
| 1231 | parameters['extraction parameters'] = self.extraction_settings |
||
| 1232 | parameters['fast counter settings'] = self.fast_counter_settings |
||
| 1233 | |||
| 1234 | # Prepare the figure to save as a "data thumbnail" |
||
| 1235 | plt.style.use(self.savelogic().mpl_qd_style) |
||
| 1236 | |||
| 1237 | # extract the possible colors from the colorscheme: |
||
| 1238 | prop_cycle = self.savelogic().mpl_qd_style['axes.prop_cycle'] |
||
| 1239 | colors = {} |
||
| 1240 | for i, color_setting in enumerate(prop_cycle): |
||
| 1241 | colors[i] = color_setting['color'] |
||
| 1242 | |||
| 1243 | # scale the x_axis for plotting |
||
| 1244 | max_val = np.max(self.signal_data[0]) |
||
| 1245 | scaled_float = units.ScaledFloat(max_val) |
||
| 1246 | counts_prefix = scaled_float.scale |
||
| 1247 | x_axis_scaled = self.signal_data[0] / scaled_float.scale_val |
||
| 1248 | |||
| 1249 | # Create the figure object |
||
| 1250 | if self._alternative_data_type: |
||
| 1251 | fig, (ax1, ax2) = plt.subplots(2, 1) |
||
| 1252 | else: |
||
| 1253 | fig, ax1 = plt.subplots() |
||
| 1254 | |||
| 1255 | if with_error: |
||
| 1256 | ax1.errorbar(x=x_axis_scaled, y=self.signal_data[1], |
||
| 1257 | yerr=self.measurement_error[1], fmt='-o', |
||
| 1258 | linestyle=':', linewidth=0.5, color=colors[0], |
||
| 1259 | ecolor=colors[1], capsize=3, capthick=0.9, |
||
| 1260 | elinewidth=1.2, label='data trace 1') |
||
| 1261 | |||
| 1262 | if self._alternating: |
||
| 1263 | ax1.errorbar(x=x_axis_scaled, y=self.signal_data[2], |
||
| 1264 | yerr=self.measurement_error[2], fmt='-D', |
||
| 1265 | linestyle=':', linewidth=0.5, color=colors[3], |
||
| 1266 | ecolor=colors[4], capsize=3, capthick=0.7, |
||
| 1267 | elinewidth=1.2, label='data trace 2') |
||
| 1268 | else: |
||
| 1269 | ax1.plot(x_axis_scaled, self.signal_data[1], '-o', color=colors[0], |
||
| 1270 | linestyle=':', linewidth=0.5, label='data trace 1') |
||
| 1271 | |||
| 1272 | if self._alternating: |
||
| 1273 | ax1.plot(x_axis_scaled, self.signal_data[2], '-o', |
||
| 1274 | color=colors[3], linestyle=':', linewidth=0.5, |
||
| 1275 | label='data trace 2') |
||
| 1276 | |||
| 1277 | # Do not include fit curve if there is no fit calculated. |
||
| 1278 | if self.signal_fit_data.size != 0 and np.max(self.signal_fit_data[1]) > 0: |
||
| 1279 | x_axis_fit_scaled = self.signal_fit_data[0] / scaled_float.scale_val |
||
| 1280 | ax1.plot(x_axis_fit_scaled, self.signal_fit_data[1], |
||
| 1281 | color=colors[2], marker='None', linewidth=1.5, |
||
| 1282 | label='fit: {0}'.format(self.fc.current_fit)) |
||
| 1283 | |||
| 1284 | # add then the fit result to the plot: |
||
| 1285 | |||
| 1286 | # Parameters for the text plot: |
||
| 1287 | # The position of the text annotation is controlled with the |
||
| 1288 | # relative offset in x direction and the relative length factor |
||
| 1289 | # rel_len_fac of the longest entry in one column |
||
| 1290 | rel_offset = 0.02 |
||
| 1291 | rel_len_fac = 0.011 |
||
| 1292 | entries_per_col = 24 |
||
| 1293 | |||
| 1294 | # create the formatted fit text: |
||
| 1295 | if hasattr(self.fc.current_fit_result, 'result_str_dict'): |
||
| 1296 | fit_res = units.create_formatted_output(self.fc.current_fit_result.result_str_dict) |
||
| 1297 | else: |
||
| 1298 | self.log.warning('The fit container does not contain any data ' |
||
| 1299 | 'from the fit! Apply the fit once again.') |
||
| 1300 | fit_res = '' |
||
| 1301 | # do reverse processing to get each entry in a list |
||
| 1302 | entry_list = fit_res.split('\n') |
||
| 1303 | # slice the entry_list in entries_per_col |
||
| 1304 | chunks = [entry_list[x:x+entries_per_col] for x in range(0, len(entry_list), entries_per_col)] |
||
| 1305 | |||
| 1306 | is_first_column = True # first entry should contain header or \n |
||
| 1307 | shift = rel_offset |
||
| 1308 | |||
| 1309 | for column in chunks: |
||
| 1310 | |||
| 1311 | max_length = max(column, key=len) # get the longest entry |
||
| 1312 | column_text = '' |
||
| 1313 | |||
| 1314 | for entry in column: |
||
| 1315 | column_text += entry + '\n' |
||
| 1316 | |||
| 1317 | column_text = column_text[:-1] # remove the last new line |
||
| 1318 | |||
| 1319 | heading = '' |
||
| 1320 | if is_first_column: |
||
| 1321 | heading = 'Fit results:' |
||
| 1322 | |||
| 1323 | column_text = heading + '\n' + column_text |
||
| 1324 | |||
| 1325 | ax1.text(1.00 + shift, 0.99, column_text, |
||
| 1326 | verticalalignment='top', |
||
| 1327 | horizontalalignment='left', |
||
| 1328 | transform=ax1.transAxes, |
||
| 1329 | fontsize=12) |
||
| 1330 | |||
| 1331 | # the shift in position of the text is a linear function |
||
| 1332 | # which depends on the longest entry in the column |
||
| 1333 | shift += rel_len_fac * len(max_length) |
||
| 1334 | |||
| 1335 | is_first_column = False |
||
| 1336 | |||
| 1337 | # handle the save of the alternative data plot |
||
| 1338 | if self._alternative_data_type: |
||
| 1339 | |||
| 1340 | # scale the x_axis for plotting |
||
| 1341 | max_val = np.max(self.signal_alt_data[0]) |
||
| 1342 | scaled_float = units.ScaledFloat(max_val) |
||
| 1343 | x_axis_prefix = scaled_float.scale |
||
| 1344 | x_axis_ft_scaled = self.signal_alt_data[0] / scaled_float.scale_val |
||
| 1345 | |||
| 1346 | # since no ft units are provided, make a small work around: |
||
| 1347 | if self._alternative_data_type == 'FFT': |
||
| 1348 | if self._data_units[0] == 's': |
||
| 1349 | inverse_cont_var = 'Hz' |
||
| 1350 | elif self._data_units[0] == 'Hz': |
||
| 1351 | inverse_cont_var = 's' |
||
| 1352 | else: |
||
| 1353 | inverse_cont_var = '(1/{0})'.format(self._data_units[0]) |
||
| 1354 | x_axis_ft_label = 'Fourier Transformed controlled variable (' + x_axis_prefix + inverse_cont_var + ')' |
||
| 1355 | y_axis_ft_label = 'Fourier amplitude (arb. u.)' |
||
| 1356 | ft_label = 'FT of data trace 1' |
||
| 1357 | else: |
||
| 1358 | x_axis_ft_label = 'controlled variable (' + self._data_units[0] + ')' |
||
| 1359 | y_axis_ft_label = 'norm. sig (arb. u.)' |
||
| 1360 | ft_label = '' |
||
| 1361 | |||
| 1362 | ax2.plot(x_axis_ft_scaled, self.signal_alt_data[1], '-o', |
||
| 1363 | linestyle=':', linewidth=0.5, color=colors[0], |
||
| 1364 | label=ft_label) |
||
| 1365 | |||
| 1366 | ax2.set_xlabel(x_axis_ft_label) |
||
| 1367 | ax2.set_ylabel(y_axis_ft_label) |
||
| 1368 | ax2.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, |
||
| 1369 | mode="expand", borderaxespad=0.) |
||
| 1370 | |||
| 1371 | #FIXME: no fit plot for the alternating graph, use for that graph colors[5] |
||
| 1372 | ax1.set_xlabel('controlled variable (' + counts_prefix + self._data_units[0] + ')') |
||
| 1373 | ax1.set_ylabel('signal (' + self._data_units[1] + ')') |
||
| 1374 | |||
| 1375 | fig.tight_layout() |
||
| 1376 | ax1.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, |
||
| 1377 | mode="expand", borderaxespad=0.) |
||
| 1378 | # plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, |
||
| 1379 | # mode="expand", borderaxespad=0.) |
||
| 1380 | |||
| 1381 | self.savelogic().save_data(data, timestamp=timestamp, |
||
| 1382 | parameters=parameters, fmt='%.15e', |
||
| 1383 | filepath=filepath, filelabel=filelabel, filetype='text', |
||
| 1384 | delimiter='\t', plotfig=fig) |
||
| 1385 | |||
| 1386 | ##################################################################### |
||
| 1387 | #### Save raw data timetrace #### |
||
| 1388 | ##################################################################### |
||
| 1389 | filelabel = 'raw_timetrace' if not tag else tag + '_raw_timetrace' |
||
| 1390 | |||
| 1391 | # prepare the data in a dict or in an OrderedDict: |
||
| 1392 | data = OrderedDict() |
||
| 1393 | raw_trace = self.raw_data.astype('int64') |
||
| 1394 | data['Signal(counts)'] = raw_trace.transpose() |
||
| 1395 | # write the parameters: |
||
| 1396 | parameters = OrderedDict() |
||
| 1397 | parameters['bin width (s)'] = self.__fast_counter_binwidth |
||
| 1398 | parameters['record length (s)'] = self.__fast_counter_record_length |
||
| 1399 | parameters['gated counting'] = self.fast_counter_settings['is_gated'] |
||
| 1400 | parameters['Number of laser pulses'] = self._number_of_lasers |
||
| 1401 | parameters['alternating'] = self._alternating |
||
| 1402 | parameters['Controlled variable'] = list(self.signal_data[0]) |
||
| 1403 | |||
| 1404 | self.savelogic().save_data(data, timestamp=timestamp, |
||
| 1405 | parameters=parameters, fmt='%d', |
||
| 1406 | filepath=filepath, filelabel=filelabel, |
||
| 1407 | filetype=self._raw_data_save_type, |
||
| 1408 | delimiter='\t') |
||
| 1409 | return filepath |
||
| 1410 | |||
| 1411 | def _compute_alt_data(self): |
||
| 1412 | """ |
||
| 1413 | Performing transformations on the measurement data (e.g. fourier transform). |
||
| 1414 | """ |
||
| 1415 | if self._alternative_data_type == 'Delta' and len(self.signal_data) == 3: |
||
| 1416 | self.signal_alt_data = np.empty((2, self.signal_data.shape[1]), dtype=float) |
||
| 1417 | self.signal_alt_data[0] = self.signal_data[0] |
||
| 1418 | self.signal_alt_data[1] = self.signal_data[1] - self.signal_data[2] |
||
| 1419 | elif self._alternative_data_type == 'FFT' and self.signal_data.shape[1] >= 2: |
||
| 1420 | fft_x, fft_y = units.compute_ft(x_val=self.signal_data[0], |
||
| 1421 | y_val=self.signal_data[1], |
||
| 1422 | zeropad_num=self.zeropad, |
||
| 1423 | window=self.window, |
||
| 1424 | base_corr=self.base_corr, |
||
| 1425 | psd=self.psd) |
||
| 1426 | self.signal_alt_data = np.empty((len(self.signal_data), len(fft_x)), dtype=float) |
||
| 1427 | self.signal_alt_data[0] = fft_x |
||
| 1428 | self.signal_alt_data[1] = fft_y |
||
| 1429 | for dim in range(2, len(self.signal_data)): |
||
| 1430 | dummy, self.signal_alt_data[dim] = units.compute_ft(x_val=self.signal_data[0], |
||
| 1431 | y_val=self.signal_data[dim], |
||
| 1432 | zeropad_num=self.zeropad, |
||
| 1433 | window=self.window, |
||
| 1434 | base_corr=self.base_corr, |
||
| 1435 | psd=self.psd) |
||
| 1436 | else: |
||
| 1437 | self.signal_alt_data = np.zeros(self.signal_data.shape, dtype=float) |
||
| 1438 | self.signal_alt_data[0] = self.signal_data[0] |
||
| 1439 | return |
||
| 1440 | |||
| 1443 |