|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
""" |
|
3
|
|
|
Use OK FPGA as a digital pulse sequence generator. |
|
4
|
|
|
|
|
5
|
|
|
Qudi is free software: you can redistribute it and/or modify |
|
6
|
|
|
it under the terms of the GNU General Public License as published by |
|
7
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
8
|
|
|
(at your option) any later version. |
|
9
|
|
|
|
|
10
|
|
|
Qudi is distributed in the hope that it will be useful, |
|
11
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
13
|
|
|
GNU General Public License for more details. |
|
14
|
|
|
|
|
15
|
|
|
You should have received a copy of the GNU General Public License |
|
16
|
|
|
along with Qudi. If not, see <http://www.gnu.org/licenses/>. |
|
17
|
|
|
|
|
18
|
|
|
Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the |
|
19
|
|
|
top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> |
|
20
|
|
|
""" |
|
21
|
|
|
|
|
22
|
|
|
from core.module import Base, ConfigOption, StatusVar |
|
23
|
|
|
from core.util.modules import get_main_dir |
|
24
|
|
|
from interface.pulser_interface import PulserInterface, PulserConstraints |
|
25
|
|
|
import okfrontpanel as ok |
|
26
|
|
|
import numpy as np |
|
27
|
|
|
import time |
|
28
|
|
|
import os |
|
29
|
|
|
from collections import OrderedDict |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class OkFpgaPulser(Base, PulserInterface): |
|
33
|
|
|
"""Methods to control Pulse Generator running on OK FPGA. |
|
34
|
|
|
|
|
35
|
|
|
Chan PIN |
|
36
|
|
|
---------- |
|
37
|
|
|
Ch1 A3 |
|
38
|
|
|
Ch2 C5 |
|
39
|
|
|
Ch3 D6 |
|
40
|
|
|
Ch4 B6 |
|
41
|
|
|
Ch5 C7 |
|
42
|
|
|
Ch6 B8 |
|
43
|
|
|
Ch7 D9 |
|
44
|
|
|
Ch8 C9 |
|
45
|
|
|
""" |
|
46
|
|
|
_modclass = 'pulserinterface' |
|
47
|
|
|
_modtype = 'hardware' |
|
48
|
|
|
|
|
49
|
|
|
_fpga_serial = ConfigOption(name='fpga_serial', missing='error') |
|
50
|
|
|
_fpga_type = ConfigOption(name='fpga_type', default='XEM6310_LX150', missing='warn') |
|
51
|
|
|
|
|
52
|
|
|
__current_waveform = StatusVar(name='current_waveform', default=np.zeros(1, dtype='uint8')) |
|
53
|
|
|
__current_waveform_name = StatusVar(name='current_waveform_name', default='') |
|
54
|
|
|
__sample_rate = StatusVar(name='sample_rate', default=950e6) |
|
55
|
|
|
|
|
56
|
|
|
def __init__(self, config, **kwargs): |
|
57
|
|
|
super().__init__(config=config, **kwargs) |
|
58
|
|
|
|
|
59
|
|
|
self.__current_status = -1 |
|
60
|
|
|
self.__currently_loaded_waveform = '' # loaded and armed waveform name |
|
61
|
|
|
self.__samples_written = 0 |
|
62
|
|
|
self.fpga = None # Reference to the OK FrontPanel instance |
|
63
|
|
|
|
|
64
|
|
|
def on_activate(self): |
|
65
|
|
|
self.__samples_written = 0 |
|
66
|
|
|
self.__currently_loaded_waveform = '' |
|
67
|
|
|
self.fpga = ok.FrontPanel() |
|
68
|
|
|
self._connect_fpga() |
|
69
|
|
|
self.set_sample_rate(self.__sample_rate) |
|
70
|
|
|
|
|
71
|
|
|
def on_deactivate(self): |
|
72
|
|
|
self._disconnect_fpga() |
|
73
|
|
|
|
|
74
|
|
|
@__current_waveform.representer |
|
75
|
|
|
def _convert_current_waveform(self, waveform_bytearray): |
|
76
|
|
|
return np.frombuffer(waveform_bytearray, dtype='uint8') |
|
77
|
|
|
|
|
78
|
|
|
@__current_waveform.constructor |
|
79
|
|
|
def _recover_current_waveform(self, waveform_nparray): |
|
80
|
|
|
return bytearray(waveform_nparray.tobytes()) |
|
81
|
|
|
|
|
82
|
|
|
def get_constraints(self): |
|
83
|
|
|
""" |
|
84
|
|
|
Retrieve the hardware constrains from the Pulsing device. |
|
85
|
|
|
|
|
86
|
|
|
@return constraints object: object with pulser constraints as attributes. |
|
87
|
|
|
|
|
88
|
|
|
Provides all the constraints (e.g. sample_rate, amplitude, total_length_bins, |
|
89
|
|
|
channel_config, ...) related to the pulse generator hardware to the caller. |
|
90
|
|
|
|
|
91
|
|
|
SEE PulserConstraints CLASS IN pulser_interface.py FOR AVAILABLE CONSTRAINTS!!! |
|
92
|
|
|
|
|
93
|
|
|
If you are not sure about the meaning, look in other hardware files to get an impression. |
|
94
|
|
|
If still additional constraints are needed, then they have to be added to the |
|
95
|
|
|
PulserConstraints class. |
|
96
|
|
|
|
|
97
|
|
|
Each scalar parameter is an ScalarConstraints object defined in cor.util.interfaces. |
|
98
|
|
|
Essentially it contains min/max values as well as min step size, default value and unit of |
|
99
|
|
|
the parameter. |
|
100
|
|
|
|
|
101
|
|
|
PulserConstraints.activation_config differs, since it contain the channel |
|
102
|
|
|
configuration/activation information of the form: |
|
103
|
|
|
{<descriptor_str>: <channel_set>, |
|
104
|
|
|
<descriptor_str>: <channel_set>, |
|
105
|
|
|
...} |
|
106
|
|
|
|
|
107
|
|
|
If the constraints cannot be set in the pulsing hardware (e.g. because it might have no |
|
108
|
|
|
sequence mode) just leave it out so that the default is used (only zeros). |
|
109
|
|
|
""" |
|
110
|
|
|
constraints = PulserConstraints() |
|
111
|
|
|
|
|
112
|
|
|
constraints.sample_rate.min = 500e6 |
|
113
|
|
|
constraints.sample_rate.max = 950e6 |
|
114
|
|
|
constraints.sample_rate.step = 450e6 |
|
115
|
|
|
constraints.sample_rate.default = 950e6 |
|
116
|
|
|
|
|
117
|
|
|
constraints.a_ch_amplitude.min = 0.0 |
|
118
|
|
|
constraints.a_ch_amplitude.max = 0.0 |
|
119
|
|
|
constraints.a_ch_amplitude.step = 0.0 |
|
120
|
|
|
constraints.a_ch_amplitude.default = 0.0 |
|
121
|
|
|
|
|
122
|
|
|
constraints.a_ch_offset.min = 0.0 |
|
123
|
|
|
constraints.a_ch_offset.max = 0.0 |
|
124
|
|
|
constraints.a_ch_offset.step = 0.0 |
|
125
|
|
|
constraints.a_ch_offset.default = 0.0 |
|
126
|
|
|
|
|
127
|
|
|
constraints.d_ch_low.min = 0.0 |
|
128
|
|
|
constraints.d_ch_low.max = 0.0 |
|
129
|
|
|
constraints.d_ch_low.step = 0.0 |
|
130
|
|
|
constraints.d_ch_low.default = 0.0 |
|
131
|
|
|
|
|
132
|
|
|
constraints.d_ch_high.min = 3.3 |
|
133
|
|
|
constraints.d_ch_high.max = 3.3 |
|
134
|
|
|
constraints.d_ch_high.step = 0.0 |
|
135
|
|
|
constraints.d_ch_high.default = 3.3 |
|
136
|
|
|
|
|
137
|
|
|
constraints.waveform_length.min = 1024 |
|
138
|
|
|
constraints.waveform_length.max = 134217728 |
|
139
|
|
|
constraints.waveform_length.step = 1 |
|
140
|
|
|
constraints.waveform_length.default = 1024 |
|
141
|
|
|
|
|
142
|
|
|
# the name a_ch<num> and d_ch<num> are generic names, which describe UNAMBIGUOUSLY the |
|
143
|
|
|
# channels. Here all possible channel configurations are stated, where only the generic |
|
144
|
|
|
# names should be used. The names for the different configurations can be customary chosen. |
|
145
|
|
|
activation_config = OrderedDict() |
|
146
|
|
|
activation_config['all'] = {'d_ch1', 'd_ch2', 'd_ch3', 'd_ch4', |
|
147
|
|
|
'd_ch5', 'd_ch6', 'd_ch7', 'd_ch8'} |
|
148
|
|
|
constraints.activation_config = activation_config |
|
149
|
|
|
return constraints |
|
150
|
|
|
|
|
151
|
|
|
def pulser_on(self): |
|
152
|
|
|
""" Switches the pulsing device on. |
|
153
|
|
|
|
|
154
|
|
|
@return int: error code (0:OK, -1:error) |
|
155
|
|
|
""" |
|
156
|
|
|
return self.write(0x01) |
|
157
|
|
|
|
|
158
|
|
|
def pulser_off(self): |
|
159
|
|
|
""" Switches the pulsing device off. |
|
160
|
|
|
|
|
161
|
|
|
@return int: error code (0:OK, -1:error) |
|
162
|
|
|
""" |
|
163
|
|
|
return self.write(0x00) |
|
164
|
|
|
|
|
165
|
|
|
def load_waveform(self, load_dict): |
|
166
|
|
|
""" Loads a waveform to the specified channel of the pulsing device. |
|
167
|
|
|
For devices that have a workspace (i.e. AWG) this will load the waveform from the device |
|
168
|
|
|
workspace into the channel. |
|
169
|
|
|
For a device without mass memory this will make the waveform/pattern that has been |
|
170
|
|
|
previously written with self.write_waveform ready to play. |
|
171
|
|
|
|
|
172
|
|
|
@param load_dict: dict|list, a dictionary with keys being one of the available channel |
|
173
|
|
|
index and values being the name of the already written |
|
174
|
|
|
waveform to load into the channel. |
|
175
|
|
|
Examples: {1: rabi_ch1, 2: rabi_ch2} or |
|
176
|
|
|
{1: rabi_ch2, 2: rabi_ch1} |
|
177
|
|
|
If just a list of waveform names if given, the channel |
|
178
|
|
|
association will be invoked from the channel |
|
179
|
|
|
suffix '_ch1', '_ch2' etc. |
|
180
|
|
|
|
|
181
|
|
|
@return dict: Dictionary containing the actually loaded waveforms per channel. |
|
182
|
|
|
""" |
|
183
|
|
|
# Since only one waveform can be present at a time check if only a single name is given |
|
184
|
|
|
if isinstance(load_dict, list): |
|
185
|
|
|
waveforms = list(set(load_dict)) |
|
186
|
|
|
elif isinstance(load_dict, dict): |
|
187
|
|
|
waveforms = list(set(load_dict.values())) |
|
188
|
|
|
else: |
|
189
|
|
|
self.log.error('Method load_waveform expects a list of waveform names or a dict.') |
|
190
|
|
|
return self.get_loaded_assets() |
|
191
|
|
|
|
|
192
|
|
|
if len(waveforms) != 1: |
|
193
|
|
|
self.log.error('FPGA pulser expects exactly one waveform name for load_waveform.') |
|
194
|
|
|
return self.get_loaded_assets() |
|
195
|
|
|
|
|
196
|
|
|
waveform = waveforms[0] |
|
197
|
|
|
if waveform != self.__current_waveform_name: |
|
198
|
|
|
self.log.error('No waveform by the name "{0}" generated for FPGA pulser.\n' |
|
199
|
|
|
'Only one waveform at a time can be held.'.format(waveform)) |
|
200
|
|
|
return self.get_loaded_assets() |
|
201
|
|
|
|
|
202
|
|
|
# calculate size of the two bytearrays to be transmitted. The biggest part is tranfered |
|
203
|
|
|
# in 1024 byte blocks and the rest is transfered in 32 byte blocks |
|
204
|
|
|
big_bytesize = (len(self.__current_waveform) // 1024) * 1024 |
|
205
|
|
|
small_bytesize = len(self.__current_waveform) - big_bytesize |
|
206
|
|
|
|
|
207
|
|
|
# try repeatedly to upload the samples to the FPGA RAM |
|
208
|
|
|
# stop if the upload was successful |
|
209
|
|
|
loop_count = 0 |
|
210
|
|
|
while True: |
|
211
|
|
|
loop_count += 1 |
|
212
|
|
|
# reset FPGA |
|
213
|
|
|
self.reset() |
|
214
|
|
|
# upload sequence |
|
215
|
|
|
if big_bytesize != 0: |
|
216
|
|
|
# enable sequence write mode in FPGA |
|
217
|
|
|
self.write((255 << 24) + 2) |
|
218
|
|
|
# write to FPGA DDR2-RAM |
|
219
|
|
|
self.fpga.WriteToBlockPipeIn(0x80, 1024, self.__current_waveform[0:big_bytesize]) |
|
220
|
|
|
if small_bytesize != 0: |
|
221
|
|
|
# enable sequence write mode in FPGA |
|
222
|
|
|
self.write((8 << 24) + 2) |
|
223
|
|
|
# write to FPGA DDR2-RAM |
|
224
|
|
|
self.fpga.WriteToBlockPipeIn(0x80, 32, self.__current_waveform[big_bytesize:]) |
|
225
|
|
|
|
|
226
|
|
|
# check if upload was successful |
|
227
|
|
|
self.write(0x00) |
|
228
|
|
|
# start the pulse sequence |
|
229
|
|
|
self.write(0x01) |
|
230
|
|
|
# wait for 600ms |
|
231
|
|
|
time.sleep(0.6) |
|
232
|
|
|
# get status flags from FPGA |
|
233
|
|
|
flags = self.query() |
|
234
|
|
|
self.write(0x00) |
|
235
|
|
|
# check if the memory readout works. |
|
236
|
|
|
if flags == 0: |
|
237
|
|
|
self.log.info('Loading of waveform "{0}" to FPGA was successful.\n' |
|
238
|
|
|
'Upload attempts needed: {1}'.format(waveform, loop_count)) |
|
239
|
|
|
self.__currently_loaded_waveform = waveform |
|
240
|
|
|
break |
|
241
|
|
|
if loop_count == 10: |
|
242
|
|
|
self.log.error('Unable to upload waveform to FPGA.\n' |
|
243
|
|
|
'Abort loading after 10 failed attempts.') |
|
244
|
|
|
self.reset() |
|
245
|
|
|
break |
|
246
|
|
|
return self.get_loaded_assets()[0] |
|
247
|
|
|
|
|
248
|
|
|
def load_sequence(self, sequence_name): |
|
249
|
|
|
""" Loads a sequence to the channels of the device in order to be ready for playback. |
|
250
|
|
|
For devices that have a workspace (i.e. AWG) this will load the sequence from the device |
|
251
|
|
|
workspace into the channels. |
|
252
|
|
|
For a device without mass memory this will make the waveform/pattern that has been |
|
253
|
|
|
previously written with self.write_waveform ready to play. |
|
254
|
|
|
|
|
255
|
|
|
@param sequence_name: dict|list, a dictionary with keys being one of the available channel |
|
256
|
|
|
index and values being the name of the already written |
|
257
|
|
|
waveform to load into the channel. |
|
258
|
|
|
Examples: {1: rabi_ch1, 2: rabi_ch2} or |
|
259
|
|
|
{1: rabi_ch2, 2: rabi_ch1} |
|
260
|
|
|
If just a list of waveform names if given, the channel |
|
261
|
|
|
association will be invoked from the channel |
|
262
|
|
|
suffix '_ch1', '_ch2' etc. |
|
263
|
|
|
|
|
264
|
|
|
@return dict: Dictionary containing the actually loaded waveforms per channel. |
|
265
|
|
|
""" |
|
266
|
|
|
self.log.warning('FPGA digital pulse generator has no sequencing capabilities.\n' |
|
267
|
|
|
'load_sequence call ignored.') |
|
268
|
|
|
return |
|
269
|
|
|
|
|
270
|
|
|
def get_loaded_assets(self): |
|
271
|
|
|
""" |
|
272
|
|
|
Retrieve the currently loaded asset names for each active channel of the device. |
|
273
|
|
|
The returned dictionary will have the channel numbers as keys. |
|
274
|
|
|
In case of loaded waveforms the dictionary values will be the waveform names. |
|
275
|
|
|
In case of a loaded sequence the values will be the sequence name appended by a suffix |
|
276
|
|
|
representing the track loaded to the respective channel (i.e. '<sequence_name>_1'). |
|
277
|
|
|
|
|
278
|
|
|
@return (dict, str): Dictionary with keys being the channel number and values being the |
|
279
|
|
|
respective asset loaded into the channel, |
|
280
|
|
|
string describing the asset type ('waveform' or 'sequence') |
|
281
|
|
|
""" |
|
282
|
|
|
asset_type = 'waveform' if self.__currently_loaded_waveform else None |
|
283
|
|
|
asset_dict = {chnl_num: self.__currently_loaded_waveform for chnl_num in range(1, 9)} |
|
284
|
|
|
return asset_dict, asset_type |
|
285
|
|
|
|
|
286
|
|
|
def clear_all(self): |
|
287
|
|
|
""" Clears all loaded waveforms from the pulse generators RAM/workspace. |
|
288
|
|
|
|
|
289
|
|
|
@return int: error code (0:OK, -1:error) |
|
290
|
|
|
""" |
|
291
|
|
|
self.__currently_loaded_waveform = '' |
|
292
|
|
|
self.__current_waveform_name = '' |
|
293
|
|
|
self.__current_waveform = bytearray([0]) |
|
294
|
|
|
return 0 |
|
295
|
|
|
|
|
296
|
|
|
def get_status(self): |
|
297
|
|
|
""" Retrieves the status of the pulsing hardware |
|
298
|
|
|
|
|
299
|
|
|
@return (int, dict): tuple with an interger value of the current status |
|
300
|
|
|
and a corresponding dictionary containing status |
|
301
|
|
|
description for all the possible status variables |
|
302
|
|
|
of the pulse generator hardware. |
|
303
|
|
|
""" |
|
304
|
|
|
status_dic = dict() |
|
305
|
|
|
status_dic[-1] = 'Failed Request or Failed Communication with device.' |
|
306
|
|
|
status_dic[0] = 'Device has stopped, but can receive commands.' |
|
307
|
|
|
status_dic[1] = 'Device is active and running.' |
|
308
|
|
|
|
|
309
|
|
|
return self.__current_status, status_dic |
|
310
|
|
|
|
|
311
|
|
|
def get_sample_rate(self): |
|
312
|
|
|
""" Get the sample rate of the pulse generator hardware |
|
313
|
|
|
|
|
314
|
|
|
@return float: The current sample rate of the device (in Hz) |
|
315
|
|
|
""" |
|
316
|
|
|
return self.__sample_rate |
|
317
|
|
|
|
|
318
|
|
|
def set_sample_rate(self, sample_rate): |
|
319
|
|
|
""" Set the sample rate of the pulse generator hardware. |
|
320
|
|
|
|
|
321
|
|
|
@param float sample_rate: The sampling rate to be set (in Hz) |
|
322
|
|
|
|
|
323
|
|
|
@return float: the sample rate returned from the device (in Hz). |
|
324
|
|
|
|
|
325
|
|
|
Note: After setting the sampling rate of the device, use the actually set return value for |
|
326
|
|
|
further processing. |
|
327
|
|
|
""" |
|
328
|
|
|
# Round sample rate either to 500MHz or 950MHz since no other values are possible. |
|
329
|
|
|
if sample_rate < 725e6: |
|
330
|
|
|
self.__sample_rate = 500e6 |
|
331
|
|
|
bitfile_name = 'pulsegen_8chnl_500MHz_{0}.bit'.format(self._fpga_type.split('_')[1]) |
|
332
|
|
|
else: |
|
333
|
|
|
self.__sample_rate = 950e6 |
|
334
|
|
|
bitfile_name = 'pulsegen_8chnl_950MHz_{0}.bit'.format(self._fpga_type.split('_')[1]) |
|
335
|
|
|
|
|
336
|
|
|
bitfile_path = os.path.join(get_main_dir(), 'thirdparty', 'qo_fpga', bitfile_name) |
|
337
|
|
|
|
|
338
|
|
|
self.fpga.ConfigureFPGA(bitfile_path) |
|
339
|
|
|
self.log.debug('FPGA pulse generator configured with {0}'.format(bitfile_path)) |
|
340
|
|
|
return self.__sample_rate |
|
341
|
|
|
|
|
342
|
|
|
def get_analog_level(self, amplitude=None, offset=None): |
|
343
|
|
|
""" Retrieve the analog amplitude and offset of the provided channels. |
|
344
|
|
|
|
|
345
|
|
|
@param list amplitude: optional, if the amplitude value (in Volt peak to peak, i.e. the |
|
346
|
|
|
full amplitude) of a specific channel is desired. |
|
347
|
|
|
@param list offset: optional, if the offset value (in Volt) of a specific channel is |
|
348
|
|
|
desired. |
|
349
|
|
|
|
|
350
|
|
|
@return: (dict, dict): tuple of two dicts, with keys being the channel descriptor string |
|
351
|
|
|
(i.e. 'a_ch1') and items being the values for those channels. |
|
352
|
|
|
Amplitude is always denoted in Volt-peak-to-peak and Offset in volts. |
|
353
|
|
|
|
|
354
|
|
|
Note: Do not return a saved amplitude and/or offset value but instead retrieve the current |
|
355
|
|
|
amplitude and/or offset directly from the device. |
|
356
|
|
|
|
|
357
|
|
|
If nothing (or None) is passed then the levels of all channels will be returned. If no |
|
358
|
|
|
analog channels are present in the device, return just empty dicts. |
|
359
|
|
|
|
|
360
|
|
|
Example of a possible input: |
|
361
|
|
|
amplitude = ['a_ch1', 'a_ch4'], offset = None |
|
362
|
|
|
to obtain the amplitude of channel 1 and 4 and the offset of all channels |
|
363
|
|
|
{'a_ch1': -0.5, 'a_ch4': 2.0} {'a_ch1': 0.0, 'a_ch2': 0.0, 'a_ch3': 1.0, 'a_ch4': 0.0} |
|
364
|
|
|
""" |
|
365
|
|
|
return dict(), dict() |
|
366
|
|
|
|
|
367
|
|
|
def set_analog_level(self, amplitude=None, offset=None): |
|
368
|
|
|
""" Set amplitude and/or offset value of the provided analog channel(s). |
|
369
|
|
|
|
|
370
|
|
|
@param dict amplitude: dictionary, with key being the channel descriptor string |
|
371
|
|
|
(i.e. 'a_ch1', 'a_ch2') and items being the amplitude values |
|
372
|
|
|
(in Volt peak to peak, i.e. the full amplitude) for the desired |
|
373
|
|
|
channel. |
|
374
|
|
|
@param dict offset: dictionary, with key being the channel descriptor string |
|
375
|
|
|
(i.e. 'a_ch1', 'a_ch2') and items being the offset values |
|
376
|
|
|
(in absolute volt) for the desired channel. |
|
377
|
|
|
|
|
378
|
|
|
@return (dict, dict): tuple of two dicts with the actual set values for amplitude and |
|
379
|
|
|
offset for ALL channels. |
|
380
|
|
|
|
|
381
|
|
|
If nothing is passed then the command will return the current amplitudes/offsets. |
|
382
|
|
|
|
|
383
|
|
|
Note: After setting the amplitude and/or offset values of the device, use the actual set |
|
384
|
|
|
return values for further processing. |
|
385
|
|
|
""" |
|
386
|
|
|
return {}, {} |
|
387
|
|
|
|
|
388
|
|
|
def get_digital_level(self, low=None, high=None): |
|
389
|
|
|
""" Retrieve the digital low and high level of the provided/all channels. |
|
390
|
|
|
|
|
391
|
|
|
@param list low: optional, if the low value (in Volt) of a specific channel is desired. |
|
392
|
|
|
@param list high: optional, if the high value (in Volt) of a specific channel is desired. |
|
393
|
|
|
|
|
394
|
|
|
@return: (dict, dict): tuple of two dicts, with keys being the channel descriptor strings |
|
395
|
|
|
(i.e. 'd_ch1', 'd_ch2') and items being the values for those |
|
396
|
|
|
channels. Both low and high value of a channel is denoted in volts. |
|
397
|
|
|
|
|
398
|
|
|
Note: Do not return a saved low and/or high value but instead retrieve |
|
399
|
|
|
the current low and/or high value directly from the device. |
|
400
|
|
|
|
|
401
|
|
|
If nothing (or None) is passed then the levels of all channels are being returned. |
|
402
|
|
|
If no digital channels are present, return just an empty dict. |
|
403
|
|
|
|
|
404
|
|
|
Example of a possible input: |
|
405
|
|
|
low = ['d_ch1', 'd_ch4'] |
|
406
|
|
|
to obtain the low voltage values of digital channel 1 an 4. A possible answer might be |
|
407
|
|
|
{'d_ch1': -0.5, 'd_ch4': 2.0} {'d_ch1': 1.0, 'd_ch2': 1.0, 'd_ch3': 1.0, 'd_ch4': 4.0} |
|
408
|
|
|
Since no high request was performed, the high values for ALL channels are returned (here 4). |
|
409
|
|
|
""" |
|
410
|
|
|
if low: |
|
411
|
|
|
low_dict = {chnl: 0.0 for chnl in low} |
|
412
|
|
|
else: |
|
413
|
|
|
low_dict = {'d_ch{0:d}'.format(chnl + 1): 0.0 for chnl in range(8)} |
|
414
|
|
|
|
|
415
|
|
|
if high: |
|
416
|
|
|
high_dict = {chnl: 3.3 for chnl in high} |
|
417
|
|
|
else: |
|
418
|
|
|
high_dict = {'d_ch{0:d}'.format(chnl + 1): 3.3 for chnl in range(8)} |
|
419
|
|
|
|
|
420
|
|
|
return low_dict, high_dict |
|
421
|
|
|
|
|
422
|
|
|
def set_digital_level(self, low=None, high=None): |
|
423
|
|
|
""" Set low and/or high value of the provided digital channel. |
|
424
|
|
|
|
|
425
|
|
|
@param dict low: dictionary, with key being the channel descriptor string |
|
426
|
|
|
(i.e. 'd_ch1', 'd_ch2') and items being the low values (in volt) for the |
|
427
|
|
|
desired channel. |
|
428
|
|
|
@param dict high: dictionary, with key being the channel descriptor string |
|
429
|
|
|
(i.e. 'd_ch1', 'd_ch2') and items being the high values (in volt) for the |
|
430
|
|
|
desired channel. |
|
431
|
|
|
|
|
432
|
|
|
@return (dict, dict): tuple of two dicts where first dict denotes the current low value and |
|
433
|
|
|
the second dict the high value for ALL digital channels. |
|
434
|
|
|
Keys are the channel descriptor strings (i.e. 'd_ch1', 'd_ch2') |
|
435
|
|
|
|
|
436
|
|
|
If nothing is passed then the command will return the current voltage levels. |
|
437
|
|
|
|
|
438
|
|
|
Note: After setting the high and/or low values of the device, use the actual set return |
|
439
|
|
|
values for further processing. |
|
440
|
|
|
""" |
|
441
|
|
|
self.log.warning('FPGA pulse generator logic level cannot be adjusted!') |
|
442
|
|
|
return self.get_digital_level() |
|
443
|
|
|
|
|
444
|
|
|
def get_active_channels(self, ch=None): |
|
445
|
|
|
""" Get the active channels of the pulse generator hardware. |
|
446
|
|
|
|
|
447
|
|
|
@param list ch: optional, if specific analog or digital channels are needed to be asked |
|
448
|
|
|
without obtaining all the channels. |
|
449
|
|
|
|
|
450
|
|
|
@return dict: where keys denoting the channel string and items boolean expressions whether |
|
451
|
|
|
channel are active or not. |
|
452
|
|
|
|
|
453
|
|
|
Example for an possible input (order is not important): |
|
454
|
|
|
ch = ['a_ch2', 'd_ch2', 'a_ch1', 'd_ch5', 'd_ch1'] |
|
455
|
|
|
then the output might look like |
|
456
|
|
|
{'a_ch2': True, 'd_ch2': False, 'a_ch1': False, 'd_ch5': True, 'd_ch1': False} |
|
457
|
|
|
|
|
458
|
|
|
If no parameter (or None) is passed to this method all channel states will be returned. |
|
459
|
|
|
""" |
|
460
|
|
|
if ch: |
|
461
|
|
|
d_ch_dict = {chnl: True for chnl in ch} |
|
462
|
|
|
else: |
|
463
|
|
|
d_ch_dict = {'d_ch1': True, |
|
464
|
|
|
'd_ch2': True, |
|
465
|
|
|
'd_ch3': True, |
|
466
|
|
|
'd_ch4': True, |
|
467
|
|
|
'd_ch5': True, |
|
468
|
|
|
'd_ch6': True, |
|
469
|
|
|
'd_ch7': True, |
|
470
|
|
|
'd_ch8': True} |
|
471
|
|
|
return d_ch_dict |
|
472
|
|
|
|
|
473
|
|
|
def set_active_channels(self, ch=None): |
|
474
|
|
|
""" Set the active channels for the pulse generator hardware. |
|
475
|
|
|
|
|
476
|
|
|
@param dict ch: dictionary with keys being the analog or digital string generic names for |
|
477
|
|
|
the channels (i.e. 'd_ch1', 'a_ch2') with items being a boolean value. |
|
478
|
|
|
True: Activate channel, False: Deactivate channel |
|
479
|
|
|
|
|
480
|
|
|
@return dict: with the actual set values for ALL active analog and digital channels |
|
481
|
|
|
|
|
482
|
|
|
If nothing is passed then the command will simply return the unchanged current state. |
|
483
|
|
|
|
|
484
|
|
|
Note: After setting the active channels of the device, |
|
485
|
|
|
use the returned dict for further processing. |
|
486
|
|
|
|
|
487
|
|
|
Example for possible input: |
|
488
|
|
|
ch={'a_ch2': True, 'd_ch1': False, 'd_ch3': True, 'd_ch4': True} |
|
489
|
|
|
to activate analog channel 2 digital channel 3 and 4 and to deactivate |
|
490
|
|
|
digital channel 1. |
|
491
|
|
|
|
|
492
|
|
|
The hardware itself has to handle, whether separate channel activation is possible. |
|
493
|
|
|
""" |
|
494
|
|
|
return self.get_active_channels() |
|
495
|
|
|
|
|
496
|
|
|
def write_waveform(self, name, analog_samples, digital_samples, is_first_chunk, is_last_chunk, |
|
497
|
|
|
total_number_of_samples): |
|
498
|
|
|
""" |
|
499
|
|
|
Write a new waveform or append samples to an already existing waveform on the device memory. |
|
500
|
|
|
The flags is_first_chunk and is_last_chunk can be used as indicator if a new waveform should |
|
501
|
|
|
be created or if the write process to a waveform should be terminated. |
|
502
|
|
|
|
|
503
|
|
|
@param name: str, the name of the waveform to be created/append to |
|
504
|
|
|
@param analog_samples: numpy.ndarray of type float32 containing the voltage samples |
|
505
|
|
|
@param digital_samples: numpy.ndarray of type bool containing the marker states |
|
506
|
|
|
(if analog channels are active, this must be the same length as |
|
507
|
|
|
analog_samples) |
|
508
|
|
|
@param is_first_chunk: bool, flag indicating if it is the first chunk to write. |
|
509
|
|
|
If True this method will create a new empty wavveform. |
|
510
|
|
|
If False the samples are appended to the existing waveform. |
|
511
|
|
|
@param is_last_chunk: bool, flag indicating if it is the last chunk to write. |
|
512
|
|
|
Some devices may need to know when to close the appending wfm. |
|
513
|
|
|
@param total_number_of_samples: int, The number of sample points for the entire waveform |
|
514
|
|
|
(not only the currently written chunk) |
|
515
|
|
|
|
|
516
|
|
|
@return: (int, list) number of samples written (-1 indicates failed process) and list of |
|
517
|
|
|
created waveform names |
|
518
|
|
|
""" |
|
519
|
|
|
if analog_samples: |
|
520
|
|
|
self.log.error('FPGA pulse generator is purely digital and does not support waveform ' |
|
521
|
|
|
'generation with analog samples.') |
|
522
|
|
|
return -1, list() |
|
523
|
|
|
if not digital_samples: |
|
524
|
|
|
if total_number_of_samples > 0: |
|
525
|
|
|
self.log.warning('No samples handed over for waveform generation.') |
|
526
|
|
|
return -1, list() |
|
527
|
|
|
else: |
|
528
|
|
|
self.__current_waveform = bytearray([0]) |
|
529
|
|
|
self.__current_waveform_name = '' |
|
530
|
|
|
return 0, list() |
|
531
|
|
|
|
|
532
|
|
|
# Initialize waveform array if this is the first chunk to write |
|
533
|
|
|
# Also append zero-timebins to waveform if the length is no integer multiple of 32 |
|
534
|
|
|
if is_first_chunk: |
|
535
|
|
|
self.__samples_written = 0 |
|
536
|
|
|
self.__current_waveform_name = name |
|
537
|
|
|
if total_number_of_samples % 32 != 0: |
|
538
|
|
|
number_of_zeros = 32 - (total_number_of_samples % 32) |
|
539
|
|
|
self.__current_waveform = np.zeros(total_number_of_samples + number_of_zeros, |
|
540
|
|
|
dtype='uint8') |
|
541
|
|
|
self.log.warning('FPGA pulse sequence length is no integer multiple of 32 samples.' |
|
542
|
|
|
'\nAppending {0:d} zero-samples to the sequence.' |
|
543
|
|
|
''.format(number_of_zeros)) |
|
544
|
|
|
else: |
|
545
|
|
|
self.__current_waveform = np.zeros(total_number_of_samples, dtype='uint8') |
|
546
|
|
|
|
|
547
|
|
|
# Determine which part of the waveform array should be written |
|
548
|
|
|
chunk_length = len(digital_samples[list(digital_samples)[0]]) |
|
549
|
|
|
write_end_index = self.__samples_written + chunk_length |
|
550
|
|
|
|
|
551
|
|
|
# Encode samples for each channel in bit mask and create waveform array |
|
552
|
|
|
for chnl, samples in digital_samples.items(): |
|
553
|
|
|
# get channel index in range 0..7 |
|
554
|
|
|
chnl_ind = int(chnl.rsplit('ch', 1)[1]) - 1 |
|
555
|
|
|
# Represent bool values as np.uint8 |
|
556
|
|
|
uint8_samples = samples.view('uint8') |
|
557
|
|
|
# left shift 0/1 values to bit position corresponding to channel index |
|
558
|
|
|
np.left_shift(uint8_samples, chnl_ind, out=uint8_samples) |
|
559
|
|
|
# Add samples to waveform array |
|
560
|
|
|
np.add(self.__current_waveform[self.__samples_written:write_end_index], |
|
561
|
|
|
uint8_samples, |
|
562
|
|
|
out=self.__current_waveform[self.__samples_written:write_end_index]) |
|
563
|
|
|
|
|
564
|
|
|
# Convert numpy array to bytearray |
|
565
|
|
|
self.__current_waveform = bytearray(self.__current_waveform.tobytes()) |
|
566
|
|
|
|
|
567
|
|
|
# increment the current write index |
|
568
|
|
|
self.__samples_written += chunk_length |
|
569
|
|
|
return chunk_length, [self.__current_waveform_name] |
|
570
|
|
|
|
|
571
|
|
|
def write_sequence(self, name, sequence_parameters): |
|
572
|
|
|
""" |
|
573
|
|
|
Write a new sequence on the device memory. |
|
574
|
|
|
|
|
575
|
|
|
@param name: str, the name of the waveform to be created/append to |
|
576
|
|
|
@param sequence_parameters: dict, dictionary containing the parameters for a sequence |
|
577
|
|
|
|
|
578
|
|
|
@return: int, number of sequence steps written (-1 indicates failed process) |
|
579
|
|
|
""" |
|
580
|
|
|
self.log.warning('FPGA digital pulse generator has no sequencing capabilities.\n' |
|
581
|
|
|
'write_sequence call ignored.') |
|
582
|
|
|
return -1 |
|
583
|
|
|
|
|
584
|
|
|
def get_waveform_names(self): |
|
585
|
|
|
""" Retrieve the names of all uploaded waveforms on the device. |
|
586
|
|
|
|
|
587
|
|
|
@return list: List of all uploaded waveform name strings in the device workspace. |
|
588
|
|
|
""" |
|
589
|
|
|
return |
|
590
|
|
|
|
|
591
|
|
|
def get_sequence_names(self): |
|
592
|
|
|
""" Retrieve the names of all uploaded sequence on the device. |
|
593
|
|
|
|
|
594
|
|
|
@return list: List of all uploaded sequence name strings in the device workspace. |
|
595
|
|
|
""" |
|
596
|
|
|
return list() |
|
597
|
|
|
|
|
598
|
|
|
def delete_waveform(self, waveform_name): |
|
599
|
|
|
""" Delete the waveform with name "waveform_name" from the device memory. |
|
600
|
|
|
|
|
601
|
|
|
@param str waveform_name: The name of the waveform to be deleted |
|
602
|
|
|
Optionally a list of waveform names can be passed. |
|
603
|
|
|
|
|
604
|
|
|
@return list: a list of deleted waveform names. |
|
605
|
|
|
""" |
|
606
|
|
|
return |
|
607
|
|
|
|
|
608
|
|
|
def delete_sequence(self, sequence_name): |
|
609
|
|
|
""" Delete the sequence with name "sequence_name" from the device memory. |
|
610
|
|
|
|
|
611
|
|
|
@param str sequence_name: The name of the sequence to be deleted |
|
612
|
|
|
Optionally a list of sequence names can be passed. |
|
613
|
|
|
|
|
614
|
|
|
@return list: a list of deleted sequence names. |
|
615
|
|
|
""" |
|
616
|
|
|
return list() |
|
617
|
|
|
|
|
618
|
|
|
def get_interleave(self): |
|
619
|
|
|
""" Check whether Interleave is ON or OFF in AWG. |
|
620
|
|
|
|
|
621
|
|
|
@return bool: True: ON, False: OFF |
|
622
|
|
|
|
|
623
|
|
|
Will always return False for pulse generator hardware without interleave. |
|
624
|
|
|
""" |
|
625
|
|
|
return False |
|
626
|
|
|
|
|
627
|
|
|
def set_interleave(self, state=False): |
|
628
|
|
|
""" Turns the interleave of an AWG on or off. |
|
629
|
|
|
|
|
630
|
|
|
@param bool state: The state the interleave should be set to |
|
631
|
|
|
(True: ON, False: OFF) |
|
632
|
|
|
|
|
633
|
|
|
@return bool: actual interleave status (True: ON, False: OFF) |
|
634
|
|
|
|
|
635
|
|
|
Note: After setting the interleave of the device, retrieve the |
|
636
|
|
|
interleave again and use that information for further processing. |
|
637
|
|
|
|
|
638
|
|
|
Unused for pulse generator hardware other than an AWG. |
|
639
|
|
|
""" |
|
640
|
|
|
if state: |
|
641
|
|
|
self.log.error('No interleave functionality available in FPGA pulser.\n' |
|
642
|
|
|
'Interleave state is always False.') |
|
643
|
|
|
return False |
|
644
|
|
|
|
|
645
|
|
|
def write(self, command): |
|
646
|
|
|
""" Sends a command string to the device. |
|
647
|
|
|
|
|
648
|
|
|
@param string command: string containing the command |
|
649
|
|
|
|
|
650
|
|
|
@return int: error code (0:OK, -1:error) |
|
651
|
|
|
""" |
|
652
|
|
|
if not isinstance(command, int): |
|
653
|
|
|
return -1 |
|
654
|
|
|
self.fpga.SetWireInValue(0x00, command) |
|
655
|
|
|
self.fpga.UpdateWireIns() |
|
656
|
|
|
return 0 |
|
657
|
|
|
|
|
658
|
|
|
def query(self, question=None): |
|
659
|
|
|
""" Asks the device a 'question' and receive and return an answer from it. |
|
660
|
|
|
|
|
661
|
|
|
@param string question: string containing the command |
|
662
|
|
|
|
|
663
|
|
|
@return string: the answer of the device to the 'question' in a string |
|
664
|
|
|
""" |
|
665
|
|
|
self.fpga.UpdateWireOuts() |
|
666
|
|
|
return self.fpga.GetWireOutValue(0x20) |
|
667
|
|
|
|
|
668
|
|
|
def reset(self): |
|
669
|
|
|
""" Reset the device. |
|
670
|
|
|
|
|
671
|
|
|
@return int: error code (0:OK, -1:error) |
|
672
|
|
|
""" |
|
673
|
|
|
self.write(0x04) |
|
674
|
|
|
self.write(0x00) |
|
675
|
|
|
self.clear_all() |
|
676
|
|
|
return 0 |
|
677
|
|
|
|
|
678
|
|
|
def has_sequence_mode(self): |
|
679
|
|
|
""" Asks the pulse generator whether sequence mode exists. |
|
680
|
|
|
|
|
681
|
|
|
@return: bool, True for yes, False for no. |
|
682
|
|
|
""" |
|
683
|
|
|
return False |
|
684
|
|
|
|
|
685
|
|
|
def _connect_fpga(self): |
|
686
|
|
|
# connect to FPGA by serial number |
|
687
|
|
|
self.fpga.OpenBySerial(self._fpga_serial) |
|
688
|
|
|
# upload configuration bitfile to FPGA |
|
689
|
|
|
self.set_sample_rate(self.sample_rate) |
|
690
|
|
|
|
|
691
|
|
|
# Check connection |
|
692
|
|
|
if not self.fpga.IsFrontPanelEnabled(): |
|
693
|
|
|
self.current_status = -1 |
|
694
|
|
|
self.log.error('ERROR: FrontPanel is not enabled in FPGA pulse generator!') |
|
695
|
|
|
return -1 |
|
696
|
|
|
else: |
|
697
|
|
|
self.current_status = 0 |
|
698
|
|
|
self.log.info('FPGA pulse generator connected') |
|
699
|
|
|
return 0 |
|
700
|
|
|
|
|
701
|
|
|
def _disconnect_fpga(self): |
|
702
|
|
|
""" |
|
703
|
|
|
stop FPGA and disconnect |
|
704
|
|
|
""" |
|
705
|
|
|
# set FPGA in reset state |
|
706
|
|
|
self.write(0x04) |
|
707
|
|
|
self.current_status = -1 |
|
708
|
|
|
del self.fpga |
|
709
|
|
|
return 0 |
|
710
|
|
|
|