|
1
|
|
|
# -*- coding: utf-8 -* |
|
2
|
|
|
""" |
|
3
|
|
|
This file contains the Qudi logic class for optimizing scanner position. |
|
4
|
|
|
|
|
5
|
|
|
Qudi is free software: you can redistribute it and/or modify |
|
6
|
|
|
it under the terms of the GNU General Public License as published by |
|
7
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
8
|
|
|
(at your option) any later version. |
|
9
|
|
|
|
|
10
|
|
|
Qudi is distributed in the hope that it will be useful, |
|
11
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
13
|
|
|
GNU General Public License for more details. |
|
14
|
|
|
|
|
15
|
|
|
You should have received a copy of the GNU General Public License |
|
16
|
|
|
along with Qudi. If not, see <http://www.gnu.org/licenses/>. |
|
17
|
|
|
|
|
18
|
|
|
Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the |
|
19
|
|
|
top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> |
|
20
|
|
|
""" |
|
21
|
|
|
|
|
22
|
|
|
from qtpy import QtCore |
|
23
|
|
|
import numpy as np |
|
24
|
|
|
import time |
|
25
|
|
|
import scipy.signal as sig |
|
26
|
|
|
import scipy.ndimage as ndi |
|
27
|
|
|
|
|
28
|
|
|
from logic.generic_logic import GenericLogic |
|
29
|
|
|
from core.module import Connector, ConfigOption, StatusVar |
|
30
|
|
|
from core.util.mutex import Mutex |
|
31
|
|
|
|
|
32
|
|
|
import matplotlib.pylab as plt |
|
33
|
|
|
|
|
34
|
|
|
class OptimizerLogic(GenericLogic): |
|
35
|
|
|
|
|
36
|
|
|
"""This is the Logic class for optimizing scanner position on bright features. |
|
37
|
|
|
""" |
|
38
|
|
|
|
|
39
|
|
|
_modclass = 'optimizerlogic' |
|
40
|
|
|
_modtype = 'logic' |
|
41
|
|
|
|
|
42
|
|
|
# declare connectors |
|
43
|
|
|
confocalscanner1 = Connector(interface='ConfocalScannerInterface') |
|
44
|
|
|
fitlogic = Connector(interface='FitLogic') |
|
45
|
|
|
|
|
46
|
|
|
# declare status vars |
|
47
|
|
|
_clock_frequency = StatusVar('clock_frequency', 50) |
|
48
|
|
|
return_slowness = StatusVar(default=20) |
|
49
|
|
|
_template_clock_frequency = StatusVar('template_clock_frequency', 50) |
|
50
|
|
|
template_return_slowness = StatusVar(default=20) |
|
51
|
|
|
refocus_XY_size = StatusVar('xy_size', 0.6e-6) |
|
52
|
|
|
optimizer_XY_res = StatusVar('xy_resolution', 10) |
|
53
|
|
|
refocus_Z_size = StatusVar('z_size', 2e-6) |
|
54
|
|
|
optimizer_Z_res = StatusVar('z_resolution', 30) |
|
55
|
|
|
hw_settle_time = StatusVar('settle_time', 0.1) |
|
56
|
|
|
optimization_sequence = StatusVar(default=['XY', 'Z']) |
|
57
|
|
|
do_surface_subtraction = StatusVar('surface_subtraction', False) |
|
58
|
|
|
surface_subtr_scan_offset = StatusVar('surface_subtraction_offset', 1e-6) |
|
59
|
|
|
opt_channel = StatusVar('optimization_channel', 0) |
|
60
|
|
|
fit_type = StatusVar('fit_type', 'normal') |
|
61
|
|
|
template_cursor = StatusVar('template_cursor', default=[0, 0, 0, 0]) |
|
62
|
|
|
xy_template_image = StatusVar('xy_template_image', np.zeros(1)) |
|
63
|
|
|
z_template_data = StatusVar('z_template_data', np.zeros(1)) |
|
64
|
|
|
zimage_template_Z_values = StatusVar('zimage_template_Z_values', np.zeros(1)) |
|
65
|
|
|
|
|
66
|
|
|
# "private" signals to keep track of activities here in the optimizer logic |
|
67
|
|
|
_sigScanNextXyLine = QtCore.Signal() |
|
68
|
|
|
_sigScanZLine = QtCore.Signal() |
|
69
|
|
|
_sigCompletedXyOptimizerScan = QtCore.Signal() |
|
70
|
|
|
_sigDoNextOptimizationStep = QtCore.Signal() |
|
71
|
|
|
_sigFinishedAllOptimizationSteps = QtCore.Signal() |
|
72
|
|
|
|
|
73
|
|
|
# public signals |
|
74
|
|
|
sigImageUpdated = QtCore.Signal() |
|
75
|
|
|
sigRefocusStarted = QtCore.Signal(str) |
|
76
|
|
|
sigRefocusXySizeChanged = QtCore.Signal() |
|
77
|
|
|
sigRefocusZSizeChanged = QtCore.Signal() |
|
78
|
|
|
sigRefocusFinished = QtCore.Signal(str, list) |
|
79
|
|
|
sigClockFrequencyChanged = QtCore.Signal(int) |
|
80
|
|
|
sigPositionChanged = QtCore.Signal(float, float, float) |
|
81
|
|
|
|
|
82
|
|
|
def __init__(self, config, **kwargs): |
|
83
|
|
|
super().__init__(config=config, **kwargs) |
|
84
|
|
|
|
|
85
|
|
|
# locking for thread safety |
|
86
|
|
|
self.threadlock = Mutex() |
|
87
|
|
|
|
|
88
|
|
|
self.stopRequested = False |
|
89
|
|
|
self.is_crosshair = True |
|
90
|
|
|
|
|
91
|
|
|
# Keep track of who called the refocus |
|
92
|
|
|
self._caller_tag = '' |
|
93
|
|
|
|
|
94
|
|
|
def on_activate(self): |
|
95
|
|
|
""" Initialisation performed during activation of the module. |
|
96
|
|
|
|
|
97
|
|
|
@return int: error code (0:OK, -1:error) |
|
98
|
|
|
""" |
|
99
|
|
|
self._scanning_device = self.confocalscanner1() |
|
100
|
|
|
self._fit_logic = self.fitlogic() |
|
101
|
|
|
|
|
102
|
|
|
# Reads in the maximal scanning range. The unit of that scan range is micrometer! |
|
103
|
|
|
self.x_range = self._scanning_device.get_position_range()[0] |
|
104
|
|
|
self.y_range = self._scanning_device.get_position_range()[1] |
|
105
|
|
|
self.z_range = self._scanning_device.get_position_range()[2] |
|
106
|
|
|
|
|
107
|
|
|
self._initial_pos_x = 0. |
|
108
|
|
|
self._initial_pos_y = 0. |
|
109
|
|
|
self._initial_pos_z = 0. |
|
110
|
|
|
self.optim_pos_x = self._initial_pos_x |
|
111
|
|
|
self.optim_pos_y = self._initial_pos_y |
|
112
|
|
|
self.optim_pos_z = self._initial_pos_z |
|
113
|
|
|
self.optim_sigma_x = 0. |
|
114
|
|
|
self.optim_sigma_y = 0. |
|
115
|
|
|
self.optim_sigma_z = 0. |
|
116
|
|
|
|
|
117
|
|
|
self._max_offset = 3. |
|
118
|
|
|
|
|
119
|
|
|
# Sets the current position to the center of the maximal scanning range |
|
120
|
|
|
self._current_x = (self.x_range[0] + self.x_range[1]) / 2 |
|
121
|
|
|
self._current_y = (self.y_range[0] + self.y_range[1]) / 2 |
|
122
|
|
|
self._current_z = (self.z_range[0] + self.z_range[1]) / 2 |
|
123
|
|
|
self._current_a = 0.0 |
|
124
|
|
|
|
|
125
|
|
|
########################### |
|
126
|
|
|
# Fit Params and Settings # |
|
127
|
|
|
model, params = self._fit_logic.make_gaussianlinearoffset_model() |
|
128
|
|
|
self.z_params = params |
|
129
|
|
|
self.use_custom_params = {name: False for name, param in params.items()} |
|
130
|
|
|
|
|
131
|
|
|
# Initialization of internal counter for scanning |
|
132
|
|
|
self._xy_scan_line_count = 0 |
|
133
|
|
|
|
|
134
|
|
|
# Initialization of optimization sequence step counter |
|
135
|
|
|
self._optimization_step = 0 |
|
136
|
|
|
|
|
137
|
|
|
# Sets connections between signals and functions |
|
138
|
|
|
self._sigScanNextXyLine.connect(self._refocus_xy_line, QtCore.Qt.QueuedConnection) |
|
139
|
|
|
self._sigScanZLine.connect(self.do_z_optimization, QtCore.Qt.QueuedConnection) |
|
140
|
|
|
self._sigCompletedXyOptimizerScan.connect(self._set_optimized_xy_from_fit, QtCore.Qt.QueuedConnection) |
|
141
|
|
|
|
|
142
|
|
|
self._sigDoNextOptimizationStep.connect(self._do_next_optimization_step, QtCore.Qt.QueuedConnection) |
|
143
|
|
|
self._sigFinishedAllOptimizationSteps.connect(self.finish_refocus) |
|
144
|
|
|
self._initialize_xy_refocus_image() |
|
145
|
|
|
self._initialize_z_refocus_image() |
|
146
|
|
|
return 0 |
|
147
|
|
|
|
|
148
|
|
|
def on_deactivate(self): |
|
149
|
|
|
""" Reverse steps of activation |
|
150
|
|
|
|
|
151
|
|
|
@return int: error code (0:OK, -1:error) |
|
152
|
|
|
""" |
|
153
|
|
|
return 0 |
|
154
|
|
|
|
|
155
|
|
|
def check_optimization_sequence(self): |
|
156
|
|
|
""" Check the sequence of scan events for the optimization. |
|
157
|
|
|
""" |
|
158
|
|
|
|
|
159
|
|
|
# Check the supplied optimization sequence only contains 'XY' and 'Z' |
|
160
|
|
|
if len(set(self.optimization_sequence).difference({'XY', 'Z'})) > 0: |
|
161
|
|
|
self.log.error('Requested optimization sequence contains unknown steps. Please provide ' |
|
162
|
|
|
'a sequence containing only \'XY\' and \'Z\' strings. ' |
|
163
|
|
|
'The default [\'XY\', \'Z\'] will be used.') |
|
164
|
|
|
self.optimization_sequence = ['XY', 'Z'] |
|
165
|
|
|
|
|
166
|
|
|
def get_scanner_count_channels(self): |
|
167
|
|
|
""" Get lis of counting channels from scanning device. |
|
168
|
|
|
@return list(str): names of counter channels |
|
169
|
|
|
""" |
|
170
|
|
|
return self._scanning_device.get_scanner_count_channels() |
|
171
|
|
|
|
|
172
|
|
|
def set_clock_frequency(self, clock_frequency, template_clock_frequency=None): |
|
173
|
|
|
"""Sets the frequency of the clock |
|
174
|
|
|
|
|
175
|
|
|
@param int clock_frequency: desired frequency of the clock |
|
176
|
|
|
@param int template_clock_frequency: clock frequency for the fitting template image |
|
177
|
|
|
|
|
178
|
|
|
@return int: error code (0:OK, -1:error) |
|
179
|
|
|
""" |
|
180
|
|
|
# checks if scanner is still running |
|
181
|
|
|
if self.module_state() == 'locked': |
|
182
|
|
|
return -1 |
|
183
|
|
|
else: |
|
184
|
|
|
self._clock_frequency = int(clock_frequency) |
|
185
|
|
|
if template_clock_frequency is not None: |
|
186
|
|
|
self._template_clock_frequency = int(template_clock_frequency) |
|
187
|
|
|
self.sigClockFrequencyChanged.emit(self._clock_frequency) |
|
188
|
|
|
return 0 |
|
189
|
|
|
|
|
190
|
|
|
def set_refocus_XY_size(self, size): |
|
191
|
|
|
""" Set the number of pixels in the refocus image for X and Y directions |
|
192
|
|
|
|
|
193
|
|
|
@param int size: XY image size in pixels |
|
194
|
|
|
""" |
|
195
|
|
|
self.refocus_XY_size = size |
|
196
|
|
|
self.sigRefocusXySizeChanged.emit() |
|
197
|
|
|
|
|
198
|
|
|
def set_refocus_Z_size(self, size): |
|
199
|
|
|
""" Set the number of values for Z refocus |
|
200
|
|
|
|
|
201
|
|
|
@param int size: number of values for Z refocus |
|
202
|
|
|
""" |
|
203
|
|
|
self.refocus_Z_size = size |
|
204
|
|
|
self.sigRefocusZSizeChanged.emit() |
|
205
|
|
|
|
|
206
|
|
|
def start_refocus(self, initial_pos=None, caller_tag='unknown', tag='logic'): |
|
207
|
|
|
""" Starts the optimization scan around initial_pos |
|
208
|
|
|
|
|
209
|
|
|
@param list initial_pos: with the structure [float, float, float] |
|
210
|
|
|
@param str caller_tag: |
|
211
|
|
|
@param str tag: |
|
212
|
|
|
""" |
|
213
|
|
|
# checking if refocus corresponding to crosshair or corresponding to initial_pos |
|
214
|
|
|
|
|
215
|
|
|
|
|
216
|
|
|
if isinstance(initial_pos, (np.ndarray,)) and initial_pos.size >= 3: |
|
217
|
|
|
self._initial_pos_x, self._initial_pos_y, self._initial_pos_z = initial_pos[0:3] |
|
218
|
|
|
elif isinstance(initial_pos, (list, tuple)) and len(initial_pos) >= 3: |
|
219
|
|
|
self._initial_pos_x, self._initial_pos_y, self._initial_pos_z = initial_pos[0:3] |
|
220
|
|
|
elif initial_pos is None: |
|
221
|
|
|
scpos = self._scanning_device.get_scanner_position()[0:3] |
|
222
|
|
|
self._initial_pos_x, self._initial_pos_y, self._initial_pos_z = scpos |
|
223
|
|
|
else: |
|
224
|
|
|
pass # TODO: throw error |
|
225
|
|
|
|
|
226
|
|
|
# if the template has a cursor shift, it needs to be subtracted before scanning |
|
227
|
|
|
if self.fit_type in ('xy_template', 'all_template'): |
|
228
|
|
|
self._initial_pos_x = self._initial_pos_x - self.template_cursor[0] |
|
229
|
|
|
self._initial_pos_y = self._initial_pos_y - self.template_cursor[1] |
|
230
|
|
|
if self.fit_type in ('z_template', 'all_template'): |
|
231
|
|
|
self._initial_pos_z = self._initial_pos_z - self.template_cursor[2] |
|
232
|
|
|
|
|
233
|
|
|
# Keep track of where the start_refocus was initiated |
|
234
|
|
|
self._caller_tag = caller_tag |
|
235
|
|
|
|
|
236
|
|
|
# Set the optim_pos values to match the initial_pos values. |
|
237
|
|
|
# This means we can use optim_pos in subsequent steps and ensure |
|
238
|
|
|
# that we benefit from any completed optimization step. |
|
239
|
|
|
self.optim_pos_x = self._initial_pos_x |
|
240
|
|
|
self.optim_pos_y = self._initial_pos_y |
|
241
|
|
|
self.optim_pos_z = self._initial_pos_z |
|
242
|
|
|
self.optim_sigma_x = 0. |
|
243
|
|
|
self.optim_sigma_y = 0. |
|
244
|
|
|
self.optim_sigma_z = 0. |
|
245
|
|
|
# |
|
246
|
|
|
self._xy_scan_line_count = 0 |
|
247
|
|
|
self._optimization_step = 0 |
|
248
|
|
|
self.check_optimization_sequence() |
|
249
|
|
|
|
|
250
|
|
|
scanner_status = self.start_scanner() |
|
251
|
|
|
if scanner_status < 0: |
|
252
|
|
|
self.sigRefocusFinished.emit( |
|
253
|
|
|
self._caller_tag, |
|
254
|
|
|
[self.optim_pos_x, self.optim_pos_y, self.optim_pos_z, 0]) |
|
255
|
|
|
return |
|
256
|
|
|
self.sigRefocusStarted.emit(tag) |
|
257
|
|
|
self._sigDoNextOptimizationStep.emit() |
|
258
|
|
|
|
|
259
|
|
|
def stop_refocus(self): |
|
260
|
|
|
"""Stops refocus.""" |
|
261
|
|
|
with self.threadlock: |
|
262
|
|
|
self.stopRequested = True |
|
263
|
|
|
if self.stopRequested: |
|
264
|
|
|
self._sigScanNextXyLine.emit() |
|
265
|
|
|
|
|
266
|
|
|
def _initialize_xy_refocus_image(self): |
|
267
|
|
|
"""Initialisation of the xy refocus image.""" |
|
268
|
|
|
self._xy_scan_line_count = 0 |
|
269
|
|
|
|
|
270
|
|
|
# Take optim pos as center of refocus image, to benefit from any previous |
|
271
|
|
|
# optimization steps that have occurred. |
|
272
|
|
|
x0 = self.optim_pos_x |
|
273
|
|
|
y0 = self.optim_pos_y |
|
274
|
|
|
z0 = self.optim_pos_z |
|
275
|
|
|
|
|
276
|
|
|
# defining position intervals for refocus |
|
277
|
|
|
xmin = np.clip(x0 - 0.5 * self.refocus_XY_size, self.x_range[0], self.x_range[1]) |
|
278
|
|
|
xmax = np.clip(x0 + 0.5 * self.refocus_XY_size, self.x_range[0], self.x_range[1]) |
|
279
|
|
|
ymin = np.clip(y0 - 0.5 * self.refocus_XY_size, self.y_range[0], self.y_range[1]) |
|
280
|
|
|
ymax = np.clip(y0 + 0.5 * self.refocus_XY_size, self.y_range[0], self.y_range[1]) |
|
281
|
|
|
|
|
282
|
|
|
self._X_values = np.linspace(xmin, xmax, num=self.optimizer_XY_res) |
|
283
|
|
|
self._Y_values = np.linspace(ymin, ymax, num=self.optimizer_XY_res) |
|
284
|
|
|
self._Z_values = z0 * np.ones(self._X_values.shape) |
|
285
|
|
|
self._A_values = np.zeros(self._X_values.shape) |
|
286
|
|
|
self._return_X_values = np.linspace(xmax, xmin, num=self.optimizer_XY_res) |
|
287
|
|
|
self._return_A_values = np.zeros(self._return_X_values.shape) |
|
288
|
|
|
|
|
289
|
|
|
self.xy_refocus_image = np.zeros(( |
|
290
|
|
|
len(self._Y_values), |
|
291
|
|
|
len(self._X_values), |
|
292
|
|
|
3 + len(self.get_scanner_count_channels()))) |
|
293
|
|
|
self.xy_refocus_image[:, :, 0] = np.full((len(self._Y_values), len(self._X_values)), self._X_values) |
|
294
|
|
|
y_value_matrix = np.full((len(self._X_values), len(self._Y_values)), self._Y_values) |
|
295
|
|
|
self.xy_refocus_image[:, :, 1] = y_value_matrix.transpose() |
|
296
|
|
|
self.xy_refocus_image[:, :, 2] = z0 * np.ones((len(self._Y_values), len(self._X_values))) |
|
297
|
|
|
|
|
298
|
|
|
if self._caller_tag == 'xy_template_image' or np.max(self.xy_template_image) == 0: |
|
299
|
|
|
self.xy_template_image = np.zeros(( |
|
300
|
|
|
len(self._Y_values), |
|
301
|
|
|
len(self._X_values), |
|
302
|
|
|
3 + len(self.get_scanner_count_channels()))) |
|
303
|
|
|
self.xy_template_image[:, :, 0] = np.full((len(self._Y_values), len(self._X_values)), self._X_values) |
|
304
|
|
|
y_value_matrix = np.full((len(self._X_values), len(self._Y_values)), self._Y_values) |
|
305
|
|
|
self.xy_template_image[:, :, 1] = y_value_matrix.transpose() |
|
306
|
|
|
self.xy_template_image[:, :, 2] = z0 * np.ones((len(self._Y_values), len(self._X_values))) |
|
307
|
|
|
|
|
308
|
|
|
def _initialize_z_refocus_image(self): |
|
309
|
|
|
"""Initialisation of the z refocus image.""" |
|
310
|
|
|
self._xy_scan_line_count = 0 |
|
311
|
|
|
|
|
312
|
|
|
# Take optim pos as center of refocus image, to benefit from any previous |
|
313
|
|
|
# optimization steps that have occurred. |
|
314
|
|
|
z0 = self.optim_pos_z |
|
315
|
|
|
|
|
316
|
|
|
zmin = np.clip(z0 - 0.5 * self.refocus_Z_size, self.z_range[0], self.z_range[1]) |
|
317
|
|
|
zmax = np.clip(z0 + 0.5 * self.refocus_Z_size, self.z_range[0], self.z_range[1]) |
|
318
|
|
|
|
|
319
|
|
|
self._zimage_Z_values = np.linspace(zmin, zmax, num=self.optimizer_Z_res) |
|
320
|
|
|
self._fit_zimage_Z_values = np.linspace(zmin, zmax, num=self.optimizer_Z_res) |
|
321
|
|
|
self._zimage_A_values = np.zeros(self._zimage_Z_values.shape) |
|
322
|
|
|
self.z_refocus_line = np.zeros(( |
|
323
|
|
|
len(self._zimage_Z_values), |
|
324
|
|
|
len(self.get_scanner_count_channels()))) |
|
325
|
|
|
self.z_fit_data = np.zeros(len(self._fit_zimage_Z_values)) |
|
326
|
|
|
|
|
327
|
|
|
if self._caller_tag == 'z_template_image' or np.max(self.z_template_data) == 0: |
|
328
|
|
|
self.zimage_template_Z_values = np.linspace(zmin-z0, zmax-z0, num=self.optimizer_Z_res) |
|
329
|
|
|
self.z_template_data = np.zeros(( |
|
330
|
|
|
len(self.zimage_template_Z_values), |
|
331
|
|
|
len(self.get_scanner_count_channels()))) |
|
332
|
|
|
|
|
333
|
|
|
def _move_to_start_pos(self, start_pos): |
|
334
|
|
|
"""Moves the scanner from its current position to the start position of the optimizer scan. |
|
335
|
|
|
|
|
336
|
|
|
@param start_pos float[]: 3-point vector giving x, y, z position to go to. |
|
337
|
|
|
""" |
|
338
|
|
|
n_ch = len(self._scanning_device.get_scanner_axes()) |
|
339
|
|
|
scanner_pos = self._scanning_device.get_scanner_position() |
|
340
|
|
|
lsx = np.linspace(scanner_pos[0], start_pos[0], self.return_slowness) |
|
341
|
|
|
lsy = np.linspace(scanner_pos[1], start_pos[1], self.return_slowness) |
|
342
|
|
|
lsz = np.linspace(scanner_pos[2], start_pos[2], self.return_slowness) |
|
343
|
|
|
if n_ch <= 3: |
|
344
|
|
|
move_to_start_line = np.vstack((lsx, lsy, lsz)[0:n_ch]) |
|
345
|
|
|
else: |
|
346
|
|
|
move_to_start_line = np.vstack((lsx, lsy, lsz, np.ones(lsx.shape) * scanner_pos[3])) |
|
347
|
|
|
|
|
348
|
|
|
counts = self._scanning_device.scan_line(move_to_start_line) |
|
349
|
|
|
if np.any(counts == -1): |
|
350
|
|
|
return -1 |
|
351
|
|
|
|
|
352
|
|
|
time.sleep(self.hw_settle_time) |
|
353
|
|
|
return 0 |
|
354
|
|
|
|
|
355
|
|
|
def _refocus_xy_line(self): |
|
356
|
|
|
"""Scanning a line of the xy optimization image. |
|
357
|
|
|
This method repeats itself using the _sigScanNextXyLine |
|
358
|
|
|
until the xy optimization image is complete. |
|
359
|
|
|
""" |
|
360
|
|
|
n_ch = len(self._scanning_device.get_scanner_axes()) |
|
361
|
|
|
# stop scanning if instructed |
|
362
|
|
|
if self.stopRequested: |
|
363
|
|
|
with self.threadlock: |
|
364
|
|
|
self.stopRequested = False |
|
365
|
|
|
self.finish_refocus() |
|
366
|
|
|
self.sigImageUpdated.emit() |
|
367
|
|
|
return |
|
368
|
|
|
|
|
369
|
|
|
# move to the start of the first line |
|
370
|
|
|
if self._xy_scan_line_count == 0: |
|
371
|
|
|
status = self._move_to_start_pos([self.xy_refocus_image[0, 0, 0], |
|
372
|
|
|
self.xy_refocus_image[0, 0, 1], |
|
373
|
|
|
self.xy_refocus_image[0, 0, 2]]) |
|
374
|
|
|
if status < 0: |
|
375
|
|
|
self.log.error('Error during move to starting point.') |
|
376
|
|
|
self.stop_refocus() |
|
377
|
|
|
self._sigScanNextXyLine.emit() |
|
378
|
|
|
return |
|
379
|
|
|
|
|
380
|
|
|
lsx = self.xy_refocus_image[self._xy_scan_line_count, :, 0] |
|
381
|
|
|
lsy = self.xy_refocus_image[self._xy_scan_line_count, :, 1] |
|
382
|
|
|
lsz = self.xy_refocus_image[self._xy_scan_line_count, :, 2] |
|
383
|
|
|
|
|
384
|
|
|
# scan a line of the xy optimization image |
|
385
|
|
|
if n_ch <= 3: |
|
386
|
|
|
line = np.vstack((lsx, lsy, lsz)[0:n_ch]) |
|
387
|
|
|
else: |
|
388
|
|
|
line = np.vstack((lsx, lsy, lsz, np.zeros(lsx.shape))) |
|
389
|
|
|
|
|
390
|
|
|
line_counts = self._scanning_device.scan_line(line) |
|
391
|
|
|
if np.any(line_counts == -1): |
|
392
|
|
|
self.log.error('The scan went wrong, killing the scanner.') |
|
393
|
|
|
self.stop_refocus() |
|
394
|
|
|
self._sigScanNextXyLine.emit() |
|
395
|
|
|
return |
|
396
|
|
|
|
|
397
|
|
|
lsx = self._return_X_values |
|
398
|
|
|
lsy = self.xy_refocus_image[self._xy_scan_line_count, 0, 1] * np.ones(lsx.shape) |
|
399
|
|
|
lsz = self.xy_refocus_image[self._xy_scan_line_count, 0, 2] * np.ones(lsx.shape) |
|
400
|
|
|
if n_ch <= 3: |
|
401
|
|
|
return_line = np.vstack((lsx, lsy, lsz)) |
|
402
|
|
|
else: |
|
403
|
|
|
return_line = np.vstack((lsx, lsy, lsz, np.zeros(lsx.shape))) |
|
404
|
|
|
|
|
405
|
|
|
return_line_counts = self._scanning_device.scan_line(return_line) |
|
406
|
|
|
if np.any(return_line_counts == -1): |
|
407
|
|
|
self.log.error('The scan went wrong, killing the scanner.') |
|
408
|
|
|
self.stop_refocus() |
|
409
|
|
|
self._sigScanNextXyLine.emit() |
|
410
|
|
|
return |
|
411
|
|
|
|
|
412
|
|
|
s_ch = len(self.get_scanner_count_channels()) |
|
413
|
|
|
self.xy_refocus_image[self._xy_scan_line_count, :, 3:3 + s_ch] = line_counts |
|
414
|
|
|
|
|
415
|
|
|
if self._caller_tag == 'xy_template_image': |
|
416
|
|
|
self.xy_template_image[self._xy_scan_line_count, :, 3:3 + s_ch] = line_counts |
|
417
|
|
|
|
|
418
|
|
|
self.sigImageUpdated.emit() |
|
419
|
|
|
|
|
420
|
|
|
self._xy_scan_line_count += 1 |
|
421
|
|
|
|
|
422
|
|
|
if self._xy_scan_line_count < np.size(self._Y_values): |
|
423
|
|
|
self._sigScanNextXyLine.emit() |
|
424
|
|
|
else: |
|
425
|
|
|
self._sigCompletedXyOptimizerScan.emit() |
|
426
|
|
|
|
|
427
|
|
|
def xy_template_fit(self, xy_axes, data, template): |
|
428
|
|
|
|
|
429
|
|
|
# check dimensionality of template against optimizer |
|
430
|
|
|
if np.shape(data) != np.shape(template): |
|
431
|
|
|
self.log.warn('XY template fit: The length of data ({0:d}) and template ({1:d}) are unequal.\n' |
|
432
|
|
|
'I really hope you know what you are doing here but will calculate the convolution anyways.' |
|
433
|
|
|
''.format(len(data), len(template))) |
|
434
|
|
|
|
|
435
|
|
|
fit_template = np.flipud(np.fliplr(template)) |
|
436
|
|
|
fit_data = data |
|
437
|
|
|
|
|
438
|
|
|
# It turns out the best results are achieved when the convolutions fills |
|
439
|
|
|
# the edges with 70% of the mean of the whole picture. |
|
440
|
|
|
convoluted_image = sig.convolve2d(fit_template, |
|
441
|
|
|
fit_data, |
|
442
|
|
|
mode='full', |
|
443
|
|
|
fillvalue=fit_template.min() + 0.7*(np.mean(fit_template)-fit_template.min()) |
|
444
|
|
|
) |
|
445
|
|
|
|
|
446
|
|
|
# get the dimensions in order |
|
447
|
|
|
(x, y) = xy_axes |
|
448
|
|
|
x0, y0 = self.optimizer_XY_res, self.optimizer_XY_res |
|
449
|
|
|
xc, yc = convoluted_image.shape[0], convoluted_image.shape[1] |
|
450
|
|
|
|
|
451
|
|
|
# shift of picture 2 with respect to picture 1 |
|
452
|
|
|
max_index = np.array(np.unravel_index(convoluted_image.argmax(), convoluted_image.shape)) |
|
453
|
|
|
image_index_shift = [max_index[1] - (xc / 2.)+0.5, |
|
454
|
|
|
max_index[0] - (yc / 2.)+0.5] |
|
455
|
|
|
|
|
456
|
|
|
# recalculate real coordinate shift from index shift (add 0.5 pixel to hit the middle) |
|
457
|
|
|
image_shift = [(image_index_shift[0]) / x0 * (x.max() - x.min()), |
|
458
|
|
|
(image_index_shift[1]) / y0 * (y.max() - y.min())] |
|
459
|
|
|
|
|
460
|
|
|
# TODO: This is a quick and dirty way to emulate the output from a fit |
|
461
|
|
|
class _param(): |
|
462
|
|
|
best_values = dict() |
|
463
|
|
|
success = False |
|
464
|
|
|
|
|
465
|
|
|
results = _param() |
|
466
|
|
|
results.best_values['center_x'] = self.optim_pos_x + image_shift[0] |
|
467
|
|
|
results.best_values['center_y'] = self.optim_pos_y + image_shift[1] |
|
468
|
|
|
# sigma is set to represent an uncertainty of one pixel in the template |
|
469
|
|
|
results.best_values['sigma_x'] = 1 / x0 * (x.max() - x.min()) |
|
470
|
|
|
results.best_values['sigma_y'] = 1 / y0 * (y.max() - y.min()) |
|
471
|
|
|
results.success = True |
|
472
|
|
|
|
|
473
|
|
|
return results |
|
474
|
|
|
|
|
475
|
|
|
def _set_optimized_xy_from_fit(self): |
|
476
|
|
|
"""Fit the completed xy optimizer scan and set the optimized xy position.""" |
|
477
|
|
|
|
|
478
|
|
|
# for acquiring the template image, no fit needs to be done, so return the initial position |
|
479
|
|
|
if self._caller_tag == 'xy_template_image': |
|
480
|
|
|
self.optim_pos_x = self._initial_pos_x |
|
481
|
|
|
self.optim_pos_y = self._initial_pos_y |
|
482
|
|
|
self.optim_sigma_x = 0. |
|
483
|
|
|
self.optim_sigma_y = 0. |
|
484
|
|
|
|
|
485
|
|
|
# emit image updated signal so crosshair can be updated from this fit |
|
486
|
|
|
self.sigImageUpdated.emit() |
|
487
|
|
|
self._sigDoNextOptimizationStep.emit() |
|
488
|
|
|
return |
|
489
|
|
|
|
|
490
|
|
|
fit_x, fit_y = np.meshgrid(self._X_values, self._Y_values) |
|
491
|
|
|
xy_fit_data = self.xy_refocus_image[:, :, 3].ravel() |
|
492
|
|
|
axes = np.empty((len(self._X_values) * len(self._Y_values), 2)) |
|
493
|
|
|
axes = (fit_x.flatten(), fit_y.flatten()) |
|
494
|
|
|
|
|
495
|
|
|
if self.fit_type not in ('xy_template', 'all_template'): |
|
496
|
|
|
result_2D_gaus = self._fit_logic.make_twoDgaussian_fit( |
|
497
|
|
|
xy_axes=axes, |
|
498
|
|
|
data=xy_fit_data, |
|
499
|
|
|
estimator=self._fit_logic.estimate_twoDgaussian_MLE |
|
500
|
|
|
) |
|
501
|
|
|
else: |
|
502
|
|
|
xy_fit_data = self.xy_refocus_image[:, :, 3 + self.opt_channel] |
|
503
|
|
|
xy_template_data = self.xy_template_image[:, :, 3 + self.opt_channel] |
|
504
|
|
|
|
|
505
|
|
|
result_2D_gaus = self.xy_template_fit( |
|
506
|
|
|
xy_axes=axes, |
|
507
|
|
|
data=xy_fit_data, |
|
508
|
|
|
template=xy_template_data |
|
509
|
|
|
) |
|
510
|
|
|
# print(result_2D_gaus.fit_report()) |
|
511
|
|
|
|
|
512
|
|
|
if result_2D_gaus.success is False: |
|
513
|
|
|
self.log.error('Error: 2D Gaussian Fit was not successfull!.') |
|
514
|
|
|
print('2D gaussian fit not successfull') |
|
515
|
|
|
self.optim_pos_x = self._initial_pos_x |
|
516
|
|
|
self.optim_pos_y = self._initial_pos_y |
|
517
|
|
|
self.optim_sigma_x = 0. |
|
518
|
|
|
self.optim_sigma_y = 0. |
|
519
|
|
|
# hier abbrechen |
|
520
|
|
|
else: |
|
521
|
|
|
# @reviewer: Do we need this. With constraints not one of these cases will be possible.... |
|
522
|
|
|
if abs(self._initial_pos_x - result_2D_gaus.best_values['center_x']) < self._max_offset and abs(self._initial_pos_x - result_2D_gaus.best_values['center_x']) < self._max_offset: |
|
523
|
|
|
if result_2D_gaus.best_values['center_x'] >= self.x_range[0] and result_2D_gaus.best_values['center_x'] <= self.x_range[1]: |
|
524
|
|
|
if result_2D_gaus.best_values['center_y'] >= self.y_range[0] and result_2D_gaus.best_values['center_y'] <= self.y_range[1]: |
|
525
|
|
|
self.optim_pos_x = result_2D_gaus.best_values['center_x'] |
|
526
|
|
|
self.optim_pos_y = result_2D_gaus.best_values['center_y'] |
|
527
|
|
|
self.optim_sigma_x = result_2D_gaus.best_values['sigma_x'] |
|
528
|
|
|
self.optim_sigma_y = result_2D_gaus.best_values['sigma_y'] |
|
529
|
|
|
else: |
|
530
|
|
|
self.optim_pos_x = self._initial_pos_x |
|
531
|
|
|
self.optim_pos_y = self._initial_pos_y |
|
532
|
|
|
self.optim_sigma_x = 0. |
|
533
|
|
|
self.optim_sigma_y = 0. |
|
534
|
|
|
|
|
535
|
|
|
# emit image updated signal so crosshair can be updated from this fit |
|
536
|
|
|
self.sigImageUpdated.emit() |
|
537
|
|
|
self._sigDoNextOptimizationStep.emit() |
|
538
|
|
|
|
|
539
|
|
|
def z_template_fit(self, x_axis, data, template): |
|
540
|
|
|
|
|
541
|
|
|
# check dimensionality of template against optimizer |
|
542
|
|
|
if len(data) != len(template): |
|
543
|
|
|
self.log.warn('Z template fit: The length of data ({0:d}) and template ({1:d}) are unequal.\n' |
|
544
|
|
|
'I really hope you know what you are doing here but will calculate the convolution anyways.' |
|
545
|
|
|
''.format(len(data), len(template))) |
|
546
|
|
|
|
|
547
|
|
|
fit_template = template |
|
548
|
|
|
fit_data = np.flip(data, 0) |
|
549
|
|
|
|
|
550
|
|
|
default_edge = (fit_data[0]+fit_data[-1])/2 |
|
551
|
|
|
convoluted = ndi.convolve(input=fit_data, |
|
552
|
|
|
weights=fit_template, |
|
553
|
|
|
mode='constant', |
|
554
|
|
|
cval=default_edge |
|
555
|
|
|
) |
|
556
|
|
|
# fit the convolution with a Gaussian to find the maximum |
|
557
|
|
|
|
|
558
|
|
|
template_size = len(fit_template) |
|
559
|
|
|
conv_size = len(convoluted) |
|
560
|
|
|
|
|
561
|
|
|
result = self._fit_logic.make_gaussianlinearoffset_fit(x_axis=np.arange(conv_size), # x_axis |
|
562
|
|
|
data=convoluted, |
|
563
|
|
|
units='pixel', |
|
564
|
|
|
estimator=self._fit_logic.estimate_gaussianlinearoffset_peak |
|
565
|
|
|
) |
|
566
|
|
|
|
|
567
|
|
|
# shift of picture 2 with respect to picture 1 |
|
568
|
|
|
z_index_shift = np.clip(result.best_values['center'], 0, conv_size) - (conv_size / 2.) |
|
569
|
|
|
z_shift = z_index_shift / template_size * (x_axis.max() - x_axis.min()) |
|
570
|
|
|
|
|
571
|
|
|
# debugging stuff |
|
572
|
|
|
print(template_size, conv_size) |
|
573
|
|
|
print(result.best_values['center'], z_index_shift, z_shift) |
|
574
|
|
|
|
|
575
|
|
|
plt.close('all') |
|
576
|
|
|
fig, ax = plt.subplots(4) |
|
577
|
|
|
fig.set_size_inches(7, 12) |
|
578
|
|
|
ax[0].plot(fit_template) |
|
579
|
|
|
ax[1].plot(fit_data) |
|
580
|
|
|
ax[2].plot(convoluted) |
|
581
|
|
|
|
|
582
|
|
|
gauss, params = self._fit_logic.make_gaussianlinearoffset_model() |
|
583
|
|
|
fit_data = gauss.eval(x=np.arange(conv_size), params=result.params) |
|
584
|
|
|
ax[3].plot(fit_data) |
|
585
|
|
|
plt.savefig('z_fit.png') |
|
586
|
|
|
|
|
587
|
|
|
# TODO: This is a quick and dirty way to emulate the output from a fit |
|
588
|
|
|
class _param(): |
|
589
|
|
|
best_values = dict() |
|
590
|
|
|
success = False |
|
591
|
|
|
params = dict() |
|
592
|
|
|
|
|
593
|
|
|
results = _param() |
|
594
|
|
|
results.best_values['center'] = self.optim_pos_z - z_shift |
|
595
|
|
|
results.best_values['sigma'] = 0 |
|
596
|
|
|
results.success = True |
|
597
|
|
|
|
|
598
|
|
|
return results, z_index_shift |
|
599
|
|
|
|
|
600
|
|
|
def do_z_optimization(self): |
|
601
|
|
|
""" Do the z axis optimization.""" |
|
602
|
|
|
# z scaning |
|
603
|
|
|
self._scan_z_line() |
|
604
|
|
|
|
|
605
|
|
|
# the template does not need a fit |
|
606
|
|
|
if self._caller_tag == 'z_template_image': |
|
607
|
|
|
self.optim_pos_z = self._initial_pos_z |
|
608
|
|
|
self.optim_sigma_z = 0. |
|
609
|
|
|
self.sigImageUpdated.emit() |
|
610
|
|
|
self._sigDoNextOptimizationStep.emit() |
|
611
|
|
|
return |
|
612
|
|
|
|
|
613
|
|
|
z_index_shift = 0 |
|
614
|
|
|
if self.fit_type in ('z_template', 'all_template'): |
|
615
|
|
|
result, z_index_shift = self.z_template_fit( |
|
616
|
|
|
x_axis=self._zimage_Z_values, |
|
617
|
|
|
data=self.z_refocus_line[:, self.opt_channel], |
|
618
|
|
|
template=self.z_template_data[:, self.opt_channel] |
|
619
|
|
|
) |
|
620
|
|
|
else: |
|
621
|
|
|
|
|
622
|
|
|
# z-fit |
|
623
|
|
|
# If subtracting surface, then data can go negative and the gaussian fit offset constraints need to be adjusted |
|
624
|
|
|
if self.do_surface_subtraction: |
|
625
|
|
|
adjusted_param = {} |
|
626
|
|
|
adjusted_param['offset'] = { |
|
627
|
|
|
'value': 1e-12, |
|
628
|
|
|
'min': -self.z_refocus_line[:, self.opt_channel].max(), |
|
629
|
|
|
'max': self.z_refocus_line[:, self.opt_channel].max() |
|
630
|
|
|
} |
|
631
|
|
|
result = self._fit_logic.make_gausspeaklinearoffset_fit( |
|
632
|
|
|
x_axis=self._zimage_Z_values, |
|
633
|
|
|
data=self.z_refocus_line[:, self.opt_channel], |
|
634
|
|
|
add_params=adjusted_param) |
|
635
|
|
|
else: |
|
636
|
|
|
if any(self.use_custom_params.values()): |
|
637
|
|
|
result = self._fit_logic.make_gausspeaklinearoffset_fit( |
|
638
|
|
|
x_axis=self._zimage_Z_values, |
|
639
|
|
|
data=self.z_refocus_line[:, self.opt_channel], |
|
640
|
|
|
# Todo: It is required that the changed parameters are given as a dictionary or parameter object |
|
641
|
|
|
add_params=None) |
|
642
|
|
|
else: |
|
643
|
|
|
result = self._fit_logic.make_gaussianlinearoffset_fit( |
|
644
|
|
|
x_axis=self._zimage_Z_values, |
|
645
|
|
|
data=self.z_refocus_line[:, self.opt_channel], |
|
646
|
|
|
units='m', |
|
647
|
|
|
estimator=self._fit_logic.estimate_gaussianlinearoffset_peak |
|
648
|
|
|
) |
|
649
|
|
|
self.z_params = result.params |
|
650
|
|
|
|
|
651
|
|
|
if result.success is False: |
|
652
|
|
|
self.log.error('error in 1D Gaussian Fit.') |
|
653
|
|
|
self.optim_pos_z = self._initial_pos_z |
|
654
|
|
|
self.optim_sigma_z = 0. |
|
655
|
|
|
# interrupt here? |
|
656
|
|
|
else: # move to new position |
|
657
|
|
|
# @reviewer: Do we need this. With constraints not one of these cases will be possible.... |
|
658
|
|
|
# checks if new pos is too far away |
|
659
|
|
|
if abs(self._initial_pos_z - result.best_values['center']) < self._max_offset: |
|
660
|
|
|
# checks if new pos is within the scanner range |
|
661
|
|
|
if self.z_range[0] <= result.best_values['center'] <= self.z_range[1]: |
|
662
|
|
|
self.optim_pos_z = result.best_values['center'] |
|
663
|
|
|
self.optim_sigma_z = result.best_values['sigma'] |
|
664
|
|
|
|
|
665
|
|
|
# for the template fit, the plot of the fit is just the template |
|
666
|
|
|
if self.fit_type in ('z_template', 'all_template'): |
|
667
|
|
|
shifted_x = np.arange(z_index_shift, |
|
668
|
|
|
len(self._fit_zimage_Z_values)+z_index_shift, |
|
669
|
|
|
1 |
|
670
|
|
|
)[:len(self._fit_zimage_Z_values)] |
|
671
|
|
|
self.z_fit_data = np.interp(shifted_x, |
|
672
|
|
|
np.arange(len(self._fit_zimage_Z_values)), |
|
673
|
|
|
self.z_template_data[:, self.opt_channel]) |
|
674
|
|
|
|
|
675
|
|
|
# for a normal fit, sample the function and plot it |
|
676
|
|
|
else: |
|
677
|
|
|
gauss, params = self._fit_logic.make_gaussianlinearoffset_model() |
|
678
|
|
|
self.z_fit_data = gauss.eval( |
|
679
|
|
|
x=self._fit_zimage_Z_values, params=result.params) |
|
680
|
|
|
else: # new pos is too far away |
|
681
|
|
|
# checks if new pos is too high |
|
682
|
|
|
self.optim_sigma_z = 0. |
|
683
|
|
|
if result.best_values['center'] > self._initial_pos_z: |
|
684
|
|
|
if self._initial_pos_z + 0.5 * self.refocus_Z_size <= self.z_range[1]: |
|
685
|
|
|
# moves to higher edge of scan range |
|
686
|
|
|
self.optim_pos_z = self._initial_pos_z + 0.5 * self.refocus_Z_size |
|
687
|
|
|
else: |
|
688
|
|
|
self.optim_pos_z = self.z_range[1] # moves to highest possible value |
|
689
|
|
|
else: |
|
690
|
|
|
if self._initial_pos_z + 0.5 * self.refocus_Z_size >= self.z_range[0]: |
|
691
|
|
|
# moves to lower edge of scan range |
|
692
|
|
|
self.optim_pos_z = self._initial_pos_z + 0.5 * self.refocus_Z_size |
|
693
|
|
|
else: |
|
694
|
|
|
self.optim_pos_z = self.z_range[0] # moves to lowest possible value |
|
695
|
|
|
|
|
696
|
|
|
self.sigImageUpdated.emit() |
|
697
|
|
|
self._sigDoNextOptimizationStep.emit() |
|
698
|
|
|
|
|
699
|
|
|
def finish_refocus(self): |
|
700
|
|
|
""" Finishes up and releases hardware after the optimizer scans.""" |
|
701
|
|
|
|
|
702
|
|
|
n_ch = len(self._scanning_device.get_scanner_axes()) |
|
703
|
|
|
|
|
704
|
|
|
self.kill_scanner() |
|
705
|
|
|
|
|
706
|
|
|
if self.fit_type in ('xy_template', 'all_template'): |
|
707
|
|
|
self._initial_pos_x += self.template_cursor[0] |
|
708
|
|
|
self._initial_pos_y += self.template_cursor[1] |
|
709
|
|
|
self.optim_pos_x += self.template_cursor[0] |
|
710
|
|
|
self.optim_pos_y += self.template_cursor[1] |
|
711
|
|
|
|
|
712
|
|
|
if self.fit_type in ('z_template', 'all_template'): |
|
713
|
|
|
self._initial_pos_z += self.template_cursor[2] |
|
714
|
|
|
self.optim_pos_z += self.template_cursor[2] |
|
715
|
|
|
|
|
716
|
|
|
self.log.info( |
|
717
|
|
|
'Optimised from ({0:.3e},{1:.3e},{2:.3e}) to local ' |
|
718
|
|
|
'maximum at ({3:.3e},{4:.3e},{5:.3e}).'.format( |
|
719
|
|
|
self._initial_pos_x, |
|
720
|
|
|
self._initial_pos_y, |
|
721
|
|
|
self._initial_pos_z, |
|
722
|
|
|
self.optim_pos_x, |
|
723
|
|
|
self.optim_pos_y, |
|
724
|
|
|
self.optim_pos_z)) |
|
725
|
|
|
|
|
726
|
|
|
# Signal that the optimization has finished, and "return" the optimal position along with |
|
727
|
|
|
# caller_tag |
|
728
|
|
|
self.sigRefocusFinished.emit( |
|
729
|
|
|
self._caller_tag, |
|
730
|
|
|
[self.optim_pos_x, self.optim_pos_y, self.optim_pos_z, 0][0:n_ch]) |
|
731
|
|
|
|
|
732
|
|
|
def _scan_z_line(self): |
|
733
|
|
|
"""Scans the z line for refocus.""" |
|
734
|
|
|
|
|
735
|
|
|
x0 = self.optim_pos_x |
|
736
|
|
|
y0 = self.optim_pos_y |
|
737
|
|
|
|
|
738
|
|
|
# Moves to the start value of the z-scan |
|
739
|
|
|
status = self._move_to_start_pos( |
|
740
|
|
|
[x0, y0, self._zimage_Z_values[0]]) |
|
741
|
|
|
if status < 0: |
|
742
|
|
|
self.log.error('Error during move to starting point.') |
|
743
|
|
|
self.stop_refocus() |
|
744
|
|
|
return |
|
745
|
|
|
|
|
746
|
|
|
n_ch = len(self._scanning_device.get_scanner_axes()) |
|
747
|
|
|
|
|
748
|
|
|
# defining trace of positions for z-refocus |
|
749
|
|
|
scan_z_line = self._zimage_Z_values |
|
750
|
|
|
scan_x_line = x0 * np.ones(self._zimage_Z_values.shape) |
|
751
|
|
|
scan_y_line = y0 * np.ones(self._zimage_Z_values.shape) |
|
752
|
|
|
|
|
753
|
|
|
if n_ch <= 3: |
|
754
|
|
|
line = np.vstack((scan_x_line, scan_y_line, scan_z_line)[0:n_ch]) |
|
755
|
|
|
else: |
|
756
|
|
|
line = np.vstack((scan_x_line, scan_y_line, scan_z_line, np.zeros(scan_x_line.shape))) |
|
757
|
|
|
|
|
758
|
|
|
# Perform scan |
|
759
|
|
|
line_counts = self._scanning_device.scan_line(line) |
|
760
|
|
|
if np.any(line_counts == -1): |
|
761
|
|
|
self.log.error('Z scan went wrong, killing the scanner.') |
|
762
|
|
|
self.stop_refocus() |
|
763
|
|
|
return |
|
764
|
|
|
|
|
765
|
|
|
# Set the data |
|
766
|
|
|
self.z_refocus_line = line_counts |
|
767
|
|
|
|
|
768
|
|
|
if self._caller_tag == 'z_template_image': |
|
769
|
|
|
self.z_template_data = line_counts |
|
770
|
|
|
|
|
771
|
|
|
|
|
772
|
|
|
# If subtracting surface, perform a displaced depth line scan |
|
773
|
|
|
if self.do_surface_subtraction: |
|
774
|
|
|
# Move to start of z-scan |
|
775
|
|
|
status = self._move_to_start_pos([ |
|
776
|
|
|
x0 + self.surface_subtr_scan_offset, |
|
777
|
|
|
y0, |
|
778
|
|
|
self._zimage_Z_values[0]]) |
|
779
|
|
|
if status < 0: |
|
780
|
|
|
self.log.error('Error during move to starting point.') |
|
781
|
|
|
self.stop_refocus() |
|
782
|
|
|
return |
|
783
|
|
|
|
|
784
|
|
|
# define an offset line to measure "background" |
|
785
|
|
|
if n_ch <= 3: |
|
786
|
|
|
line_bg = np.vstack( |
|
787
|
|
|
(scan_x_line + self.surface_subtr_scan_offset, scan_y_line, scan_z_line)[0:n_ch]) |
|
788
|
|
|
else: |
|
789
|
|
|
line_bg = np.vstack( |
|
790
|
|
|
(scan_x_line + self.surface_subtr_scan_offset, |
|
791
|
|
|
scan_y_line, |
|
792
|
|
|
scan_z_line, |
|
793
|
|
|
np.zeros(scan_x_line.shape))) |
|
794
|
|
|
|
|
795
|
|
|
line_bg_counts = self._scanning_device.scan_line(line_bg) |
|
796
|
|
|
if np.any(line_bg_counts[0] == -1): |
|
797
|
|
|
self.log.error('The scan went wrong, killing the scanner.') |
|
798
|
|
|
self.stop_refocus() |
|
799
|
|
|
return |
|
800
|
|
|
|
|
801
|
|
|
# surface-subtracted line scan data is the difference |
|
802
|
|
|
self.z_refocus_line = line_counts - line_bg_counts |
|
803
|
|
|
|
|
804
|
|
|
if self._caller_tag == 'z_template_image': |
|
805
|
|
|
self.z_template_data = line_counts - line_bg_counts |
|
806
|
|
|
|
|
807
|
|
|
def start_scanner(self): |
|
808
|
|
|
"""Setting up the scanner device. |
|
809
|
|
|
|
|
810
|
|
|
@return int: error code (0:OK, -1:error) |
|
811
|
|
|
""" |
|
812
|
|
|
self.module_state.lock() |
|
813
|
|
|
clock_frequency = self._template_clock_frequency if self._caller_tag in ('xy_template_image', 'z_template_image') else self._clock_frequency |
|
814
|
|
|
clock_status = self._scanning_device.set_up_scanner_clock( |
|
815
|
|
|
clock_frequency=clock_frequency) |
|
816
|
|
|
if clock_status < 0: |
|
817
|
|
|
self.module_state.unlock() |
|
818
|
|
|
return -1 |
|
819
|
|
|
|
|
820
|
|
|
scanner_status = self._scanning_device.set_up_scanner() |
|
821
|
|
|
if scanner_status < 0: |
|
822
|
|
|
self._scanning_device.close_scanner_clock() |
|
823
|
|
|
self.module_state.unlock() |
|
824
|
|
|
return -1 |
|
825
|
|
|
|
|
826
|
|
|
return 0 |
|
827
|
|
|
|
|
828
|
|
|
def kill_scanner(self): |
|
829
|
|
|
"""Closing the scanner device. |
|
830
|
|
|
|
|
831
|
|
|
@return int: error code (0:OK, -1:error) |
|
832
|
|
|
""" |
|
833
|
|
|
try: |
|
834
|
|
|
rv = self._scanning_device.close_scanner() |
|
835
|
|
|
except: |
|
836
|
|
|
self.log.exception('Closing refocus scanner failed.') |
|
837
|
|
|
return -1 |
|
838
|
|
|
try: |
|
839
|
|
|
rv2 = self._scanning_device.close_scanner_clock() |
|
840
|
|
|
except: |
|
841
|
|
|
self.log.exception('Closing refocus scanner clock failed.') |
|
842
|
|
|
return -1 |
|
843
|
|
|
self.module_state.unlock() |
|
844
|
|
|
return rv + rv2 |
|
845
|
|
|
|
|
846
|
|
|
def _do_next_optimization_step(self): |
|
847
|
|
|
"""Handle the steps through the specified optimization sequence |
|
848
|
|
|
""" |
|
849
|
|
|
# If XY template image requested, just take a XY scan and save it as template image |
|
850
|
|
|
if self._caller_tag == 'xy_template_image': |
|
851
|
|
|
if self._optimization_step >= 1: |
|
852
|
|
|
self._sigFinishedAllOptimizationSteps.emit() |
|
853
|
|
|
else: |
|
854
|
|
|
self._optimization_step += 1 |
|
855
|
|
|
self._initialize_xy_refocus_image() |
|
856
|
|
|
self._sigScanNextXyLine.emit() |
|
857
|
|
|
return |
|
858
|
|
|
|
|
859
|
|
|
# If Z template image requested, just take a Z scan and save it as template data |
|
860
|
|
|
if self._caller_tag == 'z_template_image': |
|
861
|
|
|
if self._optimization_step >= 1: |
|
862
|
|
|
self._sigFinishedAllOptimizationSteps.emit() |
|
863
|
|
|
else: |
|
864
|
|
|
self._optimization_step += 1 |
|
865
|
|
|
self._initialize_z_refocus_image() |
|
866
|
|
|
self._sigScanZLine.emit() |
|
867
|
|
|
return |
|
868
|
|
|
|
|
869
|
|
|
# At the end fo the sequence, finish the optimization |
|
870
|
|
|
if self._optimization_step == len(self.optimization_sequence): |
|
871
|
|
|
self._sigFinishedAllOptimizationSteps.emit() |
|
872
|
|
|
return |
|
873
|
|
|
|
|
874
|
|
|
# Read the next step in the optimization sequence |
|
875
|
|
|
this_step = self.optimization_sequence[self._optimization_step] |
|
876
|
|
|
|
|
877
|
|
|
# Increment the step counter |
|
878
|
|
|
self._optimization_step += 1 |
|
879
|
|
|
|
|
880
|
|
|
# Launch the next step |
|
881
|
|
|
if this_step == 'XY': |
|
882
|
|
|
self._initialize_xy_refocus_image() |
|
883
|
|
|
self._sigScanNextXyLine.emit() |
|
884
|
|
|
elif this_step == 'Z': |
|
885
|
|
|
self._initialize_z_refocus_image() |
|
886
|
|
|
self._sigScanZLine.emit() |
|
887
|
|
|
|
|
888
|
|
|
def set_position(self, tag, x=None, y=None, z=None, a=None): |
|
889
|
|
|
""" Set focus position. |
|
890
|
|
|
|
|
891
|
|
|
@param str tag: sting indicating who caused position change |
|
892
|
|
|
@param float x: x axis position in m |
|
893
|
|
|
@param float y: y axis position in m |
|
894
|
|
|
@param float z: z axis position in m |
|
895
|
|
|
@param float a: a axis position in m |
|
896
|
|
|
""" |
|
897
|
|
|
if x is not None: |
|
898
|
|
|
self._current_x = x |
|
899
|
|
|
if y is not None: |
|
900
|
|
|
self._current_y = y |
|
901
|
|
|
if z is not None: |
|
902
|
|
|
self._current_z = z |
|
903
|
|
|
self.sigPositionChanged.emit(self._current_x, self._current_y, self._current_z) |
|
904
|
|
|
|
|
905
|
|
|
|