1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
""" |
3
|
|
|
This file contains basic pulse analysis methods for Qudi. |
4
|
|
|
|
5
|
|
|
Qudi is free software: you can redistribute it and/or modify |
6
|
|
|
it under the terms of the GNU General Public License as published by |
7
|
|
|
the Free Software Foundation, either version 3 of the License, or |
8
|
|
|
(at your option) any later version. |
9
|
|
|
|
10
|
|
|
Qudi is distributed in the hope that it will be useful, |
11
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
12
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13
|
|
|
GNU General Public License for more details. |
14
|
|
|
|
15
|
|
|
You should have received a copy of the GNU General Public License |
16
|
|
|
along with Qudi. If not, see <http://www.gnu.org/licenses/>. |
17
|
|
|
|
18
|
|
|
Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the |
19
|
|
|
top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
import numpy as np |
23
|
|
|
|
24
|
|
|
from logic.pulsed.pulse_analyzer import PulseAnalyzerBase |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
class BasicPulseAnalyzer(PulseAnalyzerBase): |
28
|
|
|
""" |
29
|
|
|
|
30
|
|
|
""" |
31
|
|
|
def __init__(self, *args, **kwargs): |
32
|
|
|
super().__init__(*args, **kwargs) |
33
|
|
|
|
34
|
|
|
def analyse_mean_norm(self, laser_data, signal_start=0.0, signal_end=200e-9, norm_start=300e-9, |
35
|
|
|
norm_end=500e-9): |
36
|
|
|
""" |
37
|
|
|
|
38
|
|
|
@param laser_data: |
39
|
|
|
@param signal_start: |
40
|
|
|
@param signal_end: |
41
|
|
|
@param norm_start: |
42
|
|
|
@param norm_end: |
43
|
|
|
@return: |
44
|
|
|
""" |
45
|
|
|
# Get number of lasers |
46
|
|
|
num_of_lasers = laser_data.shape[0] |
47
|
|
|
# Get counter bin width |
48
|
|
|
bin_width = self.fast_counter_settings.get('bin_width') |
49
|
|
|
|
50
|
|
|
if not isinstance(bin_width, float): |
51
|
|
|
return np.zeros(num_of_lasers), np.zeros(num_of_lasers) |
52
|
|
|
|
53
|
|
|
# Convert the times in seconds to bins (i.e. array indices) |
54
|
|
|
signal_start_bin = round(signal_start / bin_width) |
55
|
|
|
signal_end_bin = round(signal_end / bin_width) |
56
|
|
|
norm_start_bin = round(norm_start / bin_width) |
57
|
|
|
norm_end_bin = round(norm_end / bin_width) |
58
|
|
|
|
59
|
|
|
# initialize data arrays for signal and measurement error |
60
|
|
|
signal_data = np.empty(num_of_lasers, dtype=float) |
61
|
|
|
error_data = np.empty(num_of_lasers, dtype=float) |
62
|
|
|
|
63
|
|
|
# loop over all laser pulses and analyze them |
64
|
|
|
for ii, laser_arr in enumerate(laser_data): |
65
|
|
|
# calculate the sum and mean of the data in the normalization window |
66
|
|
|
tmp_data = laser_arr[norm_start_bin:norm_end_bin] |
67
|
|
|
reference_sum = np.sum(tmp_data) |
68
|
|
|
reference_mean = (reference_sum / len(tmp_data)) if len(tmp_data) != 0 else 0.0 |
69
|
|
|
|
70
|
|
|
# calculate the sum and mean of the data in the signal window |
71
|
|
|
tmp_data = laser_arr[signal_start_bin:signal_end_bin] |
72
|
|
|
signal_sum = np.sum(tmp_data) |
73
|
|
|
signal_mean = (signal_sum / len(tmp_data)) if len(tmp_data) != 0 else 0.0 |
74
|
|
|
|
75
|
|
|
# Calculate normalized signal while avoiding division by zero |
76
|
|
|
if reference_mean > 0 and signal_mean >= 0: |
77
|
|
|
signal_data[ii] = signal_mean / reference_mean |
78
|
|
|
else: |
79
|
|
|
signal_data[ii] = 0.0 |
80
|
|
|
|
81
|
|
|
# Calculate measurement error while avoiding division by zero |
82
|
|
|
if reference_sum > 0 and signal_sum > 0: |
83
|
|
|
# calculate with respect to gaussian error 'evolution' |
84
|
|
|
error_data[ii] = signal_data[ii] * np.sqrt(1 / signal_sum + 1 / reference_sum) |
85
|
|
|
else: |
86
|
|
|
error_data[ii] = 0.0 |
87
|
|
|
|
88
|
|
|
return signal_data, error_data |
89
|
|
|
|
90
|
|
|
def analyse_mean(self, laser_data, signal_start=0.0, signal_end=200e-9): |
91
|
|
|
""" |
92
|
|
|
|
93
|
|
|
@param laser_data: |
94
|
|
|
@param signal_start: |
95
|
|
|
@param signal_end: |
96
|
|
|
@return: |
97
|
|
|
""" |
98
|
|
|
# Get number of lasers |
99
|
|
|
num_of_lasers = laser_data.shape[0] |
100
|
|
|
# Get counter bin width |
101
|
|
|
bin_width = self.fast_counter_settings.get('bin_width') |
102
|
|
|
|
103
|
|
|
if not isinstance(bin_width, float): |
104
|
|
|
return np.zeros(num_of_lasers), np.zeros(num_of_lasers) |
105
|
|
|
|
106
|
|
|
# Convert the times in seconds to bins (i.e. array indices) |
107
|
|
|
signal_start_bin = round(signal_start / bin_width) |
108
|
|
|
signal_end_bin = round(signal_end / bin_width) |
109
|
|
|
|
110
|
|
|
# initialize data arrays for signal and measurement error |
111
|
|
|
signal_data = np.empty(num_of_lasers, dtype=float) |
112
|
|
|
error_data = np.empty(num_of_lasers, dtype=float) |
113
|
|
|
|
114
|
|
|
# loop over all laser pulses and analyze them |
115
|
|
|
for ii, laser_arr in enumerate(laser_data): |
116
|
|
|
# calculate the sum and mean of the data in the signal window |
117
|
|
|
signal_mean = laser_arr[signal_start_bin:signal_end_bin].mean() |
118
|
|
|
|
119
|
|
|
# Avoid numpy C type variables overflow and NaN values |
120
|
|
|
if signal_mean < 0 or signal_mean != signal_mean: |
121
|
|
|
signal_data[ii] = 0.0 |
122
|
|
|
error_data[ii] = 0.0 |
123
|
|
|
else: |
124
|
|
|
signal_data[ii] = signal_mean |
125
|
|
|
error_data[ii] = np.sqrt(signal_mean) |
126
|
|
|
|
127
|
|
|
return signal_data, error_data |
128
|
|
|
|