1
|
|
|
import numpy as np |
2
|
|
|
import torch |
3
|
|
|
|
4
|
|
|
from ....data.image import Image |
5
|
|
|
from ....data.subject import Subject |
6
|
|
|
from ...spatial_transform import SpatialTransform |
7
|
|
|
from .resample import Resample |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
class ToReferenceSpace(SpatialTransform): |
11
|
|
|
"""Modify the spatial metadata so it matches a reference space. |
12
|
|
|
|
13
|
|
|
This is useful, for example, to set meaningful spatial metadata of a neural |
14
|
|
|
network embedding, for visualization or further processing such as |
15
|
|
|
resampling a segmentation output. |
16
|
|
|
|
17
|
|
|
Example: |
18
|
|
|
|
19
|
|
|
>>> import torchio as tio |
20
|
|
|
>>> image = tio.datasets.FPG().t1 |
21
|
|
|
>>> embedding_tensor = my_network(image.tensor) # we lose metadata here |
22
|
|
|
>>> embedding_image = tio.ToReferenceSpace.from_tensor(embedding_tensor, image) |
23
|
|
|
""" |
24
|
|
|
|
25
|
|
|
def __init__(self, reference: Image, **kwargs): |
26
|
|
|
super().__init__(**kwargs) |
27
|
|
|
if not isinstance(reference, Image): |
28
|
|
|
raise TypeError('The reference must be a TorchIO image') |
29
|
|
|
self.reference = reference |
30
|
|
|
|
31
|
|
|
def apply_transform(self, subject: Subject) -> Subject: |
32
|
|
|
for image in self.get_images(subject): |
33
|
|
|
new_image = build_image_from_reference(image.data, self.reference) |
34
|
|
|
image.set_data(new_image.data) |
35
|
|
|
image.affine = new_image.affine |
36
|
|
|
return subject |
37
|
|
|
|
38
|
|
|
@staticmethod |
39
|
|
|
def from_tensor(tensor: torch.Tensor, reference: Image) -> Image: |
40
|
|
|
"""Build a TorchIO image from a tensor and a reference image.""" |
41
|
|
|
return build_image_from_reference(tensor, reference) |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
def build_image_from_reference(tensor: torch.Tensor, reference: Image) -> Image: |
45
|
|
|
input_shape = np.array(reference.spatial_shape) |
46
|
|
|
output_shape = np.array(tensor.shape[-3:]) |
47
|
|
|
downsampling_factor = input_shape / output_shape |
48
|
|
|
input_spacing = np.array(reference.spacing) |
49
|
|
|
output_spacing = input_spacing * downsampling_factor |
50
|
|
|
downsample = Resample(output_spacing, image_interpolation='nearest') |
51
|
|
|
reference = downsample(reference) |
52
|
|
|
class_ = reference.__class__ |
53
|
|
|
result = class_(tensor=tensor, affine=reference.affine) |
54
|
|
|
return result |
55
|
|
|
|