| Total Complexity | 44 |
| Total Lines | 231 |
| Duplicated Lines | 6.49 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like tests.transforms.augmentation.test_random_affine often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | import pytest |
||
| 2 | import torch |
||
| 3 | |||
| 4 | import torchio as tio |
||
| 5 | |||
| 6 | from ...utils import TorchioTestCase |
||
| 7 | |||
| 8 | |||
| 9 | class TestRandomAffine(TorchioTestCase): |
||
| 10 | """Tests for `RandomAffine`.""" |
||
| 11 | |||
| 12 | def setUp(self): |
||
| 13 | # Set image origin far from center |
||
| 14 | super().setUp() |
||
| 15 | affine = self.sample_subject.t1.affine |
||
| 16 | affine[:3, 3] = 1e5 |
||
| 17 | |||
| 18 | def test_rotation_image(self): |
||
| 19 | # Rotation around image center |
||
| 20 | transform = tio.RandomAffine( |
||
| 21 | degrees=(90, 90), |
||
| 22 | default_pad_value=0, |
||
| 23 | center='image', |
||
| 24 | ) |
||
| 25 | transformed = transform(self.sample_subject) |
||
| 26 | total = transformed.t1.data.sum() |
||
| 27 | self.assertNotEqual(total, 0) |
||
| 28 | |||
| 29 | def test_rotation_origin(self): |
||
| 30 | # Rotation around far away point, image should be empty |
||
| 31 | transform = tio.RandomAffine( |
||
| 32 | degrees=(90, 90), |
||
| 33 | default_pad_value=0, |
||
| 34 | center='origin', |
||
| 35 | ) |
||
| 36 | transformed = transform(self.sample_subject) |
||
| 37 | total = transformed.t1.data.sum() |
||
| 38 | assert total == 0 |
||
| 39 | |||
| 40 | def test_no_rotation(self): |
||
| 41 | transform = tio.RandomAffine( |
||
| 42 | scales=(1, 1), |
||
| 43 | degrees=(0, 0), |
||
| 44 | default_pad_value=0, |
||
| 45 | center='image', |
||
| 46 | ) |
||
| 47 | transformed = transform(self.sample_subject) |
||
| 48 | self.assert_tensor_almost_equal( |
||
| 49 | self.sample_subject.t1.data, |
||
| 50 | transformed.t1.data, |
||
| 51 | ) |
||
| 52 | |||
| 53 | transform = tio.RandomAffine( |
||
| 54 | scales=(1, 1), |
||
| 55 | degrees=(180, 180), |
||
| 56 | default_pad_value=0, |
||
| 57 | center='image', |
||
| 58 | ) |
||
| 59 | transformed = transform(self.sample_subject) |
||
| 60 | transformed = transform(transformed) |
||
| 61 | self.assert_tensor_almost_equal( |
||
| 62 | self.sample_subject.t1.data, |
||
| 63 | transformed.t1.data, |
||
| 64 | ) |
||
| 65 | |||
| 66 | def test_isotropic(self): |
||
| 67 | tio.RandomAffine(isotropic=True)(self.sample_subject) |
||
| 68 | |||
| 69 | def test_mean(self): |
||
| 70 | tio.RandomAffine(default_pad_value='mean')(self.sample_subject) |
||
| 71 | |||
| 72 | def test_otsu(self): |
||
| 73 | tio.RandomAffine(default_pad_value='otsu')(self.sample_subject) |
||
| 74 | |||
| 75 | def test_bad_center(self): |
||
| 76 | with pytest.raises(ValueError): |
||
| 77 | tio.RandomAffine(center='bad') |
||
| 78 | |||
| 79 | def test_negative_scales(self): |
||
| 80 | with pytest.raises(ValueError): |
||
| 81 | tio.RandomAffine(scales=(-1, 1)) |
||
| 82 | |||
| 83 | def test_scale_too_large(self): |
||
| 84 | with pytest.raises(ValueError): |
||
| 85 | tio.RandomAffine(scales=1.5) |
||
| 86 | |||
| 87 | def test_scales_range_with_negative_min(self): |
||
| 88 | with pytest.raises(ValueError): |
||
| 89 | tio.RandomAffine(scales=(-1, 4)) |
||
| 90 | |||
| 91 | def test_wrong_scales_type(self): |
||
| 92 | with pytest.raises(ValueError): |
||
| 93 | tio.RandomAffine(scales='wrong') |
||
| 94 | |||
| 95 | def test_wrong_degrees_type(self): |
||
| 96 | with pytest.raises(ValueError): |
||
| 97 | tio.RandomAffine(degrees='wrong') |
||
| 98 | |||
| 99 | def test_too_many_translation_values(self): |
||
| 100 | with pytest.raises(ValueError): |
||
| 101 | tio.RandomAffine(translation=(-10, 4, 42)) |
||
| 102 | |||
| 103 | def test_wrong_translation_type(self): |
||
| 104 | with pytest.raises(ValueError): |
||
| 105 | tio.RandomAffine(translation='wrong') |
||
| 106 | |||
| 107 | def test_wrong_center(self): |
||
| 108 | with pytest.raises(ValueError): |
||
| 109 | tio.RandomAffine(center=0) |
||
| 110 | |||
| 111 | def test_wrong_default_pad_value(self): |
||
| 112 | with pytest.raises(ValueError): |
||
| 113 | tio.RandomAffine(default_pad_value='wrong') |
||
| 114 | |||
| 115 | def test_wrong_image_interpolation_type(self): |
||
| 116 | with pytest.raises(TypeError): |
||
| 117 | tio.RandomAffine(image_interpolation=0) |
||
| 118 | |||
| 119 | def test_wrong_image_interpolation_value(self): |
||
| 120 | with pytest.raises(ValueError): |
||
| 121 | tio.RandomAffine(image_interpolation='wrong') |
||
| 122 | |||
| 123 | def test_incompatible_args_isotropic(self): |
||
| 124 | with pytest.raises(ValueError): |
||
| 125 | tio.RandomAffine(scales=(0.8, 0.5, 0.1), isotropic=True) |
||
| 126 | |||
| 127 | def test_parse_scales(self): |
||
| 128 | def do_assert(transform): |
||
| 129 | assert transform.scales == 3 * (0.9, 1.1) |
||
| 130 | |||
| 131 | do_assert(tio.RandomAffine(scales=0.1)) |
||
| 132 | do_assert(tio.RandomAffine(scales=(0.9, 1.1))) |
||
| 133 | do_assert(tio.RandomAffine(scales=3 * (0.1,))) |
||
| 134 | do_assert(tio.RandomAffine(scales=3 * [0.9, 1.1])) |
||
| 135 | |||
| 136 | def test_parse_degrees(self): |
||
| 137 | def do_assert(transform): |
||
| 138 | assert transform.degrees == 3 * (-10, 10) |
||
| 139 | |||
| 140 | do_assert(tio.RandomAffine(degrees=10)) |
||
| 141 | do_assert(tio.RandomAffine(degrees=(-10, 10))) |
||
| 142 | do_assert(tio.RandomAffine(degrees=3 * (10,))) |
||
| 143 | do_assert(tio.RandomAffine(degrees=3 * [-10, 10])) |
||
| 144 | |||
| 145 | def test_parse_translation(self): |
||
| 146 | def do_assert(transform): |
||
| 147 | assert transform.translation == 3 * (-10, 10) |
||
| 148 | |||
| 149 | do_assert(tio.RandomAffine(translation=10)) |
||
| 150 | do_assert(tio.RandomAffine(translation=(-10, 10))) |
||
| 151 | do_assert(tio.RandomAffine(translation=3 * (10,))) |
||
| 152 | do_assert(tio.RandomAffine(translation=3 * [-10, 10])) |
||
| 153 | |||
| 154 | def test_default_value_label_map(self): |
||
| 155 | # From https://github.com/TorchIO-project/torchio/issues/626 |
||
| 156 | a = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).reshape(1, 3, 3, 1) |
||
| 157 | image = tio.LabelMap(tensor=a) |
||
| 158 | aff = tio.RandomAffine(translation=(0, 1, 1), default_pad_value='otsu') |
||
| 159 | transformed = aff(image) |
||
| 160 | assert all(n in (0, 1) for n in transformed.data.flatten()) |
||
| 161 | |||
| 162 | def test_default_pad_label_parameter(self): |
||
| 163 | # Test for issue #1304: Using default_pad_value if image is of type LABEL |
||
| 164 | # Create a simple label map |
||
| 165 | label_data = torch.full((1, 2, 2, 2), 1, dtype=torch.float32) |
||
| 166 | s = tio.Subject(label=tio.LabelMap(tensor=label_data)) |
||
| 167 | |||
| 168 | # Test 1: default_pad_label should be respected |
||
| 169 | aff = tio.RandomAffine( |
||
| 170 | p=1, |
||
| 171 | translation=(-10, 10, -10, 10, -10, 10), |
||
| 172 | default_pad_label=250 |
||
| 173 | ) |
||
| 174 | s_aug = aff.apply_transform(s) |
||
| 175 | |||
| 176 | # Should contain the specified pad value for labels |
||
| 177 | has_expected_value = (s_aug['label'].tensor == 250).any() |
||
| 178 | assert has_expected_value, "default_pad_label=250 should be respected for LABEL images" |
||
| 179 | |||
| 180 | # Test 2: backward compatibility - default_pad_value should still be ignored for labels |
||
| 181 | aff_old = tio.RandomAffine( |
||
| 182 | p=1, |
||
| 183 | translation=(-10, 10, -10, 10, -10, 10), |
||
| 184 | default_pad_value=250 # This should be ignored for labels |
||
| 185 | ) |
||
| 186 | s_aug_old = aff_old.apply_transform(s) |
||
| 187 | |||
| 188 | # Should still use 0 (default for labels), not the default_pad_value |
||
| 189 | non_one_values = s_aug_old['label'].tensor[s_aug_old['label'].tensor != 1] |
||
| 190 | all_zeros = (non_one_values == 0).all() if len(non_one_values) > 0 else True |
||
| 191 | assert all_zeros, "default_pad_value should still be ignored for LABEL images (backward compatibility)" |
||
| 192 | |||
| 193 | # Test 3: Test direct Affine class with default_pad_label |
||
| 194 | affine_transform = tio.Affine( |
||
| 195 | scales=(1, 1, 1), |
||
| 196 | degrees=(0, 0, 0), |
||
| 197 | translation=(5, 0, 0), |
||
| 198 | default_pad_label=123 |
||
| 199 | ) |
||
| 200 | s_affine = affine_transform.apply_transform(s) |
||
| 201 | has_affine_value = (s_affine['label'].tensor == 123).any() |
||
| 202 | assert has_affine_value, "Direct Affine class should respect default_pad_label" |
||
| 203 | |||
| 204 | def test_wrong_default_pad_label(self): |
||
| 205 | with pytest.raises(ValueError): |
||
| 206 | tio.RandomAffine(default_pad_label='minimum') |
||
| 207 | |||
| 208 | View Code Duplication | def test_no_inverse(self): |
|
|
|
|||
| 209 | tensor = torch.zeros((1, 2, 2, 2)) |
||
| 210 | tensor[0, 1, 1, 1] = 1 # most RAS voxel |
||
| 211 | expected = torch.zeros((1, 2, 2, 2)) |
||
| 212 | expected[0, 0, 1, 1] = 1 |
||
| 213 | scales = 1, 1, 1 |
||
| 214 | degrees = 0, 0, 90 # anterior should go left |
||
| 215 | translation = 0, 0, 0 |
||
| 216 | apply_affine = tio.Affine( |
||
| 217 | scales, |
||
| 218 | degrees, |
||
| 219 | translation, |
||
| 220 | ) |
||
| 221 | transformed = apply_affine(tensor) |
||
| 222 | self.assert_tensor_almost_equal(transformed, expected) |
||
| 223 | |||
| 224 | def test_different_spaces(self): |
||
| 225 | t1 = self.sample_subject.t1 |
||
| 226 | label = tio.Resample(2)(self.sample_subject.label) |
||
| 227 | new_subject = tio.Subject(t1=t1, label=label) |
||
| 228 | with pytest.raises(RuntimeError): |
||
| 229 | tio.RandomAffine()(new_subject) |
||
| 230 | tio.RandomAffine(check_shape=False)(new_subject) |
||
| 231 |