1
|
|
|
from __future__ import annotations |
2
|
|
|
|
3
|
|
|
import ast |
4
|
|
|
import enum |
5
|
|
|
import multiprocessing |
6
|
|
|
import shutil |
7
|
|
|
from pathlib import Path |
8
|
|
|
from typing import TYPE_CHECKING |
9
|
|
|
from typing import Literal |
10
|
|
|
from typing import Union |
11
|
|
|
|
12
|
|
|
import numpy as np |
13
|
|
|
import SimpleITK as sitk |
14
|
|
|
from tqdm.auto import tqdm |
15
|
|
|
from tqdm.contrib.concurrent import process_map |
16
|
|
|
from tqdm.contrib.concurrent import thread_map |
17
|
|
|
|
18
|
|
|
from ..data.dataset import SubjectsDataset |
19
|
|
|
from ..data.image import ScalarImage |
20
|
|
|
from ..data.subject import Subject |
21
|
|
|
from ..external.imports import get_pandas |
22
|
|
|
from ..types import TypePath |
23
|
|
|
|
24
|
|
|
if TYPE_CHECKING: |
25
|
|
|
import pandas as pd |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
TypeSplit = Union[ |
29
|
|
|
Literal['train'], |
30
|
|
|
Literal['valid'], |
31
|
|
|
Literal['validation'], |
32
|
|
|
] |
33
|
|
|
|
34
|
|
|
TypeParallelism = Literal['thread', 'process', None] |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
class MetadataIndexColumn(str, enum.Enum): |
38
|
|
|
SUBJECT_ID = 'subject_id' |
39
|
|
|
SCAN_ID = 'scan_id' |
40
|
|
|
RECONSTRUCTION_ID = 'reconstruction_id' |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
class CtRate(SubjectsDataset): |
44
|
|
|
"""CT-RATE dataset. |
45
|
|
|
|
46
|
|
|
This class provides access to |
47
|
|
|
`CT-RATE <https://huggingface.co/datasets/ibrahimhamamci/CT-RATE>`_, |
48
|
|
|
which contains chest CT scans with associated radiology reports and |
49
|
|
|
abnormality labels. |
50
|
|
|
|
51
|
|
|
The dataset must have been downloaded previously. |
52
|
|
|
|
53
|
|
|
Args: |
54
|
|
|
root: Root directory where the dataset has been downloaded. |
55
|
|
|
split: Dataset split to use, either ``'train'`` or ``'validation'``. |
56
|
|
|
token: Hugging Face token for accessing gated repositories. Alternatively, |
57
|
|
|
login using `huggingface-cli login` to cache the token. |
58
|
|
|
num_subjects: Optional limit on the number of subjects to load (useful for |
59
|
|
|
testing). If ``None``, all subjects in the split are loaded. |
60
|
|
|
report_key: Key to use for storing radiology reports in the Subject metadata. |
61
|
|
|
sizes: List of image sizes (in pixels) to include. Default: [512, 768, 1024]. |
62
|
|
|
**kwargs: Additional arguments for SubjectsDataset. |
63
|
|
|
|
64
|
|
|
Examples: |
65
|
|
|
>>> dataset = CtRate('/path/to/data', split='train') |
66
|
|
|
""" |
67
|
|
|
|
68
|
|
|
_REPO_ID = 'ibrahimhamamci/CT-RATE' |
69
|
|
|
_FILENAME_KEY = 'VolumeName' |
70
|
|
|
_SIZES = [512, 768, 1024] |
71
|
|
|
ABNORMALITIES = [ |
72
|
|
|
'Medical material', |
73
|
|
|
'Arterial wall calcification', |
74
|
|
|
'Cardiomegaly', |
75
|
|
|
'Pericardial effusion', |
76
|
|
|
'Coronary artery wall calcification', |
77
|
|
|
'Hiatal hernia', |
78
|
|
|
'Lymphadenopathy', |
79
|
|
|
'Emphysema', |
80
|
|
|
'Atelectasis', |
81
|
|
|
'Lung nodule', |
82
|
|
|
'Lung opacity', |
83
|
|
|
'Pulmonary fibrotic sequela', |
84
|
|
|
'Pleural effusion', |
85
|
|
|
'Mosaic attenuation pattern', |
86
|
|
|
'Peribronchial thickening', |
87
|
|
|
'Consolidation', |
88
|
|
|
'Bronchiectasis', |
89
|
|
|
'Interlobular septal thickening', |
90
|
|
|
] |
91
|
|
|
|
92
|
|
|
def __init__( |
93
|
|
|
self, |
94
|
|
|
root: TypePath, |
95
|
|
|
split: TypeSplit = 'train', |
96
|
|
|
*, |
97
|
|
|
token: str | None = None, |
98
|
|
|
num_subjects: int | None = None, |
99
|
|
|
report_key: str = 'report', |
100
|
|
|
sizes: list[int] | None = None, |
101
|
|
|
**kwargs, |
102
|
|
|
): |
103
|
|
|
self._root_dir = Path(root) |
104
|
|
|
self._token = token |
105
|
|
|
self._num_subjects = num_subjects |
106
|
|
|
self._report_key = report_key |
107
|
|
|
self._sizes = self._SIZES if sizes is None else sizes |
108
|
|
|
|
109
|
|
|
self._split = self._parse_split(split) |
110
|
|
|
self.metadata = self._get_metadata() |
111
|
|
|
subjects_list = self._get_subjects_list(self.metadata) |
112
|
|
|
super().__init__(subjects_list, **kwargs) |
113
|
|
|
|
114
|
|
|
@staticmethod |
115
|
|
|
def _parse_split(split: str) -> str: |
116
|
|
|
"""Normalize the split name. |
117
|
|
|
|
118
|
|
|
Converts 'validation' to 'valid' and validates that the split name |
119
|
|
|
is one of the allowed values. |
120
|
|
|
|
121
|
|
|
Args: |
122
|
|
|
split: The split name to parse ('train', 'valid', or 'validation'). |
123
|
|
|
|
124
|
|
|
Returns: |
125
|
|
|
str: Normalized split name ('train' or 'valid'). |
126
|
|
|
|
127
|
|
|
Raises: |
128
|
|
|
ValueError: If the split name is not one of the allowed values. |
129
|
|
|
""" |
130
|
|
|
if split in ['valid', 'validation']: |
131
|
|
|
return 'valid' |
132
|
|
|
if split not in ['train', 'valid']: |
133
|
|
|
raise ValueError(f"Invalid split '{split}'. Use 'train' or 'valid'") |
134
|
|
|
return split |
135
|
|
|
|
136
|
|
|
def _get_csv( |
137
|
|
|
self, |
138
|
|
|
dirname: str, |
139
|
|
|
filename: str, |
140
|
|
|
) -> pd.DataFrame: |
141
|
|
|
"""Load a CSV file from the specified directory within the dataset. |
142
|
|
|
|
143
|
|
|
Args: |
144
|
|
|
dirname: Directory name within 'dataset/' where the CSV is located. |
145
|
|
|
filename: Name of the CSV file to load. |
146
|
|
|
""" |
147
|
|
|
subfolder = Path(f'dataset/{dirname}') |
148
|
|
|
path = Path(self._root_dir, subfolder, filename) |
149
|
|
|
pd = get_pandas() |
150
|
|
|
table = pd.read_csv(path) |
151
|
|
|
return table |
152
|
|
|
|
153
|
|
|
def _get_csv_prefix(self, expand_validation: bool = True) -> str: |
154
|
|
|
"""Get the prefix for CSV filenames based on the current split. |
155
|
|
|
|
156
|
|
|
Returns the appropriate prefix for CSV filenames based on the current split. |
157
|
|
|
For the validation split, can either return 'valid' or 'validation' depending |
158
|
|
|
on the expand_validation parameter. |
159
|
|
|
|
160
|
|
|
Args: |
161
|
|
|
expand_validation: If ``True`` and split is ``'valid'``, return |
162
|
|
|
``'validation'``. Otherwise, return the split name as is. |
163
|
|
|
""" |
164
|
|
|
if expand_validation and self._split == 'valid': |
165
|
|
|
prefix = 'validation' |
166
|
|
|
else: |
167
|
|
|
prefix = self._split |
168
|
|
|
return prefix |
169
|
|
|
|
170
|
|
|
def _get_metadata(self) -> pd.DataFrame: |
171
|
|
|
"""Load and process the dataset metadata. |
172
|
|
|
|
173
|
|
|
Loads metadata from the appropriate CSV file, filters images by size, |
174
|
|
|
extracts subject, scan, and reconstruction IDs from filenames, and |
175
|
|
|
merges in reports and abnormality labels. |
176
|
|
|
""" |
177
|
|
|
dirname = 'metadata' |
178
|
|
|
prefix = self._get_csv_prefix() |
179
|
|
|
filename = f'{prefix}_metadata.csv' |
180
|
|
|
metadata = self._get_csv(dirname, filename) |
181
|
|
|
|
182
|
|
|
# Exclude images with size not in self._sizes |
183
|
|
|
rows_int = metadata['Rows'].astype(int) |
184
|
|
|
metadata = metadata[rows_int.isin(self._sizes)] |
185
|
|
|
|
186
|
|
|
index_columns = [ |
187
|
|
|
MetadataIndexColumn.SUBJECT_ID.value, |
188
|
|
|
MetadataIndexColumn.SCAN_ID.value, |
189
|
|
|
MetadataIndexColumn.RECONSTRUCTION_ID.value, |
190
|
|
|
] |
191
|
|
|
pattern = r'\w+_(\d+)_(\w+)_(\d+)\.nii\.gz' |
192
|
|
|
metadata[index_columns] = metadata[self._FILENAME_KEY].str.extract(pattern) |
193
|
|
|
|
194
|
|
|
if self._num_subjects is not None: |
195
|
|
|
metadata = self._keep_n_subjects(metadata, self._num_subjects) |
196
|
|
|
|
197
|
|
|
# Add reports and abnormality labels to metadata, keeping only the rows for the |
198
|
|
|
# images in the metadata table |
199
|
|
|
metadata = self._merge(metadata, self._get_reports()) |
200
|
|
|
metadata = self._merge(metadata, self._get_labels()) |
201
|
|
|
|
202
|
|
|
metadata.set_index(index_columns, inplace=True) |
203
|
|
|
return metadata |
204
|
|
|
|
205
|
|
|
def _merge(self, base_df: pd.DataFrame, new_df: pd.DataFrame) -> pd.DataFrame: |
|
|
|
|
206
|
|
|
"""Merge a new dataframe into the base dataframe using the filename as the key. |
207
|
|
|
|
208
|
|
|
This method performs a left join between ``base_df`` and ``new_df`` using the |
209
|
|
|
volume filename as the join key, ensuring that all records from ``base_df`` are |
210
|
|
|
preserved while matching data from ``new_df`` is added. |
211
|
|
|
|
212
|
|
|
Args: |
213
|
|
|
base_df: The primary dataframe to merge into. |
214
|
|
|
new_df: The dataframe containing additional data to be merged. |
215
|
|
|
|
216
|
|
|
Returns: |
217
|
|
|
pd.DataFrame: The merged dataframe with all rows from base_df and |
218
|
|
|
matching columns from new_df. |
219
|
|
|
""" |
220
|
|
|
pd = get_pandas() |
221
|
|
|
return pd.merge( |
222
|
|
|
base_df, |
223
|
|
|
new_df, |
224
|
|
|
on=self._FILENAME_KEY, |
225
|
|
|
how='left', |
226
|
|
|
) |
227
|
|
|
|
228
|
|
|
def _keep_n_subjects(self, metadata: pd.DataFrame, n: int) -> pd.DataFrame: |
|
|
|
|
229
|
|
|
"""Limit the metadata to the first ``n`` subjects. |
230
|
|
|
|
231
|
|
|
Args: |
232
|
|
|
metadata: The complete metadata dataframe. |
233
|
|
|
n: Maximum number of subjects to keep. |
234
|
|
|
""" |
235
|
|
|
unique_subjects = metadata['subject_id'].unique() |
236
|
|
|
selected_subjects = unique_subjects[:n] |
237
|
|
|
return metadata[metadata['subject_id'].isin(selected_subjects)] |
238
|
|
|
|
239
|
|
|
def _get_reports(self) -> pd.DataFrame: |
240
|
|
|
"""Load the radiology reports associated with the CT scans. |
241
|
|
|
|
242
|
|
|
Retrieves the CSV file containing radiology reports for the current split |
243
|
|
|
(train or validation). |
244
|
|
|
""" |
245
|
|
|
dirname = 'radiology_text_reports' |
246
|
|
|
prefix = self._get_csv_prefix() |
247
|
|
|
filename = f'{prefix}_reports.csv' |
248
|
|
|
return self._get_csv(dirname, filename) |
249
|
|
|
|
250
|
|
|
def _get_labels(self) -> pd.DataFrame: |
251
|
|
|
"""Load the abnormality labels for the CT scans. |
252
|
|
|
|
253
|
|
|
Retrieves the CSV file containing predicted abnormality labels for the |
254
|
|
|
current split. |
255
|
|
|
""" |
256
|
|
|
dirname = 'multi_abnormality_labels' |
257
|
|
|
prefix = self._get_csv_prefix(expand_validation=False) |
258
|
|
|
filename = f'{prefix}_predicted_labels.csv' |
259
|
|
|
return self._get_csv(dirname, filename) |
260
|
|
|
|
261
|
|
|
def _get_subjects_list(self, metadata: pd.DataFrame) -> list[Subject]: |
|
|
|
|
262
|
|
|
"""Create a list of Subject instances from the metadata. |
263
|
|
|
|
264
|
|
|
Processes the metadata to create Subject objects, each containing one or more |
265
|
|
|
CT images. Processing is performed in parallel. |
266
|
|
|
|
267
|
|
|
Note: |
268
|
|
|
This method uses parallelization to improve performance when creating |
269
|
|
|
multiple Subject instances. |
270
|
|
|
""" |
271
|
|
|
df_no_index = metadata.reset_index() |
272
|
|
|
num_subjects = df_no_index['subject_id'].nunique() |
273
|
|
|
iterable = df_no_index.groupby('subject_id') |
274
|
|
|
subjects = thread_map( |
275
|
|
|
self._get_subject, |
276
|
|
|
iterable, |
277
|
|
|
max_workers=multiprocessing.cpu_count(), |
278
|
|
|
total=num_subjects, |
279
|
|
|
) |
280
|
|
|
return subjects |
281
|
|
|
|
282
|
|
|
def _get_subject( |
283
|
|
|
self, |
284
|
|
|
subject_id_and_metadata: tuple[str, pd.DataFrame], |
|
|
|
|
285
|
|
|
) -> Subject: |
286
|
|
|
"""Create a Subject instance for a specific subject. |
287
|
|
|
|
288
|
|
|
Processes all images belonging to a single subject and creates a Subject |
289
|
|
|
object containing those images. |
290
|
|
|
|
291
|
|
|
Args: |
292
|
|
|
subject_id_and_metadata: A tuple containing the subject ID (string) and a |
293
|
|
|
DataFrame containing metadata for all images associated to that subject. |
294
|
|
|
""" |
295
|
|
|
subject_id, subject_df = subject_id_and_metadata |
296
|
|
|
subject_dict: dict[str, str | ScalarImage] = {'subject_id': subject_id} |
297
|
|
|
for _, image_row in subject_df.iterrows(): |
298
|
|
|
image = self._instantiate_image(image_row) |
299
|
|
|
scan_id = image_row['scan_id'] |
300
|
|
|
reconstruction_id = image_row['reconstruction_id'] |
301
|
|
|
image_key = f'scan_{scan_id}_reconstruction_{reconstruction_id}' |
302
|
|
|
subject_dict[image_key] = image |
303
|
|
|
return Subject(**subject_dict) # type: ignore[arg-type] |
304
|
|
|
|
305
|
|
|
def _instantiate_image(self, image_row: pd.Series) -> ScalarImage: |
|
|
|
|
306
|
|
|
"""Create a ScalarImage object for a specific image. |
307
|
|
|
|
308
|
|
|
Processes a row from the metadata DataFrame to create a ScalarImage object, |
309
|
|
|
|
310
|
|
|
Args: |
311
|
|
|
image_row: A pandas Series representing a row from the metadata DataFrame, |
312
|
|
|
containing information about a single image. |
313
|
|
|
""" |
314
|
|
|
image_dict = image_row.to_dict() |
315
|
|
|
filename = image_dict[self._FILENAME_KEY] |
316
|
|
|
image_path = self._root_dir / self._get_image_path(filename) |
317
|
|
|
report_dict = self._extract_report_dict(image_dict) |
318
|
|
|
image_dict[self._report_key] = report_dict |
319
|
|
|
image = ScalarImage(image_path, **image_dict) |
320
|
|
|
return image |
321
|
|
|
|
322
|
|
|
def _extract_report_dict(self, subject_dict: dict[str, str]) -> dict[str, str]: |
323
|
|
|
"""Extract radiology report information from the subject dictionary. |
324
|
|
|
|
325
|
|
|
Extracts the English radiology report components (clinical information, |
326
|
|
|
findings, impressions, and technique) from the subject dictionary and |
327
|
|
|
removes these keys from the original dictionary. |
328
|
|
|
|
329
|
|
|
Args: |
330
|
|
|
subject_dict: Image metadata including report fields. |
331
|
|
|
|
332
|
|
|
Note: |
333
|
|
|
This method modifies the input subject_dict by removing the report keys. |
334
|
|
|
""" |
335
|
|
|
report_keys = [ |
336
|
|
|
'ClinicalInformation_EN', |
337
|
|
|
'Findings_EN', |
338
|
|
|
'Impressions_EN', |
339
|
|
|
'Technique_EN', |
340
|
|
|
] |
341
|
|
|
report_dict = {} |
342
|
|
|
for key in report_keys: |
343
|
|
|
report_dict[key] = subject_dict.pop(key) |
344
|
|
|
return report_dict |
345
|
|
|
|
346
|
|
|
@staticmethod |
347
|
|
|
def _get_image_path(filename: str) -> Path: |
348
|
|
|
"""Construct the relative path to an image file within the dataset structure. |
349
|
|
|
|
350
|
|
|
Parses the filename to determine the hierarchical directory structure |
351
|
|
|
where the image is stored in the CT-RATE dataset. |
352
|
|
|
|
353
|
|
|
Args: |
354
|
|
|
filename: The name of the image file (e.g., 'train_2_a_1.nii.gz'). |
355
|
|
|
|
356
|
|
|
Returns: |
357
|
|
|
Path: The relative path to the image file within the dataset directory. |
358
|
|
|
|
359
|
|
|
Example: |
360
|
|
|
>>> path = CtRate._get_image_path('train_2_a_1.nii.gz') |
361
|
|
|
# Returns Path('dataset/train/train_2/train_2_a/train_2_a_1.nii.gz') |
362
|
|
|
""" |
363
|
|
|
parts = filename.split('_') |
364
|
|
|
base_dir = 'dataset' |
365
|
|
|
split_dir = parts[0] |
366
|
|
|
level1 = f'{parts[0]}_{parts[1]}' |
367
|
|
|
level2 = f'{level1}_{parts[2]}' |
368
|
|
|
return Path(base_dir, split_dir, level1, level2, filename) |
369
|
|
|
|
370
|
|
|
@staticmethod |
371
|
|
|
def _fix_image(image: ScalarImage, out_path: Path, *, force: bool = False) -> None: |
372
|
|
|
"""Fix the spatial metadata of a CT-RATE image file. |
373
|
|
|
|
374
|
|
|
The original NIfTI files in the CT-RATE dataset have incorrect spatial |
375
|
|
|
metadata. This method reads the image, fixes the spacing, origin, and |
376
|
|
|
orientation based on the metadata provided in the CSV, and applies the correct |
377
|
|
|
rescaling to convert to Hounsfield units. |
378
|
|
|
|
379
|
|
|
Args: |
380
|
|
|
in_path: The path to the image file to fix. |
381
|
|
|
out_path: The path where the fixed image will be saved. |
382
|
|
|
|
383
|
|
|
Note: |
384
|
|
|
This method overwrites the original file with the fixed version. |
385
|
|
|
The fixed image is stored as INT16 with proper HU values. |
386
|
|
|
""" |
387
|
|
|
# Adapted from https://huggingface.co/datasets/ibrahimhamamci/CT-RATE/blob/main/download_scripts/fix_metadata.py |
388
|
|
|
if not force and out_path.exists(): |
389
|
|
|
return |
390
|
|
|
spacing_x, spacing_y = map(float, ast.literal_eval(image['XYSpacing'])) |
391
|
|
|
spacing_z = image['ZSpacing'] |
392
|
|
|
image_sitk = sitk.ReadImage(str(image.path)) |
393
|
|
|
image_sitk.SetSpacing((spacing_x, spacing_y, spacing_z)) |
394
|
|
|
|
395
|
|
|
image_sitk.SetOrigin(ast.literal_eval(image['ImagePositionPatient'])) |
396
|
|
|
|
397
|
|
|
orientation = ast.literal_eval(image['ImageOrientationPatient']) |
398
|
|
|
row_cosine, col_cosine = orientation[:3], orientation[3:6] |
399
|
|
|
z_cosine = np.cross(row_cosine, col_cosine).tolist() |
400
|
|
|
image_sitk.SetDirection(row_cosine + col_cosine + z_cosine) |
401
|
|
|
|
402
|
|
|
RescaleIntercept = image['RescaleIntercept'] |
403
|
|
|
RescaleSlope = image['RescaleSlope'] |
404
|
|
|
adjusted_hu = image_sitk * RescaleSlope + RescaleIntercept |
405
|
|
|
cast_int16 = sitk.Cast(adjusted_hu, sitk.sitkInt16) |
406
|
|
|
|
407
|
|
|
out_path.parent.mkdir(parents=True, exist_ok=True) |
408
|
|
|
sitk.WriteImage(cast_int16, str(out_path)) |
409
|
|
|
return cast_int16 |
410
|
|
|
|
411
|
|
|
def _copy_not_images(self, out_dir: Path) -> None: |
412
|
|
|
"""Copy all files from the root directory except the images.""" |
413
|
|
|
for path in self._root_dir.iterdir(): |
414
|
|
|
if path.name == 'dataset': |
415
|
|
|
for subdirectory in path.iterdir(): |
416
|
|
|
if subdirectory.name in ['train', 'valid']: |
417
|
|
|
continue |
418
|
|
|
print( |
419
|
|
|
f'Copying {subdirectory} to {out_dir / subdirectory.relative_to(self._root_dir)}' |
420
|
|
|
) |
421
|
|
|
shutil.copytree( |
422
|
|
|
subdirectory, |
423
|
|
|
out_dir / subdirectory.relative_to(self._root_dir), |
424
|
|
|
dirs_exist_ok=True, |
425
|
|
|
) |
426
|
|
|
elif path.name.startswith('.'): |
427
|
|
|
continue |
428
|
|
|
elif path.is_dir(): |
429
|
|
|
print(f'Copying {path} to {out_dir / path.name}') |
430
|
|
|
shutil.copytree( |
431
|
|
|
path, |
432
|
|
|
out_dir / path.name, |
433
|
|
|
dirs_exist_ok=True, |
434
|
|
|
) |
435
|
|
|
else: |
436
|
|
|
print(f'Copying {path} to {out_dir / path.name}') |
437
|
|
|
shutil.copy(path, out_dir / path.name) |
438
|
|
|
|
439
|
|
|
def fix_metadata( |
440
|
|
|
self, |
441
|
|
|
out_dir: str | Path, |
442
|
|
|
parallelism: TypeParallelism = None, |
443
|
|
|
) -> CtRate: |
444
|
|
|
"""Fix the metadata of all images in the dataset. |
445
|
|
|
|
446
|
|
|
Reads each image, applies the correct spatial metadata, and saves the fixed |
447
|
|
|
image to the specified output directory. |
448
|
|
|
|
449
|
|
|
Args: |
450
|
|
|
out_dir: The directory where the fixed images will be saved. |
451
|
|
|
""" |
452
|
|
|
out_dir = Path(out_dir) |
453
|
|
|
out_dir.mkdir(parents=True, exist_ok=True) |
454
|
|
|
# self._copy_not_images(out_dir) |
455
|
|
|
images = [] |
456
|
|
|
out_paths = [] |
457
|
|
|
for subject in self.dry_iter(): |
458
|
|
|
for image in subject.get_images(): |
459
|
|
|
out_path = out_dir / image.path.relative_to(self._root_dir) |
460
|
|
|
images.append(image) |
461
|
|
|
out_paths.append(out_path) |
462
|
|
|
if parallelism == 'thread': |
463
|
|
|
thread_map( |
464
|
|
|
self._fix_image, |
465
|
|
|
images, |
466
|
|
|
out_paths, |
467
|
|
|
max_workers=multiprocessing.cpu_count(), |
468
|
|
|
desc='Fixing metadata', |
469
|
|
|
) |
470
|
|
|
elif parallelism == 'process': |
471
|
|
|
process_map( |
472
|
|
|
self._fix_image, |
473
|
|
|
images, |
474
|
|
|
out_paths, |
475
|
|
|
max_workers=multiprocessing.cpu_count(), |
476
|
|
|
desc='Fixing metadata', |
477
|
|
|
) |
478
|
|
|
else: |
479
|
|
|
zipped = zip(images, out_paths) |
480
|
|
|
with tqdm(total=len(images), desc='Fixing metadata') as pbar: |
481
|
|
|
for image, out_path in zipped: |
482
|
|
|
pbar.set_description(f'Fixing {image.path.name}') |
483
|
|
|
self._fix_image(image, out_path) |
484
|
|
|
pbar.update(1) |
485
|
|
|
new_dataset = CtRate( |
486
|
|
|
out_dir, |
487
|
|
|
split=self._split, |
488
|
|
|
token=self._token, |
489
|
|
|
num_subjects=self._num_subjects, |
490
|
|
|
report_key=self._report_key, |
491
|
|
|
sizes=self._sizes, |
492
|
|
|
) |
493
|
|
|
return new_dataset |
494
|
|
|
|