1
|
|
|
from __future__ import annotations |
2
|
|
|
|
3
|
|
|
import ast |
4
|
|
|
import multiprocessing |
5
|
|
|
from pathlib import Path |
6
|
|
|
from typing import TYPE_CHECKING |
7
|
|
|
from typing import Literal |
8
|
|
|
from typing import Optional |
9
|
|
|
from typing import Union |
10
|
|
|
|
11
|
|
|
import numpy as np |
12
|
|
|
import SimpleITK as sitk |
13
|
|
|
from tqdm.contrib.concurrent import thread_map |
14
|
|
|
|
15
|
|
|
from ..data.dataset import SubjectsDataset |
16
|
|
|
from ..data.image import ScalarImage |
17
|
|
|
from ..data.subject import Subject |
18
|
|
|
from ..external.imports import get_huggingface_hub |
19
|
|
|
from ..external.imports import get_pandas |
20
|
|
|
from ..types import TypePath |
21
|
|
|
|
22
|
|
|
if TYPE_CHECKING: |
23
|
|
|
import pandas as pd |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
TypeSplit = Union[ |
27
|
|
|
Literal['train'], |
28
|
|
|
Literal['valid'], |
29
|
|
|
Literal['validation'], |
30
|
|
|
] |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
class CtRate(SubjectsDataset): |
34
|
|
|
"""CT-RATE dataset. |
35
|
|
|
|
36
|
|
|
This class provides access to |
37
|
|
|
`CT-RATE <https://huggingface.co/datasets/ibrahimhamamci/CT-RATE>`_, |
38
|
|
|
which contains chest CT scans with associated radiology reports and |
39
|
|
|
abnormality labels. The dataset can be automatically downloaded from |
40
|
|
|
Hugging Face if needed. |
41
|
|
|
|
42
|
|
|
Args: |
43
|
|
|
root: Root directory where the dataset is stored or will be downloaded to. |
44
|
|
|
split: Dataset split to use, either ``'train'`` or ``'validation'``. |
45
|
|
|
token: Hugging Face token for accessing gated repositories. Alternatively, |
46
|
|
|
login using `huggingface-cli login` to cache the token. |
47
|
|
|
download: If True, download the dataset if files are not found locally. |
48
|
|
|
num_subjects: Optional limit on the number of subjects to load (useful for |
49
|
|
|
testing). If ``None``, all subjects in the split are loaded. |
50
|
|
|
report_key: Key to use for storing radiology reports in the Subject metadata. |
51
|
|
|
sizes: List of image sizes (in pixels) to include. Default: [512, 768, 1024]. |
52
|
|
|
**kwargs: Additional arguments for SubjectsDataset. |
53
|
|
|
|
54
|
|
|
Examples: |
55
|
|
|
>>> dataset = CtRate('/path/to/data', split='train', download=True) |
56
|
|
|
""" |
57
|
|
|
|
58
|
|
|
_REPO_ID = 'ibrahimhamamci/CT-RATE' |
59
|
|
|
_FILENAME_KEY = 'VolumeName' |
60
|
|
|
_SIZES = [512, 768, 1024] |
61
|
|
|
ABNORMALITIES = [ |
62
|
|
|
'Medical material', |
63
|
|
|
'Arterial wall calcification', |
64
|
|
|
'Cardiomegaly', |
65
|
|
|
'Pericardial effusion', |
66
|
|
|
'Coronary artery wall calcification', |
67
|
|
|
'Hiatal hernia', |
68
|
|
|
'Lymphadenopathy', |
69
|
|
|
'Emphysema', |
70
|
|
|
'Atelectasis', |
71
|
|
|
'Lung nodule', |
72
|
|
|
'Lung opacity', |
73
|
|
|
'Pulmonary fibrotic sequela', |
74
|
|
|
'Pleural effusion', |
75
|
|
|
'Mosaic attenuation pattern', |
76
|
|
|
'Peribronchial thickening', |
77
|
|
|
'Consolidation', |
78
|
|
|
'Bronchiectasis', |
79
|
|
|
'Interlobular septal thickening', |
80
|
|
|
] |
81
|
|
|
|
82
|
|
|
def __init__( |
83
|
|
|
self, |
84
|
|
|
root: TypePath, |
85
|
|
|
split: TypeSplit = 'train', |
86
|
|
|
*, |
87
|
|
|
token: str | None = None, |
88
|
|
|
download: bool = False, |
89
|
|
|
num_subjects: int | None = None, |
90
|
|
|
report_key: str = 'report', |
91
|
|
|
sizes: list[int] | None = None, |
92
|
|
|
**kwargs, |
93
|
|
|
): |
94
|
|
|
self._root_dir = Path(root) |
95
|
|
|
self._token = token |
96
|
|
|
self._download = download |
97
|
|
|
self._num_subjects = num_subjects |
98
|
|
|
self._report_key = report_key |
99
|
|
|
self._sizes = self._SIZES if sizes is None else sizes |
100
|
|
|
|
101
|
|
|
self._split = self._parse_split(split) |
102
|
|
|
self.metadata = self._get_metadata() |
103
|
|
|
subjects_list = self._get_subjects_list(self.metadata) |
104
|
|
|
super().__init__(subjects_list, **kwargs) |
105
|
|
|
|
106
|
|
|
@staticmethod |
107
|
|
|
def _parse_split(split: str) -> str: |
108
|
|
|
"""Normalize the split name. |
109
|
|
|
|
110
|
|
|
Converts 'validation' to 'valid' and validates that the split name |
111
|
|
|
is one of the allowed values. |
112
|
|
|
|
113
|
|
|
Args: |
114
|
|
|
split: The split name to parse ('train', 'valid', or 'validation'). |
115
|
|
|
|
116
|
|
|
Returns: |
117
|
|
|
str: Normalized split name ('train' or 'valid'). |
118
|
|
|
|
119
|
|
|
Raises: |
120
|
|
|
ValueError: If the split name is not one of the allowed values. |
121
|
|
|
""" |
122
|
|
|
if split in ['valid', 'validation']: |
123
|
|
|
return 'valid' |
124
|
|
|
if split not in ['train', 'valid']: |
125
|
|
|
raise ValueError(f"Invalid split '{split}'. Use 'train' or 'valid'") |
126
|
|
|
return split |
127
|
|
|
|
128
|
|
|
def _get_csv( |
129
|
|
|
self, |
130
|
|
|
dirname: str, |
131
|
|
|
filename: str, |
132
|
|
|
) -> pd.DataFrame: |
133
|
|
|
"""Download (if needed) and load a CSV file from the dataset. |
134
|
|
|
|
135
|
|
|
Load a CSV file from the specified directory within the dataset. |
136
|
|
|
If the file doesn't exist and download is enabled, download it. |
137
|
|
|
|
138
|
|
|
Args: |
139
|
|
|
dirname: Directory name within 'dataset/' where the CSV is located. |
140
|
|
|
filename: Name of the CSV file to load. |
141
|
|
|
""" |
142
|
|
|
subfolder = Path(f'dataset/{dirname}') |
143
|
|
|
path = Path(self._root_dir, subfolder, filename) |
144
|
|
|
if not path.exists(): |
145
|
|
|
self._download_file_if_needed(path) |
146
|
|
|
pd = get_pandas() |
147
|
|
|
table = pd.read_csv(path) |
148
|
|
|
return table |
149
|
|
|
|
150
|
|
|
def _get_csv_prefix(self, expand_validation: bool = True) -> str: |
151
|
|
|
"""Get the prefix for CSV filenames based on the current split. |
152
|
|
|
|
153
|
|
|
Returns the appropriate prefix for CSV filenames based on the current split. |
154
|
|
|
For the validation split, can either return 'valid' or 'validation' depending |
155
|
|
|
on the expand_validation parameter. |
156
|
|
|
|
157
|
|
|
Args: |
158
|
|
|
expand_validation: If ``True`` and split is ``'valid'``, return |
159
|
|
|
``'validation'``. Otherwise, return the split name as is. |
160
|
|
|
""" |
161
|
|
|
if expand_validation and self._split == 'valid': |
162
|
|
|
prefix = 'validation' |
163
|
|
|
else: |
164
|
|
|
prefix = self._split |
165
|
|
|
return prefix |
166
|
|
|
|
167
|
|
|
def _get_metadata(self) -> pd.DataFrame: |
168
|
|
|
"""Load and process the dataset metadata. |
169
|
|
|
|
170
|
|
|
Loads metadata from the appropriate CSV file, filters images by size, |
171
|
|
|
extracts subject, scan, and reconstruction IDs from filenames, and |
172
|
|
|
merges in reports and abnormality labels. |
173
|
|
|
""" |
174
|
|
|
dirname = 'metadata' |
175
|
|
|
prefix = self._get_csv_prefix() |
176
|
|
|
filename = f'{prefix}_metadata.csv' |
177
|
|
|
metadata = self._get_csv(dirname, filename) |
178
|
|
|
|
179
|
|
|
# Exclude images with size not in self._sizes |
180
|
|
|
rows_int = metadata['Rows'].astype(int) |
181
|
|
|
metadata = metadata[rows_int.isin(self._sizes)] |
182
|
|
|
|
183
|
|
|
index_columns = [ |
184
|
|
|
'subject_id', |
185
|
|
|
'scan_id', |
186
|
|
|
'reconstruction_id', |
187
|
|
|
] |
188
|
|
|
pattern = r'\w+_(\d+)_(\w+)_(\d+)\.nii\.gz' |
189
|
|
|
metadata[index_columns] = metadata[self._FILENAME_KEY].str.extract(pattern) |
190
|
|
|
|
191
|
|
|
if self._num_subjects is not None: |
192
|
|
|
metadata = self._keep_n_subjects(metadata, self._num_subjects) |
193
|
|
|
|
194
|
|
|
# Add reports and abnormality labels to metadata, keeping only the rows for the |
195
|
|
|
# images in the metadata table |
196
|
|
|
metadata = self._merge(metadata, self._get_reports()) |
197
|
|
|
metadata = self._merge(metadata, self._get_labels()) |
198
|
|
|
|
199
|
|
|
metadata.set_index(index_columns, inplace=True) |
200
|
|
|
return metadata |
201
|
|
|
|
202
|
|
|
def _merge(self, base_df: pd.DataFrame, new_df: pd.DataFrame) -> pd.DataFrame: |
|
|
|
|
203
|
|
|
"""Merge a new dataframe into the base dataframe using the filename as the key. |
204
|
|
|
|
205
|
|
|
This method performs a left join between ``base_df`` and ``new_df`` using the |
206
|
|
|
volume filename as the join key, ensuring that all records from ``base_df`` are |
207
|
|
|
preserved while matching data from ``new_df`` is added. |
208
|
|
|
|
209
|
|
|
Args: |
210
|
|
|
base_df: The primary dataframe to merge into. |
211
|
|
|
new_df: The dataframe containing additional data to be merged. |
212
|
|
|
|
213
|
|
|
Returns: |
214
|
|
|
pd.DataFrame: The merged dataframe with all rows from base_df and |
215
|
|
|
matching columns from new_df. |
216
|
|
|
""" |
217
|
|
|
pd = get_pandas() |
218
|
|
|
return pd.merge( |
219
|
|
|
base_df, |
220
|
|
|
new_df, |
221
|
|
|
on=self._FILENAME_KEY, |
222
|
|
|
how='left', |
223
|
|
|
) |
224
|
|
|
|
225
|
|
|
def _keep_n_subjects(self, metadata: pd.DataFrame, n: int) -> pd.DataFrame: |
|
|
|
|
226
|
|
|
"""Limit the metadata to the first ``n`` subjects. |
227
|
|
|
|
228
|
|
|
Args: |
229
|
|
|
metadata: The complete metadata dataframe. |
230
|
|
|
n: Maximum number of subjects to keep. |
231
|
|
|
""" |
232
|
|
|
unique_subjects = metadata['subject_id'].unique() |
233
|
|
|
selected_subjects = unique_subjects[:n] |
234
|
|
|
return metadata[metadata['subject_id'].isin(selected_subjects)] |
235
|
|
|
|
236
|
|
|
def _get_reports(self) -> pd.DataFrame: |
237
|
|
|
"""Load the radiology reports associated with the CT scans. |
238
|
|
|
|
239
|
|
|
Retrieves the CSV file containing radiology reports for the current split |
240
|
|
|
(train or validation). |
241
|
|
|
""" |
242
|
|
|
dirname = 'radiology_text_reports' |
243
|
|
|
prefix = self._get_csv_prefix() |
244
|
|
|
filename = f'{prefix}_reports.csv' |
245
|
|
|
return self._get_csv(dirname, filename) |
246
|
|
|
|
247
|
|
|
def _get_labels(self) -> pd.DataFrame: |
248
|
|
|
"""Load the abnormality labels for the CT scans. |
249
|
|
|
|
250
|
|
|
Retrieves the CSV file containing predicted abnormality labels for the |
251
|
|
|
current split. |
252
|
|
|
""" |
253
|
|
|
dirname = 'multi_abnormality_labels' |
254
|
|
|
prefix = self._get_csv_prefix(expand_validation=False) |
255
|
|
|
filename = f'{prefix}_predicted_labels.csv' |
256
|
|
|
return self._get_csv(dirname, filename) |
257
|
|
|
|
258
|
|
|
def _download_file_if_needed(self, path: Path) -> None: |
259
|
|
|
"""Download a file if it does not exist locally and ``download`` is enabled. |
260
|
|
|
|
261
|
|
|
Checks if the specified file exists at the given path. If not, and ``download`` |
262
|
|
|
is enabled, it downloads the file; otherwise, it raises an error. |
263
|
|
|
|
264
|
|
|
Args: |
265
|
|
|
path: The local file path to check and potentially download to. |
266
|
|
|
|
267
|
|
|
Raises: |
268
|
|
|
FileNotFoundError: If the file doesn't exist and download=False. |
269
|
|
|
""" |
270
|
|
|
if self._download: |
271
|
|
|
self._download_file(path) |
272
|
|
|
else: |
273
|
|
|
raise FileNotFoundError( |
274
|
|
|
f'File "{path}" not found.' |
275
|
|
|
" Set 'download=True' to download the dataset" |
276
|
|
|
) |
277
|
|
|
|
278
|
|
|
def _download_file(self, path: Path) -> None: |
279
|
|
|
"""Download a file from the Hugging Face repository to the specified path. |
280
|
|
|
|
281
|
|
|
Downloads a single file from the CT-RATE dataset repository on Hugging Face, |
282
|
|
|
preserving the directory structure. |
283
|
|
|
|
284
|
|
|
Args: |
285
|
|
|
path: The destination path where the file will be saved. |
286
|
|
|
|
287
|
|
|
Raises: |
288
|
|
|
RuntimeError: If the repository is gated and no valid token is provided. |
289
|
|
|
|
290
|
|
|
Note: |
291
|
|
|
This method requires access to the CT-RATE repository. If the repository |
292
|
|
|
is gated, a valid Hugging Face token with appropriate permissions must |
293
|
|
|
be provided, or the user must log in using the Hugging Face CLI. |
294
|
|
|
""" |
295
|
|
|
relative_path = path.relative_to(self._root_dir) |
296
|
|
|
huggingface_hub = get_huggingface_hub() |
297
|
|
|
try: |
298
|
|
|
huggingface_hub.hf_hub_download( |
299
|
|
|
repo_id=self._REPO_ID, |
300
|
|
|
repo_type='dataset', |
301
|
|
|
token=self._token, |
302
|
|
|
subfolder=str(relative_path.parent), |
303
|
|
|
filename=relative_path.name, |
304
|
|
|
local_dir=self._root_dir, |
305
|
|
|
) |
306
|
|
|
except huggingface_hub.errors.GatedRepoError as e: |
307
|
|
|
message = ( |
308
|
|
|
f'The dataset "{self._REPO_ID}" is gated. Visit' |
309
|
|
|
f' https://huggingface.co/datasets/{self._REPO_ID}, accept the' |
310
|
|
|
' terms and conditions, and log in or create and pass a token to' |
311
|
|
|
' the `token` argument' |
312
|
|
|
) |
313
|
|
|
raise RuntimeError(message) from e |
314
|
|
|
|
315
|
|
|
def _get_subjects_list(self, metadata: pd.DataFrame) -> list[Subject]: |
|
|
|
|
316
|
|
|
"""Create a list of Subject instances from the metadata. |
317
|
|
|
|
318
|
|
|
Processes the metadata to create Subject objects, each containing one or more |
319
|
|
|
CT images. Processing is performed in parallel. |
320
|
|
|
|
321
|
|
|
Note: |
322
|
|
|
This method uses parallelization to improve performance when creating |
323
|
|
|
multiple Subject instances. |
324
|
|
|
""" |
325
|
|
|
df_no_index = metadata.reset_index() |
326
|
|
|
num_subjects = df_no_index['subject_id'].nunique() |
327
|
|
|
iterable = df_no_index.groupby('subject_id') |
328
|
|
|
subjects = thread_map( |
329
|
|
|
self._get_subject, |
330
|
|
|
iterable, |
331
|
|
|
max_workers=multiprocessing.cpu_count(), |
332
|
|
|
total=num_subjects, |
333
|
|
|
) |
334
|
|
|
return subjects |
335
|
|
|
|
336
|
|
|
def _get_subject( |
337
|
|
|
self, |
338
|
|
|
subject_id_and_metadata: tuple[str, pd.DataFrame], |
|
|
|
|
339
|
|
|
) -> Subject: |
340
|
|
|
"""Create a Subject instance for a specific subject. |
341
|
|
|
|
342
|
|
|
Processes all images belonging to a single subject and creates a Subject |
343
|
|
|
object containing those images. |
344
|
|
|
|
345
|
|
|
Args: |
346
|
|
|
subject_id_and_metadata: A tuple containing the subject ID (string) and a |
347
|
|
|
DataFrame containing metadata for all images associated to that subject. |
348
|
|
|
""" |
349
|
|
|
subject_id, subject_df = subject_id_and_metadata |
350
|
|
|
subject_dict: dict[str, str | ScalarImage] = {'subject_id': subject_id} |
351
|
|
|
for _, image_row in subject_df.iterrows(): |
352
|
|
|
image = self._instantiate_image(image_row) |
353
|
|
|
scan_id = image_row['scan_id'] |
354
|
|
|
reconstruction_id = image_row['reconstruction_id'] |
355
|
|
|
image_key = f'scan_{scan_id}_reconstruction_{reconstruction_id}' |
356
|
|
|
subject_dict[image_key] = image |
357
|
|
|
return Subject(**subject_dict) # type: ignore[arg-type] |
358
|
|
|
|
359
|
|
|
def _instantiate_image(self, image_row: pd.Series) -> ScalarImage: |
|
|
|
|
360
|
|
|
"""Create a ScalarImage object for a specific image. |
361
|
|
|
|
362
|
|
|
Processes a row from the metadata DataFrame to create a ScalarImage object, |
363
|
|
|
downloading the image if necessary and extracting the radiology report. |
364
|
|
|
|
365
|
|
|
Args: |
366
|
|
|
image_row: A pandas Series representing a row from the metadata DataFrame, |
367
|
|
|
containing information about a single image. |
368
|
|
|
|
369
|
|
|
Note: |
370
|
|
|
If the image file doesn't exist locally and download is enabled, this |
371
|
|
|
method will download the file and fix the metadata. |
372
|
|
|
""" |
373
|
|
|
image_dict = image_row.to_dict() |
374
|
|
|
filename = image_dict[self._FILENAME_KEY] |
375
|
|
|
image_path = self._root_dir / self._get_image_path(filename) |
376
|
|
|
if not image_path.exists(): |
377
|
|
|
self._download_file_if_needed(image_path) |
378
|
|
|
self._fix_image(image_path, image_dict) |
379
|
|
|
report_dict = self._extract_report_dict(image_dict) |
380
|
|
|
image_dict[self._report_key] = report_dict |
381
|
|
|
image = ScalarImage(image_path, **image_dict) |
382
|
|
|
return image |
383
|
|
|
|
384
|
|
|
def _extract_report_dict(self, subject_dict: dict[str, str]) -> dict[str, str]: |
385
|
|
|
"""Extract radiology report information from the subject dictionary. |
386
|
|
|
|
387
|
|
|
Extracts the English radiology report components (clinical information, |
388
|
|
|
findings, impressions, and technique) from the subject dictionary and |
389
|
|
|
removes these keys from the original dictionary. |
390
|
|
|
|
391
|
|
|
Args: |
392
|
|
|
subject_dict: Image metadata including report fields. |
393
|
|
|
|
394
|
|
|
Note: |
395
|
|
|
This method modifies the input subject_dict by removing the report keys. |
396
|
|
|
""" |
397
|
|
|
report_keys = [ |
398
|
|
|
'ClinicalInformation_EN', |
399
|
|
|
'Findings_EN', |
400
|
|
|
'Impressions_EN', |
401
|
|
|
'Technique_EN', |
402
|
|
|
] |
403
|
|
|
report_dict = {} |
404
|
|
|
for key in report_keys: |
405
|
|
|
report_dict[key] = subject_dict.pop(key) |
406
|
|
|
return report_dict |
407
|
|
|
|
408
|
|
|
@staticmethod |
409
|
|
|
def _get_image_path(filename: str) -> Path: |
410
|
|
|
"""Construct the relative path to an image file within the dataset structure. |
411
|
|
|
|
412
|
|
|
Parses the filename to determine the hierarchical directory structure |
413
|
|
|
where the image is stored in the CT-RATE dataset. |
414
|
|
|
|
415
|
|
|
Args: |
416
|
|
|
filename: The name of the image file (e.g., 'train_2_a_1.nii.gz'). |
417
|
|
|
|
418
|
|
|
Returns: |
419
|
|
|
Path: The relative path to the image file within the dataset directory. |
420
|
|
|
|
421
|
|
|
Example: |
422
|
|
|
>>> path = CtRate._get_image_path('train_2_a_1.nii.gz') |
423
|
|
|
# Returns Path('dataset/train/train_2/train_2_a/train_2_a_1.nii.gz') |
424
|
|
|
""" |
425
|
|
|
parts = filename.split('_') |
426
|
|
|
base_dir = 'dataset' |
427
|
|
|
split_dir = parts[0] |
428
|
|
|
level1 = f'{parts[0]}_{parts[1]}' |
429
|
|
|
level2 = f'{level1}_{parts[2]}' |
430
|
|
|
return Path(base_dir, split_dir, level1, level2, filename) |
431
|
|
|
|
432
|
|
|
@staticmethod |
433
|
|
|
def _fix_image(path: Path, metadata: dict[str, str]) -> None: |
434
|
|
|
"""Fix the metadata of a downloaded image file. |
435
|
|
|
|
436
|
|
|
The original NIfTI files in the CT-RATE dataset have incorrect spatial |
437
|
|
|
metadata. This method reads the image, fixes the spacing, origin, and |
438
|
|
|
orientation based on the metadata provided in the CSV, and applies the correct |
439
|
|
|
rescaling to convert to Hounsfield units. |
440
|
|
|
|
441
|
|
|
Args: |
442
|
|
|
path: The path to the image file to fix. |
443
|
|
|
metadata: A dictionary containing image metadata including spacing, |
444
|
|
|
orientation, and rescale parameters. |
445
|
|
|
|
446
|
|
|
Note: |
447
|
|
|
This method overwrites the original file with the fixed version. |
448
|
|
|
The fixed image is stored as INT16 with proper HU values. |
449
|
|
|
""" |
450
|
|
|
# Adapted from https://huggingface.co/datasets/ibrahimhamamci/CT-RATE/blob/main/download_scripts/fix_metadata.py |
451
|
|
|
image = sitk.ReadImage(str(path)) |
452
|
|
|
|
453
|
|
|
spacing_x, spacing_y = map(float, ast.literal_eval(metadata['XYSpacing'])) |
454
|
|
|
spacing_z = metadata['ZSpacing'] |
455
|
|
|
image.SetSpacing((spacing_x, spacing_y, spacing_z)) |
456
|
|
|
|
457
|
|
|
image.SetOrigin(ast.literal_eval(metadata['ImagePositionPatient'])) |
458
|
|
|
|
459
|
|
|
orientation = ast.literal_eval(metadata['ImageOrientationPatient']) |
460
|
|
|
row_cosine, col_cosine = orientation[:3], orientation[3:6] |
461
|
|
|
z_cosine = np.cross(row_cosine, col_cosine).tolist() |
462
|
|
|
image.SetDirection(row_cosine + col_cosine + z_cosine) |
463
|
|
|
|
464
|
|
|
RescaleIntercept = metadata['RescaleIntercept'] |
465
|
|
|
RescaleSlope = metadata['RescaleSlope'] |
466
|
|
|
adjusted_hu = image * RescaleSlope + RescaleIntercept |
467
|
|
|
cast_int16 = sitk.Cast(adjusted_hu, sitk.sitkInt16) |
468
|
|
|
|
469
|
|
|
sitk.WriteImage(cast_int16, str(path)) |
470
|
|
|
|