1
|
|
|
from __future__ import annotations |
2
|
|
|
|
3
|
|
|
import ast |
4
|
|
|
import gzip |
5
|
|
|
import inspect |
6
|
|
|
import os |
7
|
|
|
import shutil |
8
|
|
|
import sys |
9
|
|
|
import tempfile |
10
|
|
|
from collections.abc import Iterable |
11
|
|
|
from collections.abc import Sequence |
12
|
|
|
from pathlib import Path |
13
|
|
|
from typing import Any |
14
|
|
|
|
15
|
|
|
import numpy as np |
16
|
|
|
import SimpleITK as sitk |
17
|
|
|
import torch |
18
|
|
|
import torch.utils.data.dataloader |
19
|
|
|
from nibabel.nifti1 import Nifti1Image |
20
|
|
|
from torch.utils.data import DataLoader |
21
|
|
|
from torch.utils.data._utils.collate import default_collate |
22
|
|
|
from tqdm.auto import trange |
23
|
|
|
|
24
|
|
|
from . import constants |
25
|
|
|
from .types import TypeNumber |
26
|
|
|
from .types import TypePath |
27
|
|
|
|
28
|
|
|
ITK_SNAP = 'ITK-SNAP' |
29
|
|
|
SLICER = 'Slicer' |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
def to_tuple( |
33
|
|
|
value: Any, |
34
|
|
|
length: int = 1, |
35
|
|
|
) -> tuple[TypeNumber, ...]: |
36
|
|
|
"""Convert variable to tuple of length n. |
37
|
|
|
|
38
|
|
|
Example: |
39
|
|
|
>>> from torchio.utils import to_tuple |
40
|
|
|
>>> to_tuple(1, length=1) |
41
|
|
|
(1,) |
42
|
|
|
>>> to_tuple(1, length=3) |
43
|
|
|
(1, 1, 1) |
44
|
|
|
|
45
|
|
|
If value is an iterable, n is ignored and tuple(value) is returned |
46
|
|
|
|
47
|
|
|
Example: |
48
|
|
|
>>> to_tuple((1,), length=1) |
49
|
|
|
(1,) |
50
|
|
|
>>> to_tuple((1, 2), length=1) |
51
|
|
|
(1, 2) |
52
|
|
|
>>> to_tuple([1, 2], length=3) |
53
|
|
|
(1, 2) |
54
|
|
|
""" |
55
|
|
|
try: |
56
|
|
|
iter(value) |
57
|
|
|
value = tuple(value) |
58
|
|
|
except TypeError: |
59
|
|
|
value = length * (value,) |
60
|
|
|
return value |
61
|
|
|
|
62
|
|
|
|
63
|
|
|
def get_stem( |
64
|
|
|
path: TypePath | Sequence[TypePath], |
65
|
|
|
) -> str | list[str]: |
66
|
|
|
"""Get stem of path or paths. |
67
|
|
|
|
68
|
|
|
Example: |
69
|
|
|
>>> from torchio.utils import get_stem |
70
|
|
|
>>> get_stem('/home/user/my_image.nii.gz') |
71
|
|
|
'my_image' |
72
|
|
|
""" |
73
|
|
|
|
74
|
|
|
def _get_stem(path_string: TypePath) -> str: |
75
|
|
|
return Path(path_string).name.split('.')[0] |
76
|
|
|
|
77
|
|
|
if isinstance(path, (str, os.PathLike)): |
78
|
|
|
return _get_stem(path) |
79
|
|
|
else: # path is actually a sequence of paths |
80
|
|
|
return [_get_stem(p) for p in path] |
81
|
|
|
|
82
|
|
|
|
83
|
|
|
def create_dummy_dataset( |
84
|
|
|
num_images: int, |
85
|
|
|
size_range: tuple[int, int], |
86
|
|
|
directory: TypePath | None = None, |
87
|
|
|
suffix: str = '.nii.gz', |
88
|
|
|
force: bool = False, |
89
|
|
|
verbose: bool = False, |
90
|
|
|
): |
91
|
|
|
from .data import LabelMap |
92
|
|
|
from .data import ScalarImage |
93
|
|
|
from .data import Subject |
94
|
|
|
|
95
|
|
|
output_dir = tempfile.gettempdir() if directory is None else directory |
96
|
|
|
output_dir = Path(output_dir) |
97
|
|
|
images_dir = output_dir / 'dummy_images' |
98
|
|
|
labels_dir = output_dir / 'dummy_labels' |
99
|
|
|
|
100
|
|
|
if force: |
101
|
|
|
shutil.rmtree(images_dir) |
102
|
|
|
shutil.rmtree(labels_dir) |
103
|
|
|
|
104
|
|
|
subjects: list[Subject] = [] |
105
|
|
|
if images_dir.is_dir(): |
106
|
|
|
for i in trange(num_images): |
107
|
|
|
image_path = images_dir / f'image_{i}{suffix}' |
108
|
|
|
label_path = labels_dir / f'label_{i}{suffix}' |
109
|
|
|
subject = Subject( |
110
|
|
|
one_modality=ScalarImage(image_path), |
111
|
|
|
segmentation=LabelMap(label_path), |
112
|
|
|
) |
113
|
|
|
subjects.append(subject) |
114
|
|
|
else: |
115
|
|
|
images_dir.mkdir(exist_ok=True, parents=True) |
116
|
|
|
labels_dir.mkdir(exist_ok=True, parents=True) |
117
|
|
|
iterable: Iterable[int] |
118
|
|
|
if verbose: |
119
|
|
|
print('Creating dummy dataset...') # noqa: T201 |
120
|
|
|
iterable = trange(num_images) |
121
|
|
|
else: |
122
|
|
|
iterable = range(num_images) |
123
|
|
|
for i in iterable: |
124
|
|
|
shape = np.random.randint(*size_range, size=3) |
125
|
|
|
affine = np.eye(4) |
126
|
|
|
image = np.random.rand(*shape) |
127
|
|
|
label = np.ones_like(image) |
128
|
|
|
label[image < 0.33] = 0 |
129
|
|
|
label[image > 0.66] = 2 |
130
|
|
|
image *= 255 |
131
|
|
|
|
132
|
|
|
image_path = images_dir / f'image_{i}{suffix}' |
133
|
|
|
nii = Nifti1Image(image.astype(np.uint8), affine) |
134
|
|
|
nii.to_filename(str(image_path)) |
135
|
|
|
|
136
|
|
|
label_path = labels_dir / f'label_{i}{suffix}' |
137
|
|
|
nii = Nifti1Image(label.astype(np.uint8), affine) |
138
|
|
|
nii.to_filename(str(label_path)) |
139
|
|
|
|
140
|
|
|
subject = Subject( |
141
|
|
|
one_modality=ScalarImage(image_path), |
142
|
|
|
segmentation=LabelMap(label_path), |
143
|
|
|
) |
144
|
|
|
subjects.append(subject) |
145
|
|
|
return subjects |
146
|
|
|
|
147
|
|
|
|
148
|
|
|
def apply_transform_to_file( |
149
|
|
|
input_path: TypePath, |
150
|
|
|
transform, # : Transform seems to create a circular import |
151
|
|
|
output_path: TypePath, |
152
|
|
|
class_: str = 'ScalarImage', |
153
|
|
|
verbose: bool = False, |
154
|
|
|
): |
155
|
|
|
from . import data |
156
|
|
|
|
157
|
|
|
image = getattr(data, class_)(input_path) |
158
|
|
|
subject = data.Subject(image=image) |
159
|
|
|
transformed = transform(subject) |
160
|
|
|
transformed.image.save(output_path) |
161
|
|
|
if verbose and transformed.history: |
162
|
|
|
print('Applied transform:', transformed.history[0]) # noqa: T201 |
163
|
|
|
|
164
|
|
|
|
165
|
|
|
def guess_type(string: str) -> Any: |
166
|
|
|
# Adapted from |
167
|
|
|
# https://www.reddit.com/r/learnpython/comments/4599hl/module_to_guess_type_from_a_string/czw3f5s |
168
|
|
|
string = string.replace(' ', '') |
169
|
|
|
result_type: Any |
170
|
|
|
try: |
171
|
|
|
value = ast.literal_eval(string) |
172
|
|
|
except ValueError: |
173
|
|
|
result_type = str |
174
|
|
|
else: |
175
|
|
|
result_type = type(value) |
176
|
|
|
if result_type in (list, tuple): |
177
|
|
|
string = string[1:-1] # remove brackets |
178
|
|
|
split = string.split(',') |
179
|
|
|
list_result = [guess_type(n) for n in split] |
180
|
|
|
value = tuple(list_result) if result_type is tuple else list_result |
181
|
|
|
return value |
182
|
|
|
try: |
183
|
|
|
value = result_type(string) |
184
|
|
|
except TypeError: |
185
|
|
|
value = None |
186
|
|
|
return value |
187
|
|
|
|
188
|
|
|
|
189
|
|
|
def get_torchio_cache_dir() -> Path: |
190
|
|
|
return Path('~/.cache/torchio').expanduser() |
191
|
|
|
|
192
|
|
|
|
193
|
|
|
def compress( |
194
|
|
|
input_path: TypePath, |
195
|
|
|
output_path: TypePath | None = None, |
196
|
|
|
) -> Path: |
197
|
|
|
if output_path is None: |
198
|
|
|
output_path = Path(input_path).with_suffix('.nii.gz') |
199
|
|
|
with open(input_path, 'rb') as f_in: |
200
|
|
|
with gzip.open(output_path, 'wb') as f_out: |
201
|
|
|
shutil.copyfileobj(f_in, f_out) |
202
|
|
|
return Path(output_path) |
203
|
|
|
|
204
|
|
|
|
205
|
|
|
def check_sequence(sequence: Sequence, name: str) -> None: |
206
|
|
|
try: |
207
|
|
|
iter(sequence) |
208
|
|
|
except TypeError as err: |
209
|
|
|
message = f'"{name}" must be a sequence, not {type(name)}' |
210
|
|
|
raise TypeError(message) from err |
211
|
|
|
|
212
|
|
|
|
213
|
|
|
def get_major_sitk_version() -> int: |
214
|
|
|
# This attribute was added in version 2 |
215
|
|
|
# https://github.com/SimpleITK/SimpleITK/pull/1171 |
216
|
|
|
version = getattr(sitk, '__version__', None) |
217
|
|
|
major_version = 1 if version is None else 2 |
218
|
|
|
return major_version |
219
|
|
|
|
220
|
|
|
|
221
|
|
|
def history_collate(batch: Sequence, collate_transforms=True) -> dict: |
222
|
|
|
attr = constants.HISTORY if collate_transforms else 'applied_transforms' |
223
|
|
|
# Adapted from |
224
|
|
|
# https://github.com/romainVala/torchQC/blob/master/segmentation/collate_functions.py |
225
|
|
|
from .data import Subject |
226
|
|
|
|
227
|
|
|
first_element = batch[0] |
228
|
|
|
if isinstance(first_element, Subject): |
229
|
|
|
dictionary = { |
230
|
|
|
key: default_collate([d[key] for d in batch]) for key in first_element |
231
|
|
|
} |
232
|
|
|
if hasattr(first_element, attr): |
233
|
|
|
dictionary.update({attr: [getattr(d, attr) for d in batch]}) |
234
|
|
|
else: |
235
|
|
|
dictionary = {} |
236
|
|
|
return dictionary |
237
|
|
|
|
238
|
|
|
|
239
|
|
|
def get_subclasses(target_class: type) -> list[type]: |
240
|
|
|
subclasses = target_class.__subclasses__() |
241
|
|
|
subclasses += sum((get_subclasses(cls) for cls in subclasses), []) |
242
|
|
|
return subclasses |
243
|
|
|
|
244
|
|
|
|
245
|
|
|
def get_first_item(data_loader: DataLoader): |
246
|
|
|
return next(iter(data_loader)) |
247
|
|
|
|
248
|
|
|
|
249
|
|
|
def get_batch_images_and_size(batch: dict) -> tuple[list[str], int]: |
250
|
|
|
"""Get number of images and images names in a batch. |
251
|
|
|
|
252
|
|
|
Args: |
253
|
|
|
batch: Dictionary generated by a :class:`tio.SubjectsLoader` |
254
|
|
|
extracting data from a :class:`torchio.SubjectsDataset`. |
255
|
|
|
|
256
|
|
|
Raises: |
257
|
|
|
RuntimeError: If the batch does not seem to contain any dictionaries |
258
|
|
|
that seem to represent a :class:`torchio.Image`. |
259
|
|
|
""" |
260
|
|
|
names = [] |
261
|
|
|
for key, value in batch.items(): |
262
|
|
|
if isinstance(value, dict) and constants.DATA in value: |
263
|
|
|
size = len(value[constants.DATA]) |
264
|
|
|
names.append(key) |
265
|
|
|
if not names: |
266
|
|
|
raise RuntimeError('The batch does not seem to contain any images') |
267
|
|
|
return names, size |
268
|
|
|
|
269
|
|
|
|
270
|
|
|
def get_subjects_from_batch(batch: dict) -> list: |
271
|
|
|
"""Get list of subjects from collated batch. |
272
|
|
|
|
273
|
|
|
Args: |
274
|
|
|
batch: Dictionary generated by a :class:`tio.SubjectsLoader` |
275
|
|
|
extracting data from a :class:`torchio.SubjectsDataset`. |
276
|
|
|
""" |
277
|
|
|
from .data import LabelMap |
278
|
|
|
from .data import ScalarImage |
279
|
|
|
from .data import Subject |
280
|
|
|
|
281
|
|
|
subjects = [] |
282
|
|
|
image_names, batch_size = get_batch_images_and_size(batch) |
283
|
|
|
|
284
|
|
|
for i in range(batch_size): |
285
|
|
|
subject_dict = {} |
286
|
|
|
|
287
|
|
|
for key, value in batch.items(): |
288
|
|
|
if key in image_names: |
289
|
|
|
image_name = key |
290
|
|
|
image_dict = value |
291
|
|
|
data = image_dict[constants.DATA][i] |
292
|
|
|
affine = image_dict[constants.AFFINE][i] |
293
|
|
|
path = Path(image_dict[constants.PATH][i]) |
294
|
|
|
is_label = image_dict[constants.TYPE][i] == constants.LABEL |
295
|
|
|
klass = LabelMap if is_label else ScalarImage |
296
|
|
|
image = klass(tensor=data, affine=affine, filename=path.name) |
297
|
|
|
subject_dict[image_name] = image |
298
|
|
|
else: |
299
|
|
|
instance_value = value[i] |
300
|
|
|
subject_dict[key] = instance_value |
301
|
|
|
|
302
|
|
|
subject = Subject(subject_dict) |
303
|
|
|
|
304
|
|
|
if constants.HISTORY in batch: |
305
|
|
|
applied_transforms = batch[constants.HISTORY][i] |
306
|
|
|
for transform in applied_transforms: |
307
|
|
|
transform.add_transform_to_subject_history(subject) |
308
|
|
|
|
309
|
|
|
subjects.append(subject) |
310
|
|
|
return subjects |
311
|
|
|
|
312
|
|
|
|
313
|
|
|
def add_images_from_batch( |
314
|
|
|
subjects: list, |
315
|
|
|
tensor: torch.Tensor, |
316
|
|
|
class_=None, |
317
|
|
|
name='prediction', |
318
|
|
|
) -> None: |
319
|
|
|
"""Add images to subjects in a list, typically from a network prediction. |
320
|
|
|
|
321
|
|
|
The spatial metadata (affine matrices) will be extracted from one of the |
322
|
|
|
images of each subject. |
323
|
|
|
|
324
|
|
|
Args: |
325
|
|
|
subjects: List of instances of :class:`torchio.Subject` to which images |
326
|
|
|
will be added. |
327
|
|
|
tensor: PyTorch tensor of shape :math:`(B, C, W, H, D)`, where |
328
|
|
|
:math:`B` is the batch size. |
329
|
|
|
class_: Class used to instantiate the images, |
330
|
|
|
e.g., :class:`torchio.LabelMap`. |
331
|
|
|
If ``None``, :class:`torchio.ScalarImage` will be used. |
332
|
|
|
name: Name of the images added to the subjects. |
333
|
|
|
""" |
334
|
|
|
if class_ is None: |
335
|
|
|
from . import ScalarImage |
336
|
|
|
|
337
|
|
|
class_ = ScalarImage |
338
|
|
|
for subject, data in zip(subjects, tensor): |
339
|
|
|
one_image = subject.get_first_image() |
340
|
|
|
kwargs = {'tensor': data, 'affine': one_image.affine} |
341
|
|
|
if 'filename' in one_image: |
342
|
|
|
kwargs['filename'] = one_image['filename'] |
343
|
|
|
image = class_(**kwargs) |
344
|
|
|
subject.add_image(image, name) |
345
|
|
|
|
346
|
|
|
|
347
|
|
|
def guess_external_viewer() -> Path | None: |
348
|
|
|
"""Guess the path to an executable that could be used to visualize images. |
349
|
|
|
|
350
|
|
|
It looks for 1) ITK-SNAP and 2) 3D Slicer. |
351
|
|
|
""" |
352
|
|
|
if 'SITK_SHOW_COMMAND' in os.environ: |
353
|
|
|
return Path(os.environ['SITK_SHOW_COMMAND']) |
354
|
|
|
|
355
|
|
|
if (platform := sys.platform) == 'darwin': |
356
|
|
|
return _guess_macos_viewer() |
357
|
|
|
elif platform == 'win32': |
358
|
|
|
return _guess_windows_viewer() |
359
|
|
|
elif 'linux' in platform: |
360
|
|
|
return _guess_linux_viewer() |
361
|
|
|
else: |
362
|
|
|
return None |
363
|
|
|
|
364
|
|
|
|
365
|
|
|
def _guess_macos_viewer() -> Optional[Path]: |
366
|
|
|
def _get_app_path(app_name: str) -> Path: |
367
|
|
|
app_path = '/Applications/{}.app/Contents/MacOS/{}' |
368
|
|
|
return Path(app_path.format(2 * (app_name,))) |
369
|
|
|
|
370
|
|
|
if (itk_snap_path := _get_app_path(ITK_SNAP)).is_file(): |
371
|
|
|
return itk_snap_path |
372
|
|
|
elif (slicer_path := _get_app_path(SLICER)).is_file(): |
373
|
|
|
return slicer_path |
374
|
|
|
else: |
375
|
|
|
return None |
376
|
|
|
|
377
|
|
|
|
378
|
|
|
def _guess_windows_viewer() -> Optional[Path]: |
379
|
|
|
def _get_app_path(app_dirs: list[Path], bin_name: str) -> Path: |
380
|
|
|
app_dir = app_dirs[-1] |
381
|
|
|
app_path = app_dir / bin_name |
382
|
|
|
if app_path.is_file(): |
383
|
|
|
return app_path |
384
|
|
|
|
385
|
|
|
program_files_dir = Path(os.environ['ProgramW6432']) |
386
|
|
|
itk_snap_dirs = list(program_files_dir.glob(f'{ITK_SNAP}*')) |
387
|
|
|
slicer_dirs = list(program_files_dir.glob(f'{SLICER}*')) |
388
|
|
|
|
389
|
|
|
if itk_snap_dirs: |
390
|
|
|
itk_snap_path = _get_app_path(itk_snap_dirs, 'bin/itk-snap.exe') |
391
|
|
|
if itk_snap_path.is_file(): |
392
|
|
|
return itk_snap_path |
393
|
|
|
elif slicer_dirs: |
394
|
|
|
slicer_path = _get_app_path(slicer_dirs, 'slicer.exe') |
395
|
|
|
if slicer_path.is_file(): |
396
|
|
|
return slicer_path |
397
|
|
|
else: |
398
|
|
|
return None |
399
|
|
|
|
400
|
|
|
|
401
|
|
|
def _guess_linux_viewer() -> Optional[Path]: |
402
|
|
|
if (itk_snap_which := shutil.which('itksnap')) is not None: |
403
|
|
|
return Path(itk_snap_which) |
404
|
|
|
elif (slicer_which := shutil.which('Slicer')) is not None: |
405
|
|
|
return Path(slicer_which) |
406
|
|
|
else: |
407
|
|
|
return None |
408
|
|
|
|
409
|
|
|
|
410
|
|
|
def parse_spatial_shape(shape): |
411
|
|
|
result = to_tuple(shape, length=3) |
412
|
|
|
for n in result: |
413
|
|
|
if n < 1 or n % 1: |
414
|
|
|
message = ( |
415
|
|
|
'All elements in a spatial shape must be positive integers,' |
416
|
|
|
f' but the following shape was passed: {shape}' |
417
|
|
|
) |
418
|
|
|
raise ValueError(message) |
419
|
|
|
if len(result) != 3: |
420
|
|
|
message = ( |
421
|
|
|
'Spatial shapes must have 3 elements, but the following shape' |
422
|
|
|
f' was passed: {shape}' |
423
|
|
|
) |
424
|
|
|
raise ValueError(message) |
425
|
|
|
return result |
426
|
|
|
|
427
|
|
|
|
428
|
|
|
def normalize_path(path: TypePath): |
429
|
|
|
return Path(path).expanduser().resolve() |
430
|
|
|
|
431
|
|
|
|
432
|
|
|
def is_iterable(object: Any) -> bool: |
433
|
|
|
try: |
434
|
|
|
iter(object) |
435
|
|
|
return True |
436
|
|
|
except TypeError: |
437
|
|
|
return False |
438
|
|
|
|
439
|
|
|
|
440
|
|
|
def in_class(classes) -> bool: |
441
|
|
|
classes = to_tuple(classes) |
442
|
|
|
stack = inspect.stack() |
443
|
|
|
for frame_info in stack: |
444
|
|
|
instance = frame_info.frame.f_locals.get('self') |
445
|
|
|
if instance is None: |
446
|
|
|
continue |
447
|
|
|
if instance.__class__ in classes: |
448
|
|
|
return True |
449
|
|
|
else: |
450
|
|
|
return False |
451
|
|
|
|
452
|
|
|
|
453
|
|
|
def in_torch_loader() -> bool: |
454
|
|
|
classes = ( |
455
|
|
|
torch.utils.data.dataloader._SingleProcessDataLoaderIter, |
456
|
|
|
torch.utils.data.dataloader._MultiProcessingDataLoaderIter, |
457
|
|
|
) |
458
|
|
|
return in_class(classes) |
459
|
|
|
|