|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
"""Tests for Image.""" |
|
3
|
|
|
|
|
4
|
|
|
import copy |
|
5
|
|
|
import sys |
|
6
|
|
|
import tempfile |
|
7
|
|
|
from pathlib import Path |
|
8
|
|
|
|
|
9
|
|
|
import nibabel as nib |
|
10
|
|
|
import numpy as np |
|
11
|
|
|
import pytest |
|
12
|
|
|
import torch |
|
13
|
|
|
|
|
14
|
|
|
import torchio as tio |
|
15
|
|
|
|
|
16
|
|
|
from ..utils import TorchioTestCase |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
class TestImage(TorchioTestCase): |
|
20
|
|
|
"""Tests for `Image`.""" |
|
21
|
|
|
|
|
22
|
|
|
def test_image_not_found(self): |
|
23
|
|
|
with pytest.raises(FileNotFoundError): |
|
24
|
|
|
tio.ScalarImage('nopath') |
|
25
|
|
|
|
|
26
|
|
|
@pytest.mark.skipif(sys.platform == 'win32', reason='Path not valid') |
|
27
|
|
|
def test_wrong_path_value(self): |
|
28
|
|
|
with pytest.raises(RuntimeError): |
|
29
|
|
|
tio.ScalarImage('~&./@#"!?X7=+') |
|
30
|
|
|
|
|
31
|
|
|
def test_wrong_path_type(self): |
|
32
|
|
|
with pytest.raises(TypeError): |
|
33
|
|
|
tio.ScalarImage(5) |
|
34
|
|
|
|
|
35
|
|
|
def test_wrong_affine(self): |
|
36
|
|
|
with pytest.raises(TypeError): |
|
37
|
|
|
tio.ScalarImage(5, affine=1) |
|
38
|
|
|
|
|
39
|
|
|
def test_tensor_flip(self): |
|
40
|
|
|
sample_input = torch.ones((4, 30, 30, 30)) |
|
41
|
|
|
tio.RandomFlip()(sample_input) |
|
42
|
|
|
|
|
43
|
|
|
def test_tensor_affine(self): |
|
44
|
|
|
sample_input = torch.ones((4, 10, 10, 10)) |
|
45
|
|
|
tio.RandomAffine()(sample_input) |
|
46
|
|
|
|
|
47
|
|
|
def test_wrong_scalar_image_type(self): |
|
48
|
|
|
data = torch.ones((1, 10, 10, 10)) |
|
49
|
|
|
with pytest.raises(ValueError): |
|
50
|
|
|
tio.ScalarImage(tensor=data, type=tio.LABEL) |
|
51
|
|
|
|
|
52
|
|
|
def test_wrong_label_map_type(self): |
|
53
|
|
|
data = torch.ones((1, 10, 10, 10)) |
|
54
|
|
|
with pytest.raises(ValueError): |
|
55
|
|
|
tio.LabelMap(tensor=data, type=tio.INTENSITY) |
|
56
|
|
|
|
|
57
|
|
|
def test_no_input(self): |
|
58
|
|
|
with pytest.raises(ValueError): |
|
59
|
|
|
tio.ScalarImage() |
|
60
|
|
|
|
|
61
|
|
|
def test_bad_key(self): |
|
62
|
|
|
with pytest.raises(ValueError): |
|
63
|
|
|
tio.ScalarImage(path='', data=5) |
|
64
|
|
|
|
|
65
|
|
|
def test_repr(self): |
|
66
|
|
|
subject = tio.Subject( |
|
67
|
|
|
t1=tio.ScalarImage(self.get_image_path('repr_test')), |
|
68
|
|
|
) |
|
69
|
|
|
assert 'memory' not in repr(subject['t1']) |
|
70
|
|
|
subject.load() |
|
71
|
|
|
assert 'memory' in repr(subject['t1']) |
|
72
|
|
|
|
|
73
|
|
|
def test_data_tensor(self): |
|
74
|
|
|
subject = copy.deepcopy(self.sample_subject) |
|
75
|
|
|
subject.load() |
|
76
|
|
|
assert subject.t1.data is subject.t1.tensor |
|
77
|
|
|
|
|
78
|
|
|
def test_bad_affine(self): |
|
79
|
|
|
with pytest.raises(ValueError): |
|
80
|
|
|
tio.ScalarImage(tensor=torch.rand(1, 2, 3, 4), affine=np.eye(3)) |
|
81
|
|
|
|
|
82
|
|
|
def test_nans_tensor(self): |
|
83
|
|
|
tensor = np.random.rand(1, 2, 3, 4) |
|
84
|
|
|
tensor[0, 0, 0, 0] = np.nan |
|
85
|
|
|
with pytest.warns(RuntimeWarning): |
|
86
|
|
|
image = tio.ScalarImage(tensor=tensor, check_nans=True) |
|
87
|
|
|
image.set_check_nans(False) |
|
88
|
|
|
|
|
89
|
|
|
def test_get_center(self): |
|
90
|
|
|
tensor = torch.rand(1, 3, 3, 3) |
|
91
|
|
|
image = tio.ScalarImage(tensor=tensor) |
|
92
|
|
|
ras = image.get_center() |
|
93
|
|
|
lps = image.get_center(lps=True) |
|
94
|
|
|
assert ras == (1, 1, 1) |
|
95
|
|
|
assert lps == (-1, -1, 1) |
|
96
|
|
|
|
|
97
|
|
|
def test_with_list_of_missing_files(self): |
|
98
|
|
|
with pytest.raises(FileNotFoundError): |
|
99
|
|
|
tio.ScalarImage(path=['nopath', 'error']) |
|
100
|
|
|
|
|
101
|
|
|
def test_with_sequences_of_paths(self): |
|
102
|
|
|
shape = (5, 5, 5) |
|
103
|
|
|
path1 = self.get_image_path('path1', shape=shape) |
|
104
|
|
|
path2 = self.get_image_path('path2', shape=shape) |
|
105
|
|
|
paths_tuple = path1, path2 |
|
106
|
|
|
paths_list = list(paths_tuple) |
|
107
|
|
|
for sequence in (paths_tuple, paths_list): |
|
108
|
|
|
image = tio.ScalarImage(path=sequence) |
|
109
|
|
|
assert image.shape == (2, 5, 5, 5) |
|
110
|
|
|
assert image[tio.STEM] == ['path1', 'path2'] |
|
111
|
|
|
|
|
112
|
|
|
def test_with_a_list_of_images_with_different_shapes(self): |
|
113
|
|
|
path1 = self.get_image_path('path1', shape=(5, 5, 5)) |
|
114
|
|
|
path2 = self.get_image_path('path2', shape=(7, 5, 5)) |
|
115
|
|
|
image = tio.ScalarImage(path=[path1, path2]) |
|
116
|
|
|
with pytest.raises(RuntimeError): |
|
117
|
|
|
image.load() |
|
118
|
|
|
|
|
119
|
|
|
def test_with_a_list_of_images_with_different_affines(self): |
|
120
|
|
|
path1 = self.get_image_path('path1', spacing=(1, 1, 1)) |
|
121
|
|
|
path2 = self.get_image_path('path2', spacing=(1, 2, 1)) |
|
122
|
|
|
image = tio.ScalarImage(path=[path1, path2]) |
|
123
|
|
|
with pytest.warns(RuntimeWarning): |
|
124
|
|
|
image.load() |
|
125
|
|
|
|
|
126
|
|
|
def test_with_a_list_of_2d_paths(self): |
|
127
|
|
|
shape = (5, 6) |
|
128
|
|
|
path1 = self.get_image_path('path1', shape=shape, suffix='.nii') |
|
129
|
|
|
path2 = self.get_image_path('path2', shape=shape, suffix='.img') |
|
130
|
|
|
path3 = self.get_image_path('path3', shape=shape, suffix='.hdr') |
|
131
|
|
|
image = tio.ScalarImage(path=[path1, path2, path3]) |
|
132
|
|
|
assert image.shape == (3, 5, 6, 1) |
|
133
|
|
|
assert image[tio.STEM] == ['path1', 'path2', 'path3'] |
|
134
|
|
|
|
|
135
|
|
|
def test_axis_name_2d(self): |
|
136
|
|
|
path = self.get_image_path('im2d', shape=(5, 6)) |
|
137
|
|
|
image = tio.ScalarImage(path) |
|
138
|
|
|
height_idx = image.axis_name_to_index('t') |
|
139
|
|
|
width_idx = image.axis_name_to_index('l') |
|
140
|
|
|
assert image.height == image.shape[height_idx] |
|
141
|
|
|
assert image.width == image.shape[width_idx] |
|
142
|
|
|
|
|
143
|
|
|
def test_different_shape(self): |
|
144
|
|
|
path_1 = self.get_image_path('im_shape1', shape=(5, 5, 5)) |
|
145
|
|
|
path_2 = self.get_image_path('im_shape2', shape=(7, 5, 5)) |
|
146
|
|
|
|
|
147
|
|
|
image = tio.ScalarImage([path_1, path_2]) |
|
148
|
|
|
with pytest.raises(RuntimeError): |
|
149
|
|
|
image.load() |
|
150
|
|
|
|
|
151
|
|
|
@pytest.mark.slow |
|
152
|
|
|
@pytest.mark.skipif(sys.platform == 'win32', reason='Unstable on Windows') |
|
153
|
|
|
def test_plot(self): |
|
154
|
|
|
image = self.sample_subject.t1 |
|
155
|
|
|
image.plot(show=False, output_path=self.dir / 'image.png') |
|
156
|
|
|
|
|
157
|
|
|
def test_data_type_uint16_array(self): |
|
158
|
|
|
tensor = np.random.rand(1, 3, 3, 3).astype(np.uint16) |
|
159
|
|
|
image = tio.ScalarImage(tensor=tensor) |
|
160
|
|
|
assert image.data.dtype == torch.int32 |
|
161
|
|
|
|
|
162
|
|
|
def test_data_type_uint32_array(self): |
|
163
|
|
|
tensor = np.random.rand(1, 3, 3, 3).astype(np.uint32) |
|
164
|
|
|
image = tio.ScalarImage(tensor=tensor) |
|
165
|
|
|
assert image.data.dtype == torch.int64 |
|
166
|
|
|
|
|
167
|
|
|
def test_save_image_with_data_type_boolean(self): |
|
168
|
|
|
tensor = np.random.rand(1, 3, 3, 3).astype(bool) |
|
169
|
|
|
image = tio.ScalarImage(tensor=tensor) |
|
170
|
|
|
image.save(self.dir / 'image.nii') |
|
171
|
|
|
|
|
172
|
|
|
def test_load_uint(self): |
|
173
|
|
|
affine = np.eye(4) |
|
174
|
|
|
for dtype in np.uint16, np.uint32: |
|
175
|
|
|
data = np.ones((3, 3, 3), dtype=dtype) |
|
176
|
|
|
img = nib.Nifti1Image(data, affine) |
|
177
|
|
|
with tempfile.NamedTemporaryFile(suffix='.nii', delete=False) as f: |
|
178
|
|
|
nib.save(img, f.name) |
|
179
|
|
|
tio.ScalarImage(f.name).load() |
|
180
|
|
|
|
|
181
|
|
|
def test_pil_3d(self): |
|
182
|
|
|
with pytest.raises(RuntimeError): |
|
183
|
|
|
tio.ScalarImage(tensor=torch.rand(1, 2, 3, 4)).as_pil() |
|
184
|
|
|
|
|
185
|
|
|
def test_pil_1(self): |
|
186
|
|
|
tio.ScalarImage(tensor=torch.rand(1, 2, 3, 1)).as_pil() |
|
187
|
|
|
|
|
188
|
|
|
def test_pil_2(self): |
|
189
|
|
|
with pytest.raises(RuntimeError): |
|
190
|
|
|
tio.ScalarImage(tensor=torch.rand(2, 2, 3, 1)).as_pil() |
|
191
|
|
|
|
|
192
|
|
|
def test_pil_3(self): |
|
193
|
|
|
tio.ScalarImage(tensor=torch.rand(3, 2, 3, 1)).as_pil() |
|
194
|
|
|
|
|
195
|
|
|
def test_set_data(self): |
|
196
|
|
|
im = self.sample_subject.t1 |
|
197
|
|
|
with pytest.deprecated_call(): |
|
198
|
|
|
im.data = im.data |
|
199
|
|
|
|
|
200
|
|
|
def test_no_type(self): |
|
201
|
|
|
with pytest.warns(FutureWarning): |
|
202
|
|
|
tio.Image(tensor=torch.rand(1, 2, 3, 4)) |
|
203
|
|
|
|
|
204
|
|
|
def test_custom_reader(self): |
|
205
|
|
|
path = self.dir / 'im.npy' |
|
206
|
|
|
|
|
207
|
|
|
def numpy_reader(path): |
|
208
|
|
|
return np.load(path), np.eye(4) |
|
209
|
|
|
|
|
210
|
|
|
def assert_shape(shape_in, shape_out): |
|
211
|
|
|
np.save(path, np.random.rand(*shape_in)) |
|
212
|
|
|
image = tio.ScalarImage(path, reader=numpy_reader) |
|
213
|
|
|
assert image.shape == shape_out |
|
214
|
|
|
|
|
215
|
|
|
assert_shape((5, 5), (1, 5, 5, 1)) |
|
216
|
|
|
assert_shape((5, 5, 3), (3, 5, 5, 1)) |
|
217
|
|
|
assert_shape((3, 5, 5), (3, 5, 5, 1)) |
|
218
|
|
|
assert_shape((5, 5, 5), (1, 5, 5, 5)) |
|
219
|
|
|
assert_shape((1, 5, 5, 5), (1, 5, 5, 5)) |
|
220
|
|
|
assert_shape((4, 5, 5, 5), (4, 5, 5, 5)) |
|
221
|
|
|
|
|
222
|
|
|
def test_fast_gif(self): |
|
223
|
|
|
with pytest.warns(RuntimeWarning): |
|
224
|
|
|
with tempfile.NamedTemporaryFile(suffix='.gif', delete=False) as f: |
|
225
|
|
|
self.sample_subject.t1.to_gif(0, 0.0001, f.name) |
|
226
|
|
|
|
|
227
|
|
|
def test_gif_rgb(self): |
|
228
|
|
|
with tempfile.NamedTemporaryFile(suffix='.gif', delete=False) as f: |
|
229
|
|
|
tio.ScalarImage(tensor=torch.rand(3, 4, 5, 6)).to_gif(0, 1, f.name) |
|
230
|
|
|
|
|
231
|
|
|
@pytest.mark.slow |
|
232
|
|
|
def test_hist(self): |
|
233
|
|
|
self.sample_subject.t1.hist(density=False, show=False) |
|
234
|
|
|
self.sample_subject.t1.hist(density=True, show=False) |
|
235
|
|
|
|
|
236
|
|
|
def test_count(self): |
|
237
|
|
|
image = self.sample_subject.label |
|
238
|
|
|
max_n = image.data.numel() |
|
239
|
|
|
nonzero = image.count_nonzero() |
|
240
|
|
|
assert 0 <= nonzero <= max_n |
|
241
|
|
|
counts = image.count_labels() |
|
242
|
|
|
assert tuple(counts) == (0, 1) |
|
243
|
|
|
assert 0 <= counts[0] <= max_n |
|
244
|
|
|
assert 0 <= counts[1] <= max_n |
|
245
|
|
|
|
|
246
|
|
|
def test_affine_multipath(self): |
|
247
|
|
|
# https://github.com/TorchIO-project/torchio/issues/762 |
|
248
|
|
|
path1 = self.get_image_path('multi1') |
|
249
|
|
|
path2 = self.get_image_path('multi2') |
|
250
|
|
|
paths = path1, path2 |
|
251
|
|
|
image = tio.ScalarImage(paths) |
|
252
|
|
|
self.assert_tensor_equal(image.affine, np.eye(4)) |
|
253
|
|
|
|
|
254
|
|
|
def test_bad_numpy_type_reader(self): |
|
255
|
|
|
# https://github.com/TorchIO-project/torchio/issues/764 |
|
256
|
|
|
def numpy_reader(path): |
|
257
|
|
|
return np.load(path), np.eye(4) |
|
258
|
|
|
|
|
259
|
|
|
tensor = np.random.rand(1, 2, 3, 4).astype(np.uint16) |
|
260
|
|
|
test_path = self.dir / 'test_image.npy' |
|
261
|
|
|
np.save(test_path, tensor) |
|
262
|
|
|
image = tio.ScalarImage(test_path, reader=numpy_reader) |
|
263
|
|
|
image.load() |
|
264
|
|
|
|
|
265
|
|
|
def test_load_unload(self): |
|
266
|
|
|
path = self.get_image_path('unload') |
|
267
|
|
|
image = tio.ScalarImage(path) |
|
268
|
|
|
with self.assertRaises(RuntimeError): |
|
269
|
|
|
image.unload() |
|
270
|
|
|
image.load() |
|
271
|
|
|
assert image._loaded |
|
272
|
|
|
image.unload() |
|
273
|
|
|
assert not image._loaded |
|
274
|
|
|
assert image[tio.DATA] is None |
|
275
|
|
|
assert image[tio.AFFINE] is None |
|
276
|
|
|
assert not image._loaded |
|
277
|
|
|
|
|
278
|
|
|
def test_unload_no_path(self): |
|
279
|
|
|
tensor = torch.rand(1, 2, 3, 4) |
|
280
|
|
|
image = tio.ScalarImage(tensor=tensor) |
|
281
|
|
|
with self.assertRaises(RuntimeError): |
|
282
|
|
|
image.unload() |
|
283
|
|
|
|
|
284
|
|
|
def test_copy_no_data(self): |
|
285
|
|
|
# https://github.com/TorchIO-project/torchio/issues/974 |
|
286
|
|
|
path = self.get_image_path('im_copy') |
|
287
|
|
|
my_image = tio.LabelMap(path) |
|
288
|
|
|
assert not my_image._loaded |
|
289
|
|
|
new_image = copy.copy(my_image) |
|
290
|
|
|
assert not my_image._loaded |
|
291
|
|
|
assert not new_image._loaded |
|
292
|
|
|
|
|
293
|
|
|
my_image.load() |
|
294
|
|
|
new_image = copy.copy(my_image) |
|
295
|
|
|
assert my_image._loaded |
|
296
|
|
|
assert new_image._loaded |
|
297
|
|
|
|
|
298
|
|
|
def test_slicing(self): |
|
299
|
|
|
path = self.get_image_path('im_slicing') |
|
300
|
|
|
image = tio.ScalarImage(path) |
|
301
|
|
|
|
|
302
|
|
|
assert image.shape == (1, 10, 20, 30) |
|
303
|
|
|
|
|
304
|
|
|
cropped = image[0] |
|
305
|
|
|
assert cropped.shape == (1, 1, 20, 30) |
|
306
|
|
|
|
|
307
|
|
|
cropped = image[:, 2:-3] |
|
308
|
|
|
assert cropped.shape == (1, 10, 15, 30) |
|
309
|
|
|
|
|
310
|
|
|
cropped = image[-5:, 5:] |
|
311
|
|
|
assert cropped.shape == (1, 5, 15, 30) |
|
312
|
|
|
|
|
313
|
|
|
with pytest.raises(NotImplementedError): |
|
314
|
|
|
image[..., 5] |
|
315
|
|
|
|
|
316
|
|
|
with pytest.raises(ValueError): |
|
317
|
|
|
image[0:8:-1] |
|
318
|
|
|
|
|
319
|
|
|
with pytest.raises(ValueError): |
|
320
|
|
|
image[3::-1] |
|
321
|
|
|
|
|
322
|
|
|
def test_verify_path(self): |
|
323
|
|
|
path = Path(self.get_image_path('im_verify')) |
|
324
|
|
|
|
|
325
|
|
|
image = tio.ScalarImage(path, verify_path=False) |
|
326
|
|
|
assert image.path == path |
|
327
|
|
|
|
|
328
|
|
|
image = tio.ScalarImage(path, verify_path=True) |
|
329
|
|
|
assert image.path == path |
|
330
|
|
|
|
|
331
|
|
|
fake_path = Path('fake_path.nii') |
|
332
|
|
|
|
|
333
|
|
|
image = tio.ScalarImage(fake_path, verify_path=False) |
|
334
|
|
|
assert image.path == fake_path |
|
335
|
|
|
|
|
336
|
|
|
with pytest.raises(FileNotFoundError): |
|
337
|
|
|
tio.ScalarImage(fake_path, verify_path=True) |
|
338
|
|
|
|