tests.transforms.augmentation.test_random_labels_to_image   B
last analyzed

Complexity

Total Complexity 45

Size/Duplication

Total Lines 270
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 158
dl 0
loc 270
rs 8.8
c 0
b 0
f 0
wmc 45

27 Methods

Rating   Name   Duplication   Size   Complexity  
A TestRandomLabelsToImage.test_filling_without_any_hole() 0 11 1
A TestRandomLabelsToImage.test_filling_with_discretized_label_map() 0 17 1
A TestRandomLabelsToImage.test_with_bad_default_mean_type() 0 4 2
A TestRandomLabelsToImage.test_with_wrong_label_key_type() 0 5 2
A TestRandomLabelsToImage.test_with_wrong_used_labels_elements_type() 0 5 2
A TestRandomLabelsToImage.test_with_wrong_used_labels_type() 0 5 2
A TestRandomLabelsToImage.test_mean_and_std_len_not_matching() 0 4 2
A TestRandomLabelsToImage.test_filling_with_discretized_pv_label_map() 0 18 1
A TestRandomLabelsToImage.test_mean_and_used_labels_len_not_matching() 0 8 2
A TestRandomLabelsToImage.test_deterministic_simulation_with_pv_map() 0 15 1
A TestRandomLabelsToImage.test_filling() 0 16 1
A TestRandomLabelsToImage.test_with_bad_default_std_type() 0 4 2
A TestRandomLabelsToImage.test_with_bad_default_mean_range() 0 5 2
A TestRandomLabelsToImage.test_with_wrong_mean_type() 0 4 2
A TestRandomLabelsToImage.test_with_wrong_std_type() 0 4 2
A TestRandomLabelsToImage.test_mean_not_matching_number_of_labels() 0 6 2
A TestRandomLabelsToImage.test_random_simulation() 0 6 1
A TestRandomLabelsToImage.test_std_and_used_labels_len_not_matching() 0 5 2
A TestRandomLabelsToImage.test_deterministic_simulation_with_discretized_label_map() 0 20 1
A TestRandomLabelsToImage.test_no_labels() 0 4 2
A TestRandomLabelsToImage.test_bad_range() 0 3 2
A TestRandomLabelsToImage.test_with_wrong_std_elements_type() 0 5 2
A TestRandomLabelsToImage.test_std_not_matching_number_of_labels() 0 6 2
A TestRandomLabelsToImage.test_deterministic_simulation_with_discretized_pv_map() 0 17 1
A TestRandomLabelsToImage.test_deterministic_simulation() 0 19 1
A TestRandomLabelsToImage.test_with_wrong_mean_elements_type() 0 5 2
A TestRandomLabelsToImage.test_with_bad_default_std_range() 0 5 2

How to fix   Complexity   

Complexity

Complex classes like tests.transforms.augmentation.test_random_labels_to_image often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
import pytest
2
3
from torchio.transforms import RandomLabelsToImage
4
5
from ...utils import TorchioTestCase
6
7
8
class TestRandomLabelsToImage(TorchioTestCase):
9
    """Tests for `RandomLabelsToImage`."""
10
11
    def test_random_simulation(self):
12
        """The transform runs without error and an 'image_from_labels' key is
13
        present in the transformed subject."""
14
        transform = RandomLabelsToImage(label_key='label')
15
        transformed = transform(self.sample_subject)
16
        self.assertIn('image_from_labels', transformed)
17
18
    def test_deterministic_simulation(self):
19
        """The transform creates an image where values are equal to given mean
20
        if standard deviation is zero.
21
22
        Using a label map.
23
        """
24
        transform = RandomLabelsToImage(
25
            label_key='label',
26
            mean=[0.5, 2],
27
            std=[0, 0],
28
        )
29
        transformed = transform(self.sample_subject)
30
        self.assert_tensor_equal(
31
            transformed['image_from_labels'].data == 0.5,
32
            self.sample_subject['label'].data == 0,
33
        )
34
        self.assert_tensor_equal(
35
            transformed['image_from_labels'].data == 2,
36
            self.sample_subject['label'].data == 1,
37
        )
38
39
    def test_deterministic_simulation_with_discretized_label_map(self):
40
        """The transform creates an image where values are equal to given mean
41
        if standard deviation is zero.
42
43
        Using a discretized label map.
44
        """
45
        transform = RandomLabelsToImage(
46
            label_key='label',
47
            mean=[0.5, 2],
48
            std=[0, 0],
49
            discretize=True,
50
        )
51
        transformed = transform(self.sample_subject)
52
        self.assert_tensor_equal(
53
            transformed['image_from_labels'].data == 0.5,
54
            self.sample_subject['label'].data == 0,
55
        )
56
        self.assert_tensor_equal(
57
            transformed['image_from_labels'].data == 2,
58
            self.sample_subject['label'].data == 1,
59
        )
60
61
    def test_deterministic_simulation_with_pv_map(self):
62
        """The transform creates an image where values are equal to given mean
63
        weighted by partial-volume if standard deviation is zero."""
64
        subject = self.get_subject_with_partial_volume_label_map(components=2)
65
        transform = RandomLabelsToImage(
66
            label_key='label',
67
            mean=[0.5, 1],
68
            std=[0, 0],
69
        )
70
        transformed = transform(subject)
71
        self.assert_tensor_almost_equal(
72
            transformed['image_from_labels'].data[0],
73
            subject['label'].data[0] * 0.5 + subject['label'].data[1] * 1,
74
        )
75
        assert transformed['image_from_labels'].data.shape == (1, 10, 20, 30)
76
77
    def test_deterministic_simulation_with_discretized_pv_map(self):
78
        """The transform creates an image where values are equal to given mean
79
        if standard deviation is zero.
80
81
        Using a discretized partial-volume label map.
82
        """
83
        subject = self.get_subject_with_partial_volume_label_map()
84
        transform = RandomLabelsToImage(
85
            label_key='label',
86
            mean=[0.5],
87
            std=[0],
88
            discretize=True,
89
        )
90
        transformed = transform(subject)
91
        self.assert_tensor_almost_equal(
92
            transformed['image_from_labels'].data,
93
            (subject['label'].data > 0) * 0.5,
94
        )
95
96
    def test_filling(self):
97
        """The transform can fill in the generated image with an already
98
        existing image.
99
100
        Using a label map.
101
        """
102
        transform = RandomLabelsToImage(
103
            label_key='label',
104
            image_key='t1',
105
            used_labels=[1],
106
        )
107
        t1_indices = self.sample_subject['label'].data == 0
108
        transformed = transform(self.sample_subject)
109
        self.assert_tensor_almost_equal(
110
            transformed['t1'].data[t1_indices],
111
            self.sample_subject['t1'].data[t1_indices],
112
        )
113
114
    def test_filling_with_discretized_label_map(self):
115
        """The transform can fill in the generated image with an already
116
        existing image.
117
118
        Using a discretized label map.
119
        """
120
        transform = RandomLabelsToImage(
121
            label_key='label',
122
            image_key='t1',
123
            discretize=True,
124
            used_labels=[1],
125
        )
126
        t1_indices = self.sample_subject['label'].data < 0.5
127
        transformed = transform(self.sample_subject)
128
        self.assert_tensor_almost_equal(
129
            transformed['t1'].data[t1_indices],
130
            self.sample_subject['t1'].data[t1_indices],
131
        )
132
133
    def test_filling_with_discretized_pv_label_map(self):
134
        """The transform can fill in the generated image with an already
135
        existing image.
136
137
        Using a discretized partial-volume label map.
138
        """
139
        subject = self.get_subject_with_partial_volume_label_map(components=2)
140
        transform = RandomLabelsToImage(
141
            label_key='label',
142
            image_key='t1',
143
            discretize=True,
144
            used_labels=[1],
145
        )
146
        t1_indices = subject['label'].data.argmax(dim=0) == 0
147
        transformed = transform(subject)
148
        self.assert_tensor_almost_equal(
149
            transformed['t1'].data[0][t1_indices],
150
            subject['t1'].data[0][t1_indices],
151
        )
152
153
    def test_filling_without_any_hole(self):
154
        """The transform does not fill anything if there is no hole."""
155
        transform = RandomLabelsToImage(
156
            label_key='label',
157
            image_key='t1',
158
            default_std=0,
159
            default_mean=-1,
160
        )
161
        original_t1 = self.sample_subject.t1.data.clone()
162
        transformed = transform(self.sample_subject)
163
        self.assert_tensor_not_equal(original_t1, transformed.t1.data)
164
165
    def test_with_bad_default_mean_range(self):
166
        """The transform raises an error if default_mean is not a single value
167
        nor a tuple of two values."""
168
        with pytest.raises(ValueError):
169
            RandomLabelsToImage(label_key='label', default_mean=(0, 1, 2))
170
171
    def test_with_bad_default_mean_type(self):
172
        """The transform raises an error if default_mean has the wrong type."""
173
        with pytest.raises(ValueError):
174
            RandomLabelsToImage(label_key='label', default_mean='wrong')
175
176
    def test_with_bad_default_std_range(self):
177
        """The transform raises an error if default_std is not a single value
178
        nor a tuple of two values."""
179
        with pytest.raises(ValueError):
180
            RandomLabelsToImage(label_key='label', default_std=(0, 1, 2))
181
182
    def test_with_bad_default_std_type(self):
183
        """The transform raises an error if default_std has the wrong type."""
184
        with pytest.raises(ValueError):
185
            RandomLabelsToImage(label_key='label', default_std='wrong')
186
187
    def test_with_wrong_label_key_type(self):
188
        """The transform raises an error if a wrong type is given for
189
        label_key."""
190
        with pytest.raises(TypeError):
191
            RandomLabelsToImage(label_key=42)
192
193
    def test_with_wrong_used_labels_type(self):
194
        """The transform raises an error if a wrong type is given for
195
        used_labels."""
196
        with pytest.raises(TypeError):
197
            RandomLabelsToImage(label_key='label', used_labels=42)
198
199
    def test_with_wrong_used_labels_elements_type(self):
200
        """The transform raises an error if wrong type are given for
201
        used_labels elements."""
202
        with pytest.raises(ValueError):
203
            RandomLabelsToImage(label_key='label', used_labels=['wrong'])
204
205
    def test_with_wrong_mean_type(self):
206
        """The transform raises an error if wrong type is given for mean."""
207
        with pytest.raises(TypeError):
208
            RandomLabelsToImage(label_key='label', mean=42)
209
210
    def test_with_wrong_mean_elements_type(self):
211
        """The transform raises an error if wrong type are given for mean
212
        elements."""
213
        with pytest.raises(ValueError):
214
            RandomLabelsToImage(label_key='label', mean=['wrong'])
215
216
    def test_with_wrong_std_type(self):
217
        """The transform raises an error if wrong type is given for std."""
218
        with pytest.raises(TypeError):
219
            RandomLabelsToImage(label_key='label', std=42)
220
221
    def test_with_wrong_std_elements_type(self):
222
        """The transform raises an error if wrong type are given for std
223
        elements."""
224
        with pytest.raises(ValueError):
225
            RandomLabelsToImage(label_key='label', std=['wrong'])
226
227
    def test_mean_and_std_len_not_matching(self):
228
        """The transform raises an error if mean and std length don't match."""
229
        with pytest.raises(AssertionError):
230
            RandomLabelsToImage(label_key='label', mean=[0], std=[0, 1])
231
232
    def test_mean_and_used_labels_len_not_matching(self):
233
        """The transform raises an error if mean and used_labels length don't
234
        match."""
235
        with pytest.raises(AssertionError):
236
            RandomLabelsToImage(
237
                label_key='label',
238
                mean=[0],
239
                used_labels=[0, 1],
240
            )
241
242
    def test_std_and_used_labels_len_not_matching(self):
243
        """The transform raises an error if std and used_labels length don't
244
        match."""
245
        with pytest.raises(AssertionError):
246
            RandomLabelsToImage(label_key='label', std=[0], used_labels=[0, 1])
247
248
    def test_mean_not_matching_number_of_labels(self):
249
        """The transform raises an error at runtime if mean length does not
250
        match label numbers."""
251
        transform = RandomLabelsToImage(label_key='label', mean=[0])
252
        with pytest.raises(RuntimeError):
253
            transform(self.sample_subject)
254
255
    def test_std_not_matching_number_of_labels(self):
256
        """The transform raises an error at runtime if std length does not
257
        match label numbers."""
258
        transform = RandomLabelsToImage(label_key='label', std=[1, 2, 3])
259
        with pytest.raises(RuntimeError):
260
            transform(self.sample_subject)
261
262
    def test_bad_range(self):
263
        with pytest.raises(ValueError):
264
            RandomLabelsToImage(default_mean=(2, 1))
265
266
    def test_no_labels(self):
267
        transform = RandomLabelsToImage()
268
        with pytest.raises(RuntimeError):
269
            transform(self.sample_subject.t1)
270