|
1
|
|
|
import copy |
|
2
|
|
|
import os |
|
3
|
|
|
import random |
|
4
|
|
|
import shutil |
|
5
|
|
|
import tempfile |
|
6
|
|
|
import unittest |
|
7
|
|
|
from collections.abc import Sequence |
|
8
|
|
|
from pathlib import Path |
|
9
|
|
|
from random import shuffle |
|
10
|
|
|
|
|
11
|
|
|
import numpy as np |
|
12
|
|
|
import pytest |
|
13
|
|
|
import torch |
|
14
|
|
|
|
|
15
|
|
|
import torchio as tio |
|
16
|
|
|
|
|
17
|
|
|
|
|
18
|
|
|
class TorchioTestCase(unittest.TestCase): |
|
19
|
|
|
def setUp(self): |
|
20
|
|
|
"""Set up test fixtures, if any.""" |
|
21
|
|
|
self.dir = Path(tempfile.gettempdir()) / os.urandom(24).hex() |
|
22
|
|
|
self.dir.mkdir(exist_ok=True) |
|
23
|
|
|
random.seed(42) |
|
24
|
|
|
np.random.seed(42) |
|
25
|
|
|
|
|
26
|
|
|
registration_matrix = np.array( |
|
27
|
|
|
[ |
|
28
|
|
|
[1, 0, 0, 10], |
|
29
|
|
|
[0, 1, 0, 0], |
|
30
|
|
|
[0, 0, 1.2, 0], |
|
31
|
|
|
[0, 0, 0, 1], |
|
32
|
|
|
] |
|
33
|
|
|
) |
|
34
|
|
|
|
|
35
|
|
|
subject_a = tio.Subject( |
|
36
|
|
|
t1=tio.ScalarImage(self.get_image_path('t1_a')), |
|
37
|
|
|
) |
|
38
|
|
|
subject_b = tio.Subject( |
|
39
|
|
|
t1=tio.ScalarImage(self.get_image_path('t1_b')), |
|
40
|
|
|
label=tio.LabelMap(self.get_image_path('label_b', binary=True)), |
|
41
|
|
|
) |
|
42
|
|
|
subject_c = tio.Subject( |
|
43
|
|
|
label=tio.LabelMap(self.get_image_path('label_c', binary=True)), |
|
44
|
|
|
) |
|
45
|
|
|
subject_d = tio.Subject( |
|
46
|
|
|
t1=tio.ScalarImage( |
|
47
|
|
|
self.get_image_path('t1_d'), |
|
48
|
|
|
pre_affine=registration_matrix, |
|
49
|
|
|
), |
|
50
|
|
|
t2=tio.ScalarImage(self.get_image_path('t2_d')), |
|
51
|
|
|
label=tio.LabelMap(self.get_image_path('label_d', binary=True)), |
|
52
|
|
|
) |
|
53
|
|
|
subject_a4 = tio.Subject( |
|
54
|
|
|
t1=tio.ScalarImage(self.get_image_path('t1_a'), components=4), |
|
55
|
|
|
) |
|
56
|
|
|
self.subjects_list = [ |
|
57
|
|
|
subject_a, |
|
58
|
|
|
subject_a4, |
|
59
|
|
|
subject_b, |
|
60
|
|
|
subject_c, |
|
61
|
|
|
subject_d, |
|
62
|
|
|
] |
|
63
|
|
|
self.dataset = tio.SubjectsDataset(self.subjects_list) |
|
64
|
|
|
self.sample_subject = self.dataset[-1] # subject_d |
|
65
|
|
|
self.subject_4d = self.dataset[1] |
|
66
|
|
|
|
|
67
|
|
|
def make_2d(self, subject): |
|
68
|
|
|
subject = copy.deepcopy(subject) |
|
69
|
|
|
for image in subject.get_images(intensity_only=False): |
|
70
|
|
|
image.set_data(image.data[..., :1]) |
|
71
|
|
|
return subject |
|
72
|
|
|
|
|
73
|
|
|
def make_multichannel(self, subject): |
|
74
|
|
|
subject = copy.deepcopy(subject) |
|
75
|
|
|
for image in subject.get_images(intensity_only=False): |
|
76
|
|
|
image.set_data(torch.cat(4 * (image.data,))) |
|
77
|
|
|
return subject |
|
78
|
|
|
|
|
79
|
|
|
def flip_affine_x(self, subject): |
|
80
|
|
|
subject = copy.deepcopy(subject) |
|
81
|
|
|
for image in subject.get_images(intensity_only=False): |
|
82
|
|
|
image.affine = np.diag((-1, 1, 1, 1)) @ image.affine |
|
83
|
|
|
return subject |
|
84
|
|
|
|
|
85
|
|
|
def get_inconsistent_shape_subject(self): |
|
86
|
|
|
"""Return a subject containing images of different shape.""" |
|
87
|
|
|
subject = tio.Subject( |
|
88
|
|
|
t1=tio.ScalarImage(self.get_image_path('t1_inc')), |
|
89
|
|
|
t2=tio.ScalarImage( |
|
90
|
|
|
self.get_image_path('t2_inc', shape=(10, 20, 31)), |
|
91
|
|
|
), |
|
92
|
|
|
label=tio.LabelMap( |
|
93
|
|
|
self.get_image_path( |
|
94
|
|
|
'label_inc', |
|
95
|
|
|
shape=(8, 17, 25), |
|
96
|
|
|
binary=True, |
|
97
|
|
|
), |
|
98
|
|
|
), |
|
99
|
|
|
label2=tio.LabelMap( |
|
100
|
|
|
self.get_image_path( |
|
101
|
|
|
'label2_inc', |
|
102
|
|
|
shape=(18, 17, 25), |
|
103
|
|
|
binary=True, |
|
104
|
|
|
), |
|
105
|
|
|
), |
|
106
|
|
|
) |
|
107
|
|
|
return subject |
|
108
|
|
|
|
|
109
|
|
|
def get_reference_image_and_path(self): |
|
110
|
|
|
"""Return a reference image and its path.""" |
|
111
|
|
|
path = self.get_image_path( |
|
112
|
|
|
'ref', |
|
113
|
|
|
shape=(10, 20, 31), |
|
114
|
|
|
spacing=(1, 1, 2), |
|
115
|
|
|
) |
|
116
|
|
|
image = tio.ScalarImage(path) |
|
117
|
|
|
return image, path |
|
118
|
|
|
|
|
119
|
|
|
def get_subject_with_partial_volume_label_map(self, components=1): |
|
120
|
|
|
"""Return a subject with a partial-volume label map.""" |
|
121
|
|
|
return tio.Subject( |
|
122
|
|
|
t1=tio.ScalarImage( |
|
123
|
|
|
self.get_image_path('t1_d'), |
|
124
|
|
|
), |
|
125
|
|
|
label=tio.LabelMap( |
|
126
|
|
|
self.get_image_path( |
|
127
|
|
|
'label_d2', |
|
128
|
|
|
binary=False, |
|
129
|
|
|
components=components, |
|
130
|
|
|
), |
|
131
|
|
|
), |
|
132
|
|
|
) |
|
133
|
|
|
|
|
134
|
|
|
def get_subject_with_labels(self, labels): |
|
135
|
|
|
return tio.Subject( |
|
136
|
|
|
label=tio.LabelMap( |
|
137
|
|
|
self.get_image_path( |
|
138
|
|
|
'label_multi', |
|
139
|
|
|
labels=labels, |
|
140
|
|
|
), |
|
141
|
|
|
), |
|
142
|
|
|
) |
|
143
|
|
|
|
|
144
|
|
|
@staticmethod |
|
145
|
|
|
def get_unique_labels(data: torch.Tensor) -> set[int]: |
|
146
|
|
|
labels = data.unique().tolist() |
|
147
|
|
|
return set(labels) |
|
148
|
|
|
|
|
149
|
|
|
@staticmethod |
|
150
|
|
|
def get_tensor_with_labels(labels: Sequence) -> torch.Tensor: |
|
151
|
|
|
tensor = torch.as_tensor(list(labels)) |
|
152
|
|
|
return tensor.repeat_interleave(2).reshape(1, 1, 1, -1) |
|
153
|
|
|
|
|
154
|
|
|
def tearDown(self): |
|
155
|
|
|
"""Tear down test fixtures, if any.""" |
|
156
|
|
|
shutil.rmtree(self.dir) |
|
157
|
|
|
|
|
158
|
|
|
def get_ixi_tiny(self): |
|
159
|
|
|
root_dir = Path(tempfile.gettempdir()) / 'torchio' / 'ixi_tiny' |
|
160
|
|
|
return tio.datasets.IXITiny(root_dir, download=True) |
|
161
|
|
|
|
|
162
|
|
|
def get_image_path( |
|
163
|
|
|
self, |
|
164
|
|
|
stem, |
|
165
|
|
|
binary=False, |
|
166
|
|
|
labels=None, |
|
167
|
|
|
shape=(10, 20, 30), |
|
168
|
|
|
spacing=(1, 1, 1), |
|
169
|
|
|
components=1, |
|
170
|
|
|
add_nans=False, |
|
171
|
|
|
suffix=None, |
|
172
|
|
|
force_binary_foreground=True, |
|
173
|
|
|
): |
|
174
|
|
|
shape = (*shape, 1) if len(shape) == 2 else shape |
|
175
|
|
|
data = np.random.rand(components, *shape) |
|
176
|
|
|
if binary: |
|
177
|
|
|
data = (data > 0.5).astype(np.uint8) |
|
178
|
|
|
if not data.sum() and force_binary_foreground: |
|
179
|
|
|
data[..., 0] = 1 |
|
180
|
|
|
elif labels is not None: |
|
181
|
|
|
data = (data * (len(labels) + 1)).astype(np.uint8) |
|
182
|
|
|
new_data = np.zeros_like(data) |
|
183
|
|
|
for i, label in enumerate(labels): |
|
184
|
|
|
new_data[data == (i + 1)] = label |
|
185
|
|
|
if not (new_data == label).sum(): |
|
186
|
|
|
new_data[..., i] = label |
|
187
|
|
|
data = new_data |
|
188
|
|
|
elif self.flip_coin(): # cast some images |
|
189
|
|
|
data *= 100 |
|
190
|
|
|
dtype = np.uint8 if self.flip_coin() else np.uint16 |
|
191
|
|
|
data = data.astype(dtype) |
|
192
|
|
|
if add_nans: |
|
193
|
|
|
data[:] = np.nan |
|
194
|
|
|
affine = np.diag((*spacing, 1)) |
|
195
|
|
|
if suffix is None: |
|
196
|
|
|
extensions = '.nii.gz', '.nii', '.nrrd', '.img', '.mnc' |
|
197
|
|
|
suffix = random.choice(extensions) |
|
198
|
|
|
path = self.dir / f'{stem}{suffix}' |
|
199
|
|
|
if self.flip_coin(): |
|
200
|
|
|
path = str(path) |
|
201
|
|
|
image = tio.ScalarImage( |
|
202
|
|
|
tensor=data, |
|
203
|
|
|
affine=affine, |
|
204
|
|
|
check_nans=not add_nans, |
|
205
|
|
|
) |
|
206
|
|
|
image.save(path) |
|
207
|
|
|
return path |
|
208
|
|
|
|
|
209
|
|
|
def flip_coin(self): |
|
210
|
|
|
return np.random.rand() > 0.5 |
|
211
|
|
|
|
|
212
|
|
|
def get_tests_data_dir(self): |
|
213
|
|
|
return Path(__file__).parent / 'image_data' |
|
214
|
|
|
|
|
215
|
|
|
def assert_tensor_not_equal(self, *args, **kwargs): # noqa: N802 |
|
216
|
|
|
with pytest.raises(AssertionError): |
|
217
|
|
|
self.assert_tensor_equal(*args, **kwargs) |
|
218
|
|
|
|
|
219
|
|
|
@staticmethod |
|
220
|
|
|
def assert_tensor_equal(*args, **kwargs): # noqa: N802 |
|
221
|
|
|
torch.testing.assert_close( |
|
222
|
|
|
*args, |
|
223
|
|
|
rtol=0, |
|
224
|
|
|
atol=0, |
|
225
|
|
|
check_dtype=False, |
|
226
|
|
|
**kwargs, |
|
227
|
|
|
) |
|
228
|
|
|
|
|
229
|
|
|
@staticmethod |
|
230
|
|
|
def assert_tensor_almost_equal(*args, **kwargs): # noqa: N802 |
|
231
|
|
|
torch.testing.assert_close( |
|
232
|
|
|
*args, |
|
233
|
|
|
**kwargs, |
|
234
|
|
|
check_dtype=False, |
|
235
|
|
|
) |
|
236
|
|
|
|
|
237
|
|
|
@staticmethod |
|
238
|
|
|
def assert_tensor_all_zeros(tensor): # noqa: N802 |
|
239
|
|
|
assert torch.all(tensor == 0) |
|
240
|
|
|
|
|
241
|
|
|
def get_large_composed_transform(self): |
|
242
|
|
|
all_classes = get_all_random_transforms() |
|
243
|
|
|
shuffle(all_classes) |
|
244
|
|
|
transforms = [t() for t in all_classes] |
|
245
|
|
|
# Hack as default patch size for RandomSwap is 15 and sample_subject |
|
246
|
|
|
# is (10, 20, 30) |
|
247
|
|
|
for tr in transforms: |
|
248
|
|
|
if tr.name == 'RandomSwap': |
|
249
|
|
|
tr.patch_size = np.array((10, 10, 10)) |
|
250
|
|
|
return tio.Compose(transforms) |
|
251
|
|
|
|
|
252
|
|
|
|
|
253
|
|
|
def get_all_random_transforms(): |
|
254
|
|
|
transforms_names = [ |
|
255
|
|
|
name for name in dir(tio.transforms) if name.startswith('Random') |
|
256
|
|
|
] |
|
257
|
|
|
classes = [getattr(tio.transforms, name) for name in transforms_names] |
|
258
|
|
|
return classes |
|
259
|
|
|
|