|
1
|
|
|
import numpy as np |
|
2
|
|
|
import pytest |
|
3
|
|
|
|
|
4
|
|
|
import torchio as tio |
|
5
|
|
|
|
|
6
|
|
|
from ...utils import TorchioTestCase |
|
7
|
|
|
|
|
8
|
|
|
|
|
9
|
|
|
class TestCropOrPad(TorchioTestCase): |
|
10
|
|
|
"""Tests for `CropOrPad`.""" |
|
11
|
|
|
|
|
12
|
|
|
def test_no_changes(self): |
|
13
|
|
|
sample_t1 = self.sample_subject['t1'] |
|
14
|
|
|
shape = sample_t1.spatial_shape |
|
15
|
|
|
transform = tio.CropOrPad(shape) |
|
16
|
|
|
transformed = transform(self.sample_subject) |
|
17
|
|
|
self.assert_tensor_equal(sample_t1.data, transformed['t1'].data) |
|
18
|
|
|
self.assert_tensor_equal(sample_t1.affine, transformed['t1'].affine) |
|
19
|
|
|
|
|
20
|
|
|
def test_no_changes_mask(self): |
|
21
|
|
|
sample_t1 = self.sample_subject['t1'] |
|
22
|
|
|
sample_mask = self.sample_subject['label'].data |
|
23
|
|
|
sample_mask *= 0 |
|
24
|
|
|
shape = sample_t1.spatial_shape |
|
25
|
|
|
transform = tio.CropOrPad(shape, mask_name='label') |
|
26
|
|
|
with pytest.warns(RuntimeWarning): |
|
27
|
|
|
transformed = transform(self.sample_subject) |
|
28
|
|
|
for key in transformed: |
|
29
|
|
|
image = self.sample_subject[key] |
|
30
|
|
|
self.assert_tensor_equal(image.data, transformed[key].data) |
|
31
|
|
|
self.assert_tensor_equal(image.affine, transformed[key].affine) |
|
32
|
|
|
|
|
33
|
|
|
def test_different_shape(self): |
|
34
|
|
|
shape = self.sample_subject['t1'].spatial_shape |
|
35
|
|
|
target_shape = 9, 21, 30 |
|
36
|
|
|
transform = tio.CropOrPad(target_shape) |
|
37
|
|
|
transformed = transform(self.sample_subject) |
|
38
|
|
|
for key in transformed: |
|
39
|
|
|
result_shape = transformed[key].spatial_shape |
|
40
|
|
|
self.assertNotEqual(shape, result_shape) |
|
41
|
|
|
|
|
42
|
|
|
def test_shape_right(self): |
|
43
|
|
|
target_shape = 9, 21, 30 |
|
44
|
|
|
transform = tio.CropOrPad(target_shape) |
|
45
|
|
|
transformed = transform(self.sample_subject) |
|
46
|
|
|
for key in transformed: |
|
47
|
|
|
result_shape = transformed[key].spatial_shape |
|
48
|
|
|
assert target_shape == result_shape |
|
49
|
|
|
|
|
50
|
|
|
def test_only_pad(self): |
|
51
|
|
|
target_shape = 11, 22, 30 |
|
52
|
|
|
transform = tio.CropOrPad(target_shape) |
|
53
|
|
|
transformed = transform(self.sample_subject) |
|
54
|
|
|
for key in transformed: |
|
55
|
|
|
result_shape = transformed[key].spatial_shape |
|
56
|
|
|
assert target_shape == result_shape |
|
57
|
|
|
|
|
58
|
|
|
def test_only_crop(self): |
|
59
|
|
|
target_shape = 9, 18, 30 |
|
60
|
|
|
transform = tio.CropOrPad(target_shape) |
|
61
|
|
|
transformed = transform(self.sample_subject) |
|
62
|
|
|
for key in transformed: |
|
63
|
|
|
result_shape = transformed[key].spatial_shape |
|
64
|
|
|
assert target_shape == result_shape |
|
65
|
|
|
|
|
66
|
|
|
def test_shape_negative(self): |
|
67
|
|
|
with pytest.raises(ValueError): |
|
68
|
|
|
tio.CropOrPad(-1) |
|
69
|
|
|
|
|
70
|
|
|
def test_shape_float(self): |
|
71
|
|
|
with pytest.raises(ValueError): |
|
72
|
|
|
tio.CropOrPad(2.5) |
|
73
|
|
|
|
|
74
|
|
|
def test_shape_string(self): |
|
75
|
|
|
with pytest.raises(ValueError): |
|
76
|
|
|
tio.CropOrPad('') |
|
77
|
|
|
|
|
78
|
|
|
def test_shape_one(self): |
|
79
|
|
|
transform = tio.CropOrPad(1) |
|
80
|
|
|
transformed = transform(self.sample_subject) |
|
81
|
|
|
for key in transformed: |
|
82
|
|
|
result_shape = transformed[key].spatial_shape |
|
83
|
|
|
assert result_shape == (1, 1, 1) |
|
84
|
|
|
|
|
85
|
|
|
def test_wrong_mask_name(self): |
|
86
|
|
|
cop = tio.CropOrPad(1, mask_name='wrong') |
|
87
|
|
|
with pytest.warns(RuntimeWarning): |
|
88
|
|
|
cop(self.sample_subject) |
|
89
|
|
|
|
|
90
|
|
|
def test_empty_mask(self): |
|
91
|
|
|
target_shape = 8, 22, 30 |
|
92
|
|
|
transform = tio.CropOrPad(target_shape, mask_name='label') |
|
93
|
|
|
mask = self.sample_subject['label'].data |
|
94
|
|
|
mask *= 0 |
|
95
|
|
|
with pytest.warns(RuntimeWarning): |
|
96
|
|
|
transform(self.sample_subject) |
|
97
|
|
|
|
|
98
|
|
|
def mask_only(self, target_shape): |
|
99
|
|
|
transform = tio.CropOrPad(target_shape, mask_name='label') |
|
100
|
|
|
mask = self.sample_subject['label'].data |
|
101
|
|
|
mask *= 0 |
|
102
|
|
|
mask[0, 4:6, 5:8, 3:7] = 1 |
|
103
|
|
|
transformed = transform(self.sample_subject) |
|
104
|
|
|
shapes = [] |
|
105
|
|
|
for key in transformed: |
|
106
|
|
|
result_shape = transformed[key].spatial_shape |
|
107
|
|
|
shapes.append(result_shape) |
|
108
|
|
|
set_shapes = set(shapes) |
|
109
|
|
|
message = f'Images have different shapes: {set_shapes}' |
|
110
|
|
|
assert len(set_shapes) == 1, message |
|
111
|
|
|
for key in transformed: |
|
112
|
|
|
result_shape = transformed[key].spatial_shape |
|
113
|
|
|
assert target_shape == result_shape, f'Wrong shape for image: {key}' |
|
114
|
|
|
|
|
115
|
|
|
def test_mask_only_pad(self): |
|
116
|
|
|
self.mask_only((11, 22, 30)) |
|
117
|
|
|
|
|
118
|
|
|
def test_mask_only_crop(self): |
|
119
|
|
|
self.mask_only((9, 18, 30)) |
|
120
|
|
|
|
|
121
|
|
|
def test_center_mask(self): |
|
122
|
|
|
"""The mask bounding box and the input image have the same center.""" |
|
123
|
|
|
target_shape = 8, 22, 30 |
|
124
|
|
|
transform_center = tio.CropOrPad(target_shape) |
|
125
|
|
|
transform_mask = tio.CropOrPad(target_shape, mask_name='label') |
|
126
|
|
|
mask = self.sample_subject['label'].data |
|
127
|
|
|
mask *= 0 |
|
128
|
|
|
mask[0, 4:6, 9:11, 14:16] = 1 |
|
129
|
|
|
transformed_center = transform_center(self.sample_subject) |
|
130
|
|
|
transformed_mask = transform_mask(self.sample_subject) |
|
131
|
|
|
zipped = zip( |
|
132
|
|
|
transformed_center.values(), |
|
133
|
|
|
transformed_mask.values(), |
|
134
|
|
|
strict=True, |
|
135
|
|
|
) |
|
136
|
|
|
for image_center, image_mask in zipped: |
|
137
|
|
|
self.assert_tensor_equal( |
|
138
|
|
|
image_center.data, |
|
139
|
|
|
image_mask.data, |
|
140
|
|
|
msg='Data is different after cropping', |
|
141
|
|
|
) |
|
142
|
|
|
self.assert_tensor_equal( |
|
143
|
|
|
image_center.affine, |
|
144
|
|
|
image_mask.affine, |
|
145
|
|
|
msg='Physical position is different after cropping', |
|
146
|
|
|
) |
|
147
|
|
|
|
|
148
|
|
|
def test_mask_corners(self): |
|
149
|
|
|
"""The mask bounding box and the input image have the same center.""" |
|
150
|
|
|
target_shape = 8, 22, 30 |
|
151
|
|
|
transform_center = tio.CropOrPad(target_shape) |
|
152
|
|
|
transform_mask = tio.CropOrPad( |
|
153
|
|
|
target_shape, |
|
154
|
|
|
mask_name='label', |
|
155
|
|
|
) |
|
156
|
|
|
mask = self.sample_subject['label'][tio.DATA] |
|
157
|
|
|
mask *= 0 |
|
158
|
|
|
mask[0, 0, 0, 0] = 1 |
|
159
|
|
|
mask[0, -1, -1, -1] = 1 |
|
160
|
|
|
transformed_center = transform_center(self.sample_subject) |
|
161
|
|
|
transformed_mask = transform_mask(self.sample_subject) |
|
162
|
|
|
zipped = zip( |
|
163
|
|
|
transformed_center.values(), |
|
164
|
|
|
transformed_mask.values(), |
|
165
|
|
|
strict=True, |
|
166
|
|
|
) |
|
167
|
|
|
for image_center, image_mask in zipped: |
|
168
|
|
|
self.assert_tensor_equal( |
|
169
|
|
|
image_center.data, |
|
170
|
|
|
image_mask.data, |
|
171
|
|
|
msg='Data is different after cropping', |
|
172
|
|
|
) |
|
173
|
|
|
self.assert_tensor_equal( |
|
174
|
|
|
image_center.affine, |
|
175
|
|
|
image_mask.affine, |
|
176
|
|
|
msg='Physical position is different after cropping', |
|
177
|
|
|
) |
|
178
|
|
|
|
|
179
|
|
|
def test_2d(self): |
|
180
|
|
|
# https://github.com/TorchIO-project/torchio/issues/434 |
|
181
|
|
|
image = np.random.rand(1, 16, 16, 1) |
|
182
|
|
|
mask = np.zeros_like(image, dtype=bool) |
|
183
|
|
|
mask[0, 7, 0] = True |
|
184
|
|
|
subject = tio.Subject( |
|
185
|
|
|
image=tio.ScalarImage(tensor=image), |
|
186
|
|
|
mask=tio.LabelMap(tensor=mask), |
|
187
|
|
|
) |
|
188
|
|
|
transform = tio.CropOrPad((12, 12, 1), mask_name='mask') |
|
189
|
|
|
transformed = transform(subject) |
|
190
|
|
|
assert transformed.shape == (1, 12, 12, 1) |
|
191
|
|
|
|
|
192
|
|
|
def test_no_target_no_mask(self): |
|
193
|
|
|
with pytest.raises(ValueError): |
|
194
|
|
|
tio.CropOrPad() |
|
195
|
|
|
|
|
196
|
|
|
def test_labels_but_no_mask(self): |
|
197
|
|
|
with pytest.raises(ValueError): |
|
198
|
|
|
tio.CropOrPad(target_shape=(3, 4, 5), labels=[2, 3]) |
|
199
|
|
|
|
|
200
|
|
|
def test_no_target(self): |
|
201
|
|
|
crop_with_mask = tio.CropOrPad(mask_name='label') |
|
202
|
|
|
crop_with_mask(self.sample_subject) |
|
203
|
|
|
|
|
204
|
|
|
def test_persistent_bounds_params(self): |
|
205
|
|
|
# https://github.com/TorchIO-project/torchio/issues/757 |
|
206
|
|
|
shape = (1, 5, 5, 5) |
|
207
|
|
|
mask_a = np.zeros(shape) |
|
208
|
|
|
mask_a[0, 2, 2, 2] = 1 |
|
209
|
|
|
mask_b = mask_a.copy() |
|
210
|
|
|
mask_b[0, 1:4, 1:4, 1:4] = 1 |
|
211
|
|
|
tensor = np.ones(shape) |
|
212
|
|
|
image_a = tio.ScalarImage(tensor=tensor) |
|
213
|
|
|
mask_a = tio.LabelMap(tensor=mask_a) |
|
214
|
|
|
subject_a = tio.Subject(image=image_a, mask=mask_a) |
|
215
|
|
|
image_b = tio.ScalarImage(tensor=tensor) |
|
216
|
|
|
mask_b = tio.LabelMap(tensor=mask_b) |
|
217
|
|
|
subject_b = tio.Subject(image=image_b, mask=mask_b) |
|
218
|
|
|
crop = tio.CropOrPad(mask_name='mask') |
|
219
|
|
|
for _ in range(2): |
|
220
|
|
|
shape_a = crop(subject_a).image.shape |
|
221
|
|
|
shape_b = crop(subject_b).image.shape |
|
222
|
|
|
assert shape_a != shape_b |
|
223
|
|
|
|
|
224
|
|
|
def test_only_crop_pad_true(self): |
|
225
|
|
|
with pytest.raises(ValueError): |
|
226
|
|
|
tio.CropOrPad((1, 2, 3), only_crop=True, only_pad=True) |
|
227
|
|
|
|
|
228
|
|
|
def test_only_pad_true(self): |
|
229
|
|
|
target_shape = 9, 21, 30 |
|
230
|
|
|
orig_shape = self.sample_subject['t1'].spatial_shape |
|
231
|
|
|
expected_shape = tuple( |
|
232
|
|
|
t if t > o else o for o, t in zip(orig_shape, target_shape, strict=True) |
|
233
|
|
|
) |
|
234
|
|
|
transform = tio.CropOrPad(target_shape, only_pad=True) |
|
235
|
|
|
transformed = transform(self.sample_subject) |
|
236
|
|
|
for key in transformed: |
|
237
|
|
|
result_shape = transformed[key].spatial_shape |
|
238
|
|
|
assert result_shape == expected_shape |
|
239
|
|
|
|
|
240
|
|
|
def test_only_crop_true(self): |
|
241
|
|
|
target_shape = 9, 21, 30 |
|
242
|
|
|
orig_shape = self.sample_subject['t1'].spatial_shape |
|
243
|
|
|
expected_shape = tuple( |
|
244
|
|
|
t if t < o else o for o, t in zip(orig_shape, target_shape, strict=True) |
|
245
|
|
|
) |
|
246
|
|
|
transform = tio.CropOrPad(target_shape, only_crop=True) |
|
247
|
|
|
transformed = transform(self.sample_subject) |
|
248
|
|
|
for key in transformed: |
|
249
|
|
|
result_shape = transformed[key].spatial_shape |
|
250
|
|
|
assert result_shape == expected_shape |
|
251
|
|
|
|