| 
                    1
                 | 
                                    
                                                     | 
                
                 | 
                import os  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    2
                 | 
                                    
                                                     | 
                
                 | 
                import math  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    3
                 | 
                                    
                                                     | 
                
                 | 
                import logging  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    4
                 | 
                                    
                                                     | 
                
                 | 
                import numpy as np  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    5
                 | 
                                    
                                                     | 
                
                 | 
                import tensorflow as tf  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    6
                 | 
                                    
                                                     | 
                
                 | 
                import tensorflow.contrib as tfcontrib  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    7
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    8
                 | 
                                    
                                                     | 
                
                 | 
                from pyActLearn.learning.nn import variable_summary  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    9
                 | 
                                    
                                                     | 
                
                 | 
                from .layers import HiddenLayer, SoftmaxLayer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    10
                 | 
                                    
                                                     | 
                
                 | 
                from .injectors import BatchSequenceInjector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    11
                 | 
                                    
                                                     | 
                
                 | 
                from .criterion import MonitorBased, ConstIterations  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    12
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    13
                 | 
                                    
                                                     | 
                
                 | 
                logger = logging.getLogger(__name__)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    14
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    15
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    16
                 | 
                                    
                                                     | 
                
                 | 
                class LSTM_Legacy:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    17
                 | 
                                    
                                                     | 
                
                 | 
                    """Basic Single Layer Long-Short-Term Memory  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    18
                 | 
                                    
                                                     | 
                
                 | 
                    """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    19
                 | 
                                    
                                                     | 
                
                 | 
                    def __init__(self, num_features, num_classes, num_units, num_steps, optimizer=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    20
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_features = num_features  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    21
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_classes = num_classes  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    22
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_steps = num_steps  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    23
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_units = num_units  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    24
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    25
                 | 
                                    
                                                     | 
                
                 | 
                        with tf.name_scope('input'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    26
                 | 
                                    
                                                     | 
                
                 | 
                            self.x = tf.placeholder(tf.float32, shape=[None, num_steps, num_features], name='input_x')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    27
                 | 
                                    
                                                     | 
                
                 | 
                            self.init_state = tf.placeholder(tf.float32, shape=[None, 2 * num_units], name='init_state')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    28
                 | 
                                    
                                                     | 
                
                 | 
                            self.y_ = tf.placeholder(tf.float32, shape=[None, num_classes], name='input_y')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    29
                 | 
                                    
                                                     | 
                
                 | 
                        # Input Hidden Layer - Need to unroll num_steps and apply W/b  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    30
                 | 
                                    
                                                     | 
                
                 | 
                        hidden_x = tf.reshape(tf.transpose(self.x, [1, 0, 2]), [-1, num_features])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    31
                 | 
                                    
                                                     | 
                
                 | 
                        self.hidden_layer = HiddenLayer(num_features, num_units, 'Hidden', x=hidden_x)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    32
                 | 
                                    
                                                     | 
                
                 | 
                        # Output of the hidden layer needs to be split to be used with RNN  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    33
                 | 
                                    
                                                     | 
                
                 | 
                        hidden_y = tf.split(axis=0, num_or_size_splits=int(num_steps), value=self.hidden_layer.y)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    34
                 | 
                                    
                                                     | 
                
                 | 
                        # Apply RNN  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    35
                 | 
                                    
                                                     | 
                
                 | 
                        self.cell = tfcontrib.rnn.BasicLSTMCell(num_units=num_units, state_is_tuple=False)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    36
                 | 
                                    
                                                     | 
                
                 | 
                        outputs, states = tfcontrib.rnn.static_rnn(self.cell, hidden_y, initial_state=self.init_state)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    37
                 | 
                                    
                                                     | 
                
                 | 
                        self.last_state = states[-1]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    38
                 | 
                                    
                                                     | 
                
                 | 
                        # Output Softmax Layer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    39
                 | 
                                    
                                                     | 
                
                 | 
                        self.output_layer = SoftmaxLayer(num_units, num_classes, 'SoftmaxLayer', x=outputs[-1])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    40
                 | 
                                    
                                                     | 
                
                 | 
                        # Predicted Probability  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    41
                 | 
                                    
                                                     | 
                
                 | 
                        self.y = self.output_layer.y  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    42
                 | 
                                    
                                                     | 
                
                 | 
                        self.y_class = tf.argmax(self.y, 1)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    43
                 | 
                                    
                                                     | 
                
                 | 
                        # Softmax Cross-Entropy Loss  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    44
                 | 
                                    
                                                     | 
                
                 | 
                        self.loss = tf.reduce_mean(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    45
                 | 
                                    
                                                     | 
                
                 | 
                            tf.nn.softmax_cross_entropy_with_logits(logits=self.output_layer.logits, labels=self.y_,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    46
                 | 
                                    
                                                     | 
                
                 | 
                                                                    name='SoftmaxCrossEntropy')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    47
                 | 
                                    
                                                     | 
                
                 | 
                        )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    48
                 | 
                                    
                                                     | 
                
                 | 
                        # Setup Optimizer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    49
                 | 
                                    
                                                     | 
                
                 | 
                        if optimizer is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    50
                 | 
                                    
                                                     | 
                
                 | 
                            self.optimizer = tf.train.AdamOptimizer()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    51
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    52
                 | 
                                    
                                                     | 
                
                 | 
                            self.optimizer = optimizer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    53
                 | 
                                    
                                                     | 
                
                 | 
                        # Evaluation  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    54
                 | 
                                    
                                                     | 
                
                 | 
                        self.correct_prediction = tf.equal(self.y_class, tf.argmax(self.y_, 1))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    55
                 | 
                                    
                                                     | 
                
                 | 
                        self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    56
                 | 
                                    
                                                     | 
                
                 | 
                        # Fit Step  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    57
                 | 
                                    
                                                     | 
                
                 | 
                        with tf.name_scope('train'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    58
                 | 
                                    
                                                     | 
                
                 | 
                            self.fit_step = self.optimizer.minimize(self.loss)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    59
                 | 
                                    
                                                     | 
                
                 | 
                        # Setup Summaries  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    60
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries += self.hidden_layer.summaries  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    61
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries += self.output_layer.summaries  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    62
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries.append(tf.summary.scalar('cross_entropy', self.loss)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    63
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries.append(tf.summary.scalar('accuracy', self.accuracy)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    64
                 | 
                                    
                                                     | 
                
                 | 
                        self.merged = tf.summary.merge(self.summaries)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    65
                 | 
                                    
                                                     | 
                
                 | 
                        self.sess = None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    66
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    67
                 | 
                                    
                                                     | 
                
                 | 
                    def fit(self, x, y, batch_size=100, iter_num=100, summaries_dir=None, summary_interval=10,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    68
                 | 
                                    
                                                     | 
                
                 | 
                            test_x=None, test_y=None, session=None, criterion='const_iteration'):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    69
                 | 
                                    
                                                     | 
                
                 | 
                        """Fit the model to the dataset  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    70
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    71
                 | 
                                    
                                                     | 
                
                 | 
                        Args:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    72
                 | 
                                    
                                                     | 
                
                 | 
                            x (:obj:`numpy.ndarray`): Input features of shape (num_samples, num_features).  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    73
                 | 
                                    
                                                     | 
                
                 | 
                            y (:obj:`numpy.ndarray`): Corresponding Labels of shape (num_samples) for binary classification,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    74
                 | 
                                    
                                                     | 
                
                 | 
                                or (num_samples, num_classes) for multi-class classification.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    75
                 | 
                                    
                                                     | 
                
                 | 
                            batch_size (:obj:`int`): Batch size used in gradient descent.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    76
                 | 
                                    
                                                     | 
                
                 | 
                            iter_num (:obj:`int`): Number of training iterations for const iterations, step depth for monitor based  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    77
                 | 
                                    
                                                     | 
                
                 | 
                                stopping criterion.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    78
                 | 
                                    
                                                     | 
                
                 | 
                            summaries_dir (:obj:`str`): Path of the directory to store summaries and saved values.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    79
                 | 
                                    
                                                     | 
                
                 | 
                            summary_interval (:obj:`int`): The step interval to export variable summaries.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    80
                 | 
                                    
                                                     | 
                
                 | 
                            test_x (:obj:`numpy.ndarray`): Test feature array used for monitoring training progress.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    81
                 | 
                                    
                                                     | 
                
                 | 
                            test_y (:obj:`numpy.ndarray): Test label array used for monitoring training progress.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    82
                 | 
                                    
                                                     | 
                
                 | 
                            session (:obj:`tensorflow.Session`): Session to run training functions.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    83
                 | 
                                    
                                                     | 
                
                 | 
                            criterion (:obj:`str`): Stopping criteria. 'const_iterations' or 'monitor_based'  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    84
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    85
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    86
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    87
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    88
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    89
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    90
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    91
                 | 
                                    
                                                     | 
                
                 | 
                        if summaries_dir is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    92
                 | 
                                    
                                                     | 
                
                 | 
                            train_writer = tf.summary.FileWriter(summaries_dir + '/train')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    93
                 | 
                                    
                                                     | 
                
                 | 
                            test_writer = tf.summary.FileWriter(summaries_dir + '/test')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    94
                 | 
                                    
                                                     | 
                
                 | 
                        session.run(tf.global_variables_initializer())  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    95
                 | 
                                    
                                                     | 
                
                 | 
                        # Get Stopping Criterion  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    96
                 | 
                                    
                                                     | 
                
                 | 
                        if criterion == 'const_iteration':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    97
                 | 
                                    
                                                     | 
                
                 | 
                            _criterion = ConstIterations(num_iters=iter_num)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    98
                 | 
                                    
                                                     | 
                
                 | 
                        elif criterion == 'monitor_based':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    99
                 | 
                                    
                                                     | 
                
                 | 
                            num_samples = x.shape[0]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    100
                 | 
                                    
                                                     | 
                
                 | 
                            valid_set_len = int(1/5 * num_samples)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    101
                 | 
                                    
                                                     | 
                
                 | 
                            valid_x = x[num_samples-valid_set_len:num_samples, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    102
                 | 
                                    
                                                     | 
                
                 | 
                            valid_y = y[num_samples-valid_set_len:num_samples, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    103
                 | 
                                    
                                                     | 
                
                 | 
                            x = x[0:num_samples-valid_set_len, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    104
                 | 
                                    
                                                     | 
                
                 | 
                            y = y[0:num_samples-valid_set_len, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    105
                 | 
                                    
                                                     | 
                
                 | 
                            _criterion = MonitorBased(n_steps=iter_num,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    106
                 | 
                                    
                                                     | 
                
                 | 
                                                      monitor_fn=self.predict_accuracy,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    107
                 | 
                                    
                                                     | 
                
                 | 
                                                      monitor_fn_args=(valid_x, valid_y[self.num_steps:, :]),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    108
                 | 
                                    
                                                     | 
                
                 | 
                                                      save_fn=tf.train.Saver().save,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    109
                 | 
                                    
                                                     | 
                
                 | 
                                                      save_fn_args=(session, summaries_dir + '/best.ckpt'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    110
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    111
                 | 
                                    
                                                     | 
                
                 | 
                            logger.error('Wrong criterion %s specified.' % criterion) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    112
                 | 
                                    
                                                     | 
                
                 | 
                            return  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    113
                 | 
                                    
                                                     | 
                
                 | 
                        # Setup batch injector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    114
                 | 
                                    
                                                     | 
                
                 | 
                        injector = BatchSequenceInjector(data_x=x, data_y=y, batch_size=batch_size, seq_len=self.num_steps)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    115
                 | 
                                    
                                                     | 
                
                 | 
                        # Train/Test sequence for brief reporting of accuracy and loss  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    116
                 | 
                                    
                                                     | 
                
                 | 
                        train_seq_x, train_seq_y = BatchSequenceInjector.to_sequence(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    117
                 | 
                                    
                                                     | 
                
                 | 
                            self.num_steps, x, y, start=0, end=2000  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    118
                 | 
                                    
                                                     | 
                
                 | 
                        )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    119
                 | 
                                    
                                                     | 
                
                 | 
                        if (test_x is not None) and (test_y is not None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    120
                 | 
                                    
                                                     | 
                
                 | 
                            test_seq_x, test_seq_y = BatchSequenceInjector.to_sequence(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    121
                 | 
                                    
                                                     | 
                
                 | 
                                self.num_steps, test_x, test_y, start=0, end=2000  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    122
                 | 
                                    
                                                     | 
                
                 | 
                            )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    123
                 | 
                                    
                                                     | 
                
                 | 
                        # Iteration Starts  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    124
                 | 
                                    
                                                     | 
                
                 | 
                        i = 0  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    125
                 | 
                                    
                                                     | 
                
                 | 
                        while _criterion.continue_learning():  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    126
                 | 
                                    
                                                     | 
                
                 | 
                            batch_x, batch_y = injector.next_batch()  | 
            
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 
                    127
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                            if summaries_dir is not None and (i % summary_interval == 0):  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    128
                 | 
                                    
                                                     | 
                
                 | 
                                summary, loss, accuracy = session.run(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    129
                 | 
                                    
                                                     | 
                
                 | 
                                    [self.merged, self.loss, self.accuracy],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    130
                 | 
                                    
                                                     | 
                
                 | 
                                    feed_dict={self.x: train_seq_x, self.y_: train_seq_y, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    131
                 | 
                                    
                                                     | 
                
                 | 
                                               self.init_state: np.zeros((train_seq_x.shape[0], 2 * self.num_units))}  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    132
                 | 
                                    
                                                     | 
                
                 | 
                                )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    133
                 | 
                                    
                                                     | 
                
                 | 
                                train_writer.add_summary(summary, i)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    134
                 | 
                                    
                                                     | 
                
                 | 
                                logger.info('Step %d, train_set accuracy %g, loss %g' % (i, accuracy, loss)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    135
                 | 
                                    
                                                     | 
                
                 | 
                                if (test_x is not None) and (test_y is not None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    136
                 | 
                                    
                                                     | 
                
                 | 
                                    merged, accuracy = session.run(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    137
                 | 
                                    
                                                     | 
                
                 | 
                                        [self.merged, self.accuracy],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    138
                 | 
                                    
                                                     | 
                
                 | 
                                        feed_dict={self.x: test_seq_x, self.y_: test_seq_y, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    139
                 | 
                                    
                                                     | 
                
                 | 
                                                   self.init_state: np.zeros((test_seq_x.shape[0], 2*self.num_units))})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    140
                 | 
                                    
                                                     | 
                
                 | 
                                    test_writer.add_summary(merged, i)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    141
                 | 
                                    
                                                     | 
                
                 | 
                                    logger.info('test_set accuracy %g' % accuracy) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    142
                 | 
                                    
                                                     | 
                
                 | 
                            loss, accuracy, _ = session.run(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    143
                 | 
                                    
                                                     | 
                
                 | 
                                [self.loss, self.accuracy, self.fit_step],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    144
                 | 
                                    
                                                     | 
                
                 | 
                                feed_dict={self.x: batch_x, self.y_: batch_y, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    145
                 | 
                                    
                                                     | 
                
                 | 
                                           self.init_state: np.zeros((batch_x.shape[0], 2 * self.num_units))})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    146
                 | 
                                    
                                                     | 
                
                 | 
                            i += 1  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    147
                 | 
                                    
                                                     | 
                
                 | 
                        # Finish Iteration  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    148
                 | 
                                    
                                                     | 
                
                 | 
                        if criterion == 'monitor_based':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    149
                 | 
                                    
                                                     | 
                
                 | 
                            tf.train.Saver().restore(session, os.path.join(summaries_dir, 'best.ckpt'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    150
                 | 
                                    
                                                     | 
                
                 | 
                        logger.debug('Total Epoch: %d, current batch %d', injector.num_epochs, injector.cur_batch) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    151
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    152
                 | 
                                    
                                                     | 
                
                 | 
                    def predict_proba(self, x, session=None, batch_size=500):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    153
                 | 
                                    
                                                     | 
                
                 | 
                        """Predict probability (Softmax)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    154
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    155
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    156
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    157
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    158
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    159
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    160
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    161
                 | 
                                    
                                                     | 
                
                 | 
                        injector = BatchSequenceInjector(batch_size=batch_size, data_x=x, seq_len=self.num_steps)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    162
                 | 
                                    
                                                     | 
                
                 | 
                        injector.reset()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    163
                 | 
                                    
                                                     | 
                
                 | 
                        result = None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    164
                 | 
                                    
                                                     | 
                
                 | 
                        while injector.num_epochs == 0:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    165
                 | 
                                    
                                                     | 
                
                 | 
                            batch_x = injector.next_batch()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    166
                 | 
                                    
                                                     | 
                
                 | 
                            batch_y = session.run(self.y,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    167
                 | 
                                    
                                                     | 
                
                 | 
                                                  feed_dict={self.x: batch_x, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    168
                 | 
                                    
                                                     | 
                
                 | 
                                                             self.init_state: np.zeros((batch_x.shape[0], 2 * self.num_units))})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    169
                 | 
                                    
                                                     | 
                
                 | 
                            if result is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    170
                 | 
                                    
                                                     | 
                
                 | 
                                result = batch_y  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    171
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    172
                 | 
                                    
                                                     | 
                
                 | 
                                result = np.concatenate((result, batch_y), axis=0)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    173
                 | 
                                    
                                                     | 
                
                 | 
                        return result  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    174
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    175
                 | 
                                    
                                                     | 
                
                 | 
                    def predict(self, x, session=None, batch_size=500):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    176
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    177
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    178
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    179
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    180
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    181
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    182
                 | 
                                    
                                                     | 
                
                 | 
                        injector = BatchSequenceInjector(batch_size=batch_size, data_x=x, seq_len=self.num_steps)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    183
                 | 
                                    
                                                     | 
                
                 | 
                        injector.reset()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    184
                 | 
                                    
                                                     | 
                
                 | 
                        result = None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    185
                 | 
                                    
                                                     | 
                
                 | 
                        while injector.num_epochs == 0:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    186
                 | 
                                    
                                                     | 
                
                 | 
                            batch_x = injector.next_batch()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    187
                 | 
                                    
                                                     | 
                
                 | 
                            batch_y = session.run(self.y_class,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    188
                 | 
                                    
                                                     | 
                
                 | 
                                                  feed_dict={self.x: batch_x, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    189
                 | 
                                    
                                                     | 
                
                 | 
                                                             self.init_state: np.zeros((batch_x.shape[0], 2 * self.num_units))})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    190
                 | 
                                    
                                                     | 
                
                 | 
                            if result is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    191
                 | 
                                    
                                                     | 
                
                 | 
                                result = batch_y  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    192
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    193
                 | 
                                    
                                                     | 
                
                 | 
                                result = np.concatenate((result, batch_y), axis=0)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    194
                 | 
                                    
                                                     | 
                
                 | 
                        return result  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    195
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    196
                 | 
                                    
                                                     | 
                
                 | 
                    def predict_accuracy(self, x, y, session=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    197
                 | 
                                    
                                                     | 
                
                 | 
                        """Get Accuracy given feature array and corresponding labels  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    198
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    199
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    200
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    201
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    202
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    203
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    204
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    205
                 | 
                                    
                                                     | 
                
                 | 
                        predict = self.predict(x, session=session)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    206
                 | 
                                    
                                                     | 
                
                 | 
                        accuracy = np.sum(predict == y.argmax(y.ndim - 1)) / float(y.shape[0])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    207
                 | 
                                    
                                                     | 
                
                 | 
                        return accuracy  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    208
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    209
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    210
                 | 
                                    
                                                     | 
                
                 | 
                class LSTM:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    211
                 | 
                                    
                                                     | 
                
                 | 
                    """Single Layer LSTM Implementation  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    212
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    213
                 | 
                                    
                                                     | 
                
                 | 
                    In this new implementation, state_is_tuple is disabled to suppress the "deprecated" warning and  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    214
                 | 
                                    
                                                     | 
                
                 | 
                    performance improvement. The static unrolling of the RNN is replaced with dynamic unrolling.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    215
                 | 
                                    
                                                     | 
                
                 | 
                    As a result, no batch injector is needed for prediction.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    216
                 | 
                                    
                                                     | 
                
                 | 
                      | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    217
                 | 
                                    
                                                     | 
                
                 | 
                    Args:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    218
                 | 
                                    
                                                     | 
                
                 | 
                        num_features (:obj:`int`): Number of input features.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    219
                 | 
                                    
                                                     | 
                
                 | 
                        num_classes (:obj:`int`): Number of target classes.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    220
                 | 
                                    
                                                     | 
                
                 | 
                        num_hidden (:obj:`int`): Number of units in the input hidden layer.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    221
                 | 
                                    
                                                     | 
                
                 | 
                        num_units (:obj:`int`): Number of units in the RNN layer.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    222
                 | 
                                    
                                                     | 
                
                 | 
                          | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    223
                 | 
                                    
                                                     | 
                
                 | 
                    Attributes:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    224
                 | 
                                    
                                                     | 
                
                 | 
                        num_features (:obj:`int`): Number of input features.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    225
                 | 
                                    
                                                     | 
                
                 | 
                        num_classes (:obj:`int`): Number of target classes.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    226
                 | 
                                    
                                                     | 
                
                 | 
                        num_hidden (:obj:`int`): Number of units in the input hidden layer.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    227
                 | 
                                    
                                                     | 
                
                 | 
                        num_units (:obj:`int`): Number of units in the RNN layer.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    228
                 | 
                                    
                                                     | 
                
                 | 
                        summaries (:obj:`list`): List of tensorflow summaries to be displayed on tensorboard.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    229
                 | 
                                    
                                                     | 
                
                 | 
                        x (:obj:`tf.Tensor`): Input tensor of size [num_batches, length, num_features]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    230
                 | 
                                    
                                                     | 
                
                 | 
                        length (:obj:`tf.Tensor`): 1D length array (int) of size [num_batches, 1] for the length of each batch data.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    231
                 | 
                                    
                                                     | 
                
                 | 
                        init_state (:obj:`tf.Tensor`): Initial states. 2D tensor (float) of size [num_batches, 2*num_units].  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    232
                 | 
                                    
                                                     | 
                
                 | 
                        y_ (:obj:`tf.Tensor`): Ground Truth of size [num_batches, length, num_classes].  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    233
                 | 
                                    
                                                     | 
                
                 | 
                    """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    234
                 | 
                                    
                                                     | 
                
                 | 
                    def __init__(self, num_features, num_classes, num_hidden, num_units, num_skip=0, graph=None, optimizer=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    235
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_features = num_features  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    236
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_classes = num_classes  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    237
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_units = num_units  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    238
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_skip = num_skip  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    239
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    240
                 | 
                                    
                                                     | 
                
                 | 
                        if graph is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    241
                 | 
                                    
                                                     | 
                
                 | 
                            self.graph = tf.Graph()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    242
                 | 
                                    
                                                     | 
                
                 | 
                        with self.graph.as_default():  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    243
                 | 
                                    
                                                     | 
                
                 | 
                            # Inputs  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    244
                 | 
                                    
                                                     | 
                
                 | 
                            with tf.name_scope('input'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    245
                 | 
                                    
                                                     | 
                
                 | 
                                # Input tensor X, shape: [batch, length, features]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    246
                 | 
                                    
                                                     | 
                
                 | 
                                self.x = tf.placeholder(tf.float32, shape=[None, None, num_features], name='input_x')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    247
                 | 
                                    
                                                     | 
                
                 | 
                                # Length, shape: [batch, length]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    248
                 | 
                                    
                                                     | 
                
                 | 
                                self.length = tf.placeholder(tf.float32, shape=[None, ], name='input_x_length')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    249
                 | 
                                    
                                                     | 
                
                 | 
                                # Initial states (as tupples), shape: [batch, units]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    250
                 | 
                                    
                                                     | 
                
                 | 
                                self.initial_state_c = tf.placeholder(tf.float32, shape=[None, num_units], name='initial_state_c')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    251
                 | 
                                    
                                                     | 
                
                 | 
                                self.initial_state_h = tf.placeholder(tf.float32, shape=[None, num_units], name='initial_state_h')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    252
                 | 
                                    
                                                     | 
                
                 | 
                                # Targets, shape: [batch, length, classes]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    253
                 | 
                                    
                                                     | 
                
                 | 
                                self.y_ = tf.placeholder(tf.float32, shape=[None, None, num_classes], name='targets')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    254
                 | 
                                    
                                                     | 
                
                 | 
                            # Input hidden layer with num_hidden units  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    255
                 | 
                                    
                                                     | 
                
                 | 
                            with tf.name_scope('input_layer'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    256
                 | 
                                    
                                                     | 
                
                 | 
                                self.input_W = tf.Variable(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    257
                 | 
                                    
                                                     | 
                
                 | 
                                    tf.truncated_normal(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    258
                 | 
                                    
                                                     | 
                
                 | 
                                        shape=[num_features, num_hidden], stddev=1.0 / math.sqrt(float(num_hidden))),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    259
                 | 
                                    
                                                     | 
                
                 | 
                                        name='weights')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    260
                 | 
                                    
                                                     | 
                
                 | 
                                self.input_b = tf.Variable(tf.zeros(shape=[num_hidden]), name='bias')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    261
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    262
                 | 
                                    
                                                     | 
                
                 | 
                                def hidden_fn(slice):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    263
                 | 
                                    
                                                     | 
                
                 | 
                                    return tf.nn.sigmoid(tf.matmul(slice, self.input_W) + self.input_b)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    264
                 | 
                                    
                                                     | 
                
                 | 
                                # Activation of hidden layer, shape: [batch, length, num_hidden]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    265
                 | 
                                    
                                                     | 
                
                 | 
                                self.hidden_y = tf.map_fn(hidden_fn, self.x)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    266
                 | 
                                    
                                                     | 
                
                 | 
                            # Recursive Layer (RNN)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    267
                 | 
                                    
                                                     | 
                
                 | 
                            with tf.name_scope('rnn'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    268
                 | 
                                    
                                                     | 
                
                 | 
                                # Apply RNN  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    269
                 | 
                                    
                                                     | 
                
                 | 
                                self.cell = tfcontrib.rnn.BasicLSTMCell(num_units=num_units, state_is_tuple=True)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    270
                 | 
                                    
                                                     | 
                
                 | 
                                # rnn outputs, shape: [batch, length, num_units]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    271
                 | 
                                    
                                                     | 
                
                 | 
                                rnn_outputs, rnn_states = tf.nn.dynamic_rnn(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    272
                 | 
                                    
                                                     | 
                
                 | 
                                    self.cell, self.hidden_y, sequence_length=self.length,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    273
                 | 
                                    
                                                     | 
                
                 | 
                                    initial_state=tfcontrib.rnn.LSTMStateTuple(self.initial_state_c, self.initial_state_h))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    274
                 | 
                                    
                                                     | 
                
                 | 
                            # Apply Softmax Layer to all outputs in all batches  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    275
                 | 
                                    
                                                     | 
                
                 | 
                            with tf.name_scope('output_layer'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    276
                 | 
                                    
                                                     | 
                
                 | 
                                self.output_W = tf.Variable(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    277
                 | 
                                    
                                                     | 
                
                 | 
                                    tf.truncated_normal(shape=[num_units, num_classes], stddev=1.0/math.sqrt(float(num_units))),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    278
                 | 
                                    
                                                     | 
                
                 | 
                                    name='weights'  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    279
                 | 
                                    
                                                     | 
                
                 | 
                                )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    280
                 | 
                                    
                                                     | 
                
                 | 
                                self.output_b = tf.Variable(tf.zeros(shape=[num_classes]), name='biases')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    281
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    282
                 | 
                                    
                                                     | 
                
                 | 
                                def out_mult_fn(slice):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    283
                 | 
                                    
                                                     | 
                
                 | 
                                    return tf.matmul(slice, self.output_W) + self.output_b  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    284
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    285
                 | 
                                    
                                                     | 
                
                 | 
                                def out_softmax_fn(slice):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    286
                 | 
                                    
                                                     | 
                
                 | 
                                    return tf.nn.softmax(slice)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    287
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    288
                 | 
                                    
                                                     | 
                
                 | 
                                def out_class_fn(slice):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    289
                 | 
                                    
                                                     | 
                
                 | 
                                    return tf.argmax(slice, axis=1)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    290
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    291
                 | 
                                    
                                                     | 
                
                 | 
                                def out_softmax_entropy(params):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    292
                 | 
                                    
                                                     | 
                
                 | 
                                    logits, labels = params  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    293
                 | 
                                    
                                                     | 
                
                 | 
                                    return tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    294
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    295
                 | 
                                    
                                                     | 
                
                 | 
                                # self.logit_outputs is a tensor of shape [batch, length, num_classes]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    296
                 | 
                                    
                                                     | 
                
                 | 
                                self.logit_outputs = tf.map_fn(out_mult_fn, rnn_outputs)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    297
                 | 
                                    
                                                     | 
                
                 | 
                                # self.softmax_outputs applies softmax to logit_outputs as a tensor of shape  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    298
                 | 
                                    
                                                     | 
                
                 | 
                                # [batch, length, num_classes]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    299
                 | 
                                    
                                                     | 
                
                 | 
                                self.softmax_outputs = tf.map_fn(out_softmax_fn, self.logit_outputs)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    300
                 | 
                                    
                                                     | 
                
                 | 
                            # Probability output y, shape: [batch, length-num_skip, num_classes]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    301
                 | 
                                    
                                                     | 
                
                 | 
                            self.y = self.softmax_outputs[:, num_skip:, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    302
                 | 
                                    
                                                     | 
                
                 | 
                            self.y_class = tf.map_fn(out_class_fn, self.y, dtype=tf.int64)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    303
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    304
                 | 
                                    
                                                     | 
                
                 | 
                            # Acciracy  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    305
                 | 
                                    
                                                     | 
                
                 | 
                            def accuracy_fn(params):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    306
                 | 
                                    
                                                     | 
                
                 | 
                                prediction, truth = params  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    307
                 | 
                                    
                                                     | 
                
                 | 
                                return tf.reduce_mean(tf.cast(tf.equal(prediction, tf.argmax(truth, 1)), tf.float32))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    308
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    309
                 | 
                                    
                                                     | 
                
                 | 
                            self.accuracy_outputs = tf.map_fn(accuracy_fn, (self.y_class, self.y_[:, num_skip:, :]), dtype=tf.float32)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    310
                 | 
                                    
                                                     | 
                
                 | 
                            self.accuracy = tf.reduce_mean(self.accuracy_outputs)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    311
                 | 
                                    
                                                     | 
                
                 | 
                            # self.class_outputs gets the class label for each item in sequence as a tensor of shape  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    312
                 | 
                                    
                                                     | 
                
                 | 
                            # [batch_size, max_time, 1]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    313
                 | 
                                    
                                                     | 
                
                 | 
                            self.entropy_outputs = tf.map_fn(out_softmax_entropy,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    314
                 | 
                                    
                                                     | 
                
                 | 
                                                             (self.logit_outputs[:, num_skip:, :], self.y_[:, num_skip:, :]),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    315
                 | 
                                    
                                                     | 
                
                 | 
                                                             dtype=tf.float32)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    316
                 | 
                                    
                                                     | 
                
                 | 
                            # Softmax Cross-Entropy Loss  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    317
                 | 
                                    
                                                     | 
                
                 | 
                            self.loss = tf.reduce_mean(self.entropy_outputs)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    318
                 | 
                                    
                                                     | 
                
                 | 
                            # Setup Optimizer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    319
                 | 
                                    
                                                     | 
                
                 | 
                            if optimizer is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    320
                 | 
                                    
                                                     | 
                
                 | 
                                self.optimizer = tf.train.AdamOptimizer()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    321
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    322
                 | 
                                    
                                                     | 
                
                 | 
                                self.optimizer = optimizer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    323
                 | 
                                    
                                                     | 
                
                 | 
                            # Fit Step  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    324
                 | 
                                    
                                                     | 
                
                 | 
                            with tf.name_scope('train'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    325
                 | 
                                    
                                                     | 
                
                 | 
                                self.fit_step = self.optimizer.minimize(self.loss)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    326
                 | 
                                    
                                                     | 
                
                 | 
                            # Setup Summaries  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    327
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries.append(variable_summary(self.input_W, tag='input_layer/weights'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    328
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries.append(variable_summary(self.input_b, tag='input_layer/biases'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    329
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries.append(variable_summary(self.output_W, tag='output_layer/weights'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    330
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries.append(variable_summary(self.output_b, tag='output_layer/biases'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    331
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries.append(tf.summary.scalar('cross_entropy', self.loss)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    332
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries.append(tf.summary.scalar('accuracy', self.accuracy)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    333
                 | 
                                    
                                                     | 
                
                 | 
                            self.merged = tf.summary.merge(self.summaries)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    334
                 | 
                                    
                                                     | 
                
                 | 
                            self.init_op = tf.global_variables_initializer()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    335
                 | 
                                    
                                                     | 
                
                 | 
                            self.sess = None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    336
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    337
                 | 
                                    
                                                     | 
                
                 | 
                    def fit(self, x, y, length, batch_size=100, iter_num=100, summaries_dir=None, summary_interval=100,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    338
                 | 
                                    
                                                     | 
                
                 | 
                            test_x=None, test_y=None, session=None, criterion='const_iteration', reintialize=True):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    339
                 | 
                                    
                                                     | 
                
                 | 
                        """Fit the model to the dataset  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    340
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    341
                 | 
                                    
                                                     | 
                
                 | 
                        Args:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    342
                 | 
                                    
                                                     | 
                
                 | 
                            x (:obj:`numpy.ndarray`): Input features x, shape: [num_samples, num_features].  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    343
                 | 
                                    
                                                     | 
                
                 | 
                            y (:obj:`numpy.ndarray`): Corresponding Labels of shape (num_samples) for binary classification,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    344
                 | 
                                    
                                                     | 
                
                 | 
                                or (num_samples, num_classes) for multi-class classification.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    345
                 | 
                                    
                                                     | 
                
                 | 
                            length (:obj:`int`): Length of each batch (needs to be greater than self.num_skip.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    346
                 | 
                                    
                                                     | 
                
                 | 
                            batch_size (:obj:`int`): Batch size used in gradient descent.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    347
                 | 
                                    
                                                     | 
                
                 | 
                            iter_num (:obj:`int`): Number of training iterations for const iterations, step depth for monitor based  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    348
                 | 
                                    
                                                     | 
                
                 | 
                                stopping criterion.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    349
                 | 
                                    
                                                     | 
                
                 | 
                            summaries_dir (:obj:`str`): Path of the directory to store summaries and saved values.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    350
                 | 
                                    
                                                     | 
                
                 | 
                            summary_interval (:obj:`int`): The step interval to export variable summaries.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    351
                 | 
                                    
                                                     | 
                
                 | 
                            test_x (:obj:`numpy.ndarray`): Test feature array used for monitoring training progress.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    352
                 | 
                                    
                                                     | 
                
                 | 
                            test_y (:obj:`numpy.ndarray): Test label array used for monitoring training progress.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    353
                 | 
                                    
                                                     | 
                
                 | 
                            session (:obj:`tensorflow.Session`): Session to run training functions.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    354
                 | 
                                    
                                                     | 
                
                 | 
                            criterion (:obj:`str`): Stopping criteria. 'const_iterations' or 'monitor_based'  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    355
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    356
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    357
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    358
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    359
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    360
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    361
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    362
                 | 
                                    
                                                     | 
                
                 | 
                        if summaries_dir is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    363
                 | 
                                    
                                                     | 
                
                 | 
                            train_writer = tf.summary.FileWriter(summaries_dir + '/train')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    364
                 | 
                                    
                                                     | 
                
                 | 
                            test_writer = tf.summary.FileWriter(summaries_dir + '/test')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    365
                 | 
                                    
                                                     | 
                
                 | 
                            valid_writer = tf.summary.FileWriter(summaries_dir + '/valid')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    366
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    367
                 | 
                                    
                                                     | 
                
                 | 
                            train_writer = None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    368
                 | 
                                    
                                                     | 
                
                 | 
                            test_writer = None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    369
                 | 
                                    
                                                     | 
                
                 | 
                            valid_writer = None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    370
                 | 
                                    
                                                     | 
                
                 | 
                        if reintialize:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    371
                 | 
                                    
                                                     | 
                
                 | 
                            session.run(self.init_op)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    372
                 | 
                                    
                                                     | 
                
                 | 
                        with self.graph.as_default():  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    373
                 | 
                                    
                                                     | 
                
                 | 
                            saver = tf.train.Saver()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    374
                 | 
                                    
                                                     | 
                
                 | 
                        num_samples = x.shape[0]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    375
                 | 
                                    
                                                     | 
                
                 | 
                        # Get Stopping Criterion  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    376
                 | 
                                    
                                                     | 
                
                 | 
                        if criterion == 'const_iteration':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    377
                 | 
                                    
                                                     | 
                
                 | 
                            _criterion = ConstIterations(num_iters=iter_num)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    378
                 | 
                                    
                                                     | 
                
                 | 
                        elif criterion == 'monitor_based':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    379
                 | 
                                    
                                                     | 
                
                 | 
                            valid_set_start = int(4/5 * (num_samples - self.num_skip))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    380
                 | 
                                    
                                                     | 
                
                 | 
                            valid_x = x[valid_set_start:num_samples, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    381
                 | 
                                    
                                                     | 
                
                 | 
                            valid_y = y[valid_set_start:num_samples, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    382
                 | 
                                    
                                                     | 
                
                 | 
                            x = x[0:valid_set_start + self.num_skip, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    383
                 | 
                                    
                                                     | 
                
                 | 
                            y = y[0:valid_set_start + self.num_skip, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    384
                 | 
                                    
                                                     | 
                
                 | 
                            _criterion = MonitorBased(n_steps=iter_num,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    385
                 | 
                                    
                                                     | 
                
                 | 
                                                      monitor_fn=self.predict_accuracy,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    386
                 | 
                                    
                                                     | 
                
                 | 
                                                      monitor_fn_args=(valid_x, valid_y),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    387
                 | 
                                    
                                                     | 
                
                 | 
                                                      save_fn=saver.save,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    388
                 | 
                                    
                                                     | 
                
                 | 
                                                      save_fn_args=(session, summaries_dir + '/best.ckpt'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    389
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    390
                 | 
                                    
                                                     | 
                
                 | 
                            logger.error('Wrong criterion %s specified.' % criterion) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    391
                 | 
                                    
                                                     | 
                
                 | 
                            return  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    392
                 | 
                                    
                                                     | 
                
                 | 
                        # Setup batch injector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    393
                 | 
                                    
                                                     | 
                
                 | 
                        injector = BatchSequenceInjector(data_x=x, data_y=y, batch_size=batch_size, length=self.num_skip + length,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    394
                 | 
                                    
                                                     | 
                
                 | 
                                                         with_seq=True)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    395
                 | 
                                    
                                                     | 
                
                 | 
                        # Iteration Starts  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    396
                 | 
                                    
                                                     | 
                
                 | 
                        i = 0  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    397
                 | 
                                    
                                                     | 
                
                 | 
                        while _criterion.continue_learning():  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    398
                 | 
                                    
                                                     | 
                
                 | 
                            # Learning  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    399
                 | 
                                    
                                                     | 
                
                 | 
                            batch_x, batch_y, batch_length = injector.next_batch(skip=50)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    400
                 | 
                                    
                                                     | 
                
                 | 
                            loss, accuracy, _ = session.run(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    401
                 | 
                                    
                                                     | 
                
                 | 
                                [self.loss, self.accuracy, self.fit_step],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    402
                 | 
                                    
                                                     | 
                
                 | 
                                feed_dict={self.x: batch_x, self.y_: batch_y, self.length: batch_length, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    403
                 | 
                                    
                                                     | 
                
                 | 
                                           self.initial_state_c: np.zeros((batch_x.shape[0], self.num_units)),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    404
                 | 
                                    
                                                     | 
                
                 | 
                                           self.initial_state_h: np.zeros((batch_x.shape[0], self.num_units))})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    405
                 | 
                                    
                                                     | 
                
                 | 
                            # Take summaries  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    406
                 | 
                                    
                                                     | 
                
                 | 
                            if summaries_dir is not None and (i % summary_interval == 0):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    407
                 | 
                                    
                                                     | 
                
                 | 
                                accuracy, loss = self.predict_accuracy(x, y, writer=train_writer, writer_id=i, with_loss=True)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    408
                 | 
                                    
                                                     | 
                
                 | 
                                logger.info('Step %d, train_set accuracy %g, loss %g' % (i, accuracy, loss)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    409
                 | 
                                    
                                                     | 
                
                 | 
                                accuracy, loss = self.predict_accuracy(test_x, test_y, writer=test_writer, writer_id=i, with_loss=True)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    410
                 | 
                                    
                                                     | 
                
                 | 
                                logger.info('Step %d, test_set accuracy %g, loss %g' % (i, accuracy, loss)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    411
                 | 
                                    
                                                     | 
                
                 | 
                                if criterion == 'monitor_based':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    412
                 | 
                                    
                                                     | 
                
                 | 
                                    accuracy, loss = self.predict_accuracy(valid_x, valid_y, writer=valid_writer, writer_id=i, with_loss=True)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    413
                 | 
                                    
                                                     | 
                
                 | 
                                    logger.info('Step %d, valid_set accuracy %g, loss %g' % (i, accuracy, loss)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    414
                 | 
                                    
                                                     | 
                
                 | 
                            # Get Summary  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    415
                 | 
                                    
                                                     | 
                
                 | 
                            i += 1  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    416
                 | 
                                    
                                                     | 
                
                 | 
                        # Finish Iteration  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    417
                 | 
                                    
                                                     | 
                
                 | 
                        if criterion == 'monitor_based':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    418
                 | 
                                    
                                                     | 
                
                 | 
                            saver.restore(session, os.path.join(summaries_dir, 'best.ckpt'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    419
                 | 
                                    
                                                     | 
                
                 | 
                        logger.debug('Total Epoch: %d, current batch %d', injector.num_epochs, injector.cur_batch) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    420
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 
                    421
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                    def predict_proba(self, x, session=None, writer=None, writer_id=None):  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    422
                 | 
                                    
                                                     | 
                
                 | 
                        """Predict probability (Softmax)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    423
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    424
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    425
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    426
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    427
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    428
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    429
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    430
                 | 
                                    
                                                     | 
                
                 | 
                        targets = [self.y]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    431
                 | 
                                    
                                                     | 
                
                 | 
                        if writer is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    432
                 | 
                                    
                                                     | 
                
                 | 
                            targets += [self.merged]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    433
                 | 
                                    
                                                     | 
                
                 | 
                        results = session.run(targets,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    434
                 | 
                                    
                                                     | 
                
                 | 
                                              feed_dict={self.x: x.reshape(tuple([1]) + x.shape), | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    435
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.length: np.array([x.shape[0]], dtype=np.int),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    436
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.initial_state_c: np.zeros((1, self.num_units)),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    437
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.initial_state_h: np.zeros((1, self.num_units))})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    438
                 | 
                                    
                                                     | 
                
                 | 
                        if writer is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    439
                 | 
                                    
                                                     | 
                
                 | 
                            writer.add_summary(results[1], writer_id)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    440
                 | 
                                    
                                                     | 
                
                 | 
                        batch_y = results[0]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    441
                 | 
                                    
                                                     | 
                
                 | 
                        # Get result  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    442
                 | 
                                    
                                                     | 
                
                 | 
                        return batch_y[0, :, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    443
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 
                    444
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                    def predict(self, x, session=None, writer=None, writer_id=None):  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    445
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    446
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    447
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    448
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    449
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    450
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    451
                 | 
                                    
                                                     | 
                
                 | 
                        targets = [self.y_class]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    452
                 | 
                                    
                                                     | 
                
                 | 
                        if writer is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    453
                 | 
                                    
                                                     | 
                
                 | 
                            targets += [self.merged]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    454
                 | 
                                    
                                                     | 
                
                 | 
                        results = session.run(targets,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    455
                 | 
                                    
                                                     | 
                
                 | 
                                              feed_dict={self.x: x.reshape(tuple([1]) + x.shape), | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    456
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.length: np.array([x.shape[0]], dtype=np.int),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    457
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.initial_state_c: np.zeros((1, self.num_units)),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    458
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.initial_state_h: np.zeros((1, self.num_units))})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    459
                 | 
                                    
                                                     | 
                
                 | 
                        if writer is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    460
                 | 
                                    
                                                     | 
                
                 | 
                            writer.add_summary(results[1], writer_id)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    461
                 | 
                                    
                                                     | 
                
                 | 
                        batch_y = results[0]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    462
                 | 
                                    
                                                     | 
                
                 | 
                        # Get result  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    463
                 | 
                                    
                                                     | 
                
                 | 
                        return batch_y[0, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    464
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    465
                 | 
                                    
                                                     | 
                
                 | 
                    def predict_accuracy(self, x, y, session=None, writer=None, writer_id=None, with_loss=False):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    466
                 | 
                                    
                                                     | 
                
                 | 
                        """Get Accuracy given feature array and corresponding labels  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    467
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    468
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    469
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    470
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    471
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    472
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    473
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    474
                 | 
                                    
                                                     | 
                
                 | 
                        targets = [self.accuracy]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    475
                 | 
                                    
                                                     | 
                
                 | 
                        if with_loss:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    476
                 | 
                                    
                                                     | 
                
                 | 
                            targets += [self.loss]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    477
                 | 
                                    
                                                     | 
                
                 | 
                        if writer is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    478
                 | 
                                    
                                                     | 
                
                 | 
                            targets += [self.merged]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    479
                 | 
                                    
                                                     | 
                
                 | 
                        results = session.run(targets,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    480
                 | 
                                    
                                                     | 
                
                 | 
                                              feed_dict={self.x: x.reshape(tuple([1]) + x.shape), | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    481
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.y_: y.reshape(tuple([1]) + y.shape),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    482
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.length: np.array([x.shape[0]], dtype=np.int),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    483
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.initial_state_c: np.zeros((1, self.num_units)),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    484
                 | 
                                    
                                                     | 
                
                 | 
                                                         self.initial_state_h: np.zeros((1, self.num_units))})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    485
                 | 
                                    
                                                     | 
                
                 | 
                        if with_loss:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    486
                 | 
                                    
                                                     | 
                
                 | 
                            return_values = results[0], results[1]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    487
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    488
                 | 
                                    
                                                     | 
                
                 | 
                            return_values = results[0]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    489
                 | 
                                    
                                                     | 
                
                 | 
                        if writer is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    490
                 | 
                                    
                                                     | 
                
                 | 
                            writer.add_summary(results[-1], writer_id)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    491
                 | 
                                    
                                                     | 
                
                 | 
                        # Get result  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    492
                 | 
                                    
                                                     | 
                
                 | 
                        return return_values  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    493
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    494
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    495
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    496
                 | 
                                    
                                                     | 
                
                 | 
                class SimpleLSTM:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    497
                 | 
                                    
                                                     | 
                
                 | 
                    """Single Layer LSTM Implementation  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    498
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    499
                 | 
                                    
                                                     | 
                
                 | 
                    In this new implementation, state_is_tuple is disabled to suppress the "deprecated" warning and  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    500
                 | 
                                    
                                                     | 
                
                 | 
                    performance improvement. The static unrolling of the RNN is replaced with dynamic unrolling.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    501
                 | 
                                    
                                                     | 
                
                 | 
                    As a result, no batch injector is needed for prediction.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    502
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    503
                 | 
                                    
                                                     | 
                
                 | 
                    Args:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    504
                 | 
                                    
                                                     | 
                
                 | 
                        num_features  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    505
                 | 
                                    
                                                     | 
                
                 | 
                        num_classes  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    506
                 | 
                                    
                                                     | 
                
                 | 
                        num_units  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    507
                 | 
                                    
                                                     | 
                
                 | 
                    """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    508
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    509
                 | 
                                    
                                                     | 
                
                 | 
                    def __init__(self, num_features, num_classes, num_hidden, num_units, num_skip, graph=None, optimizer=None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    510
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_features = num_features  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    511
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_classes = num_classes  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    512
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_units = num_units  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    513
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_skip = num_skip  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    514
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries = []  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    515
                 | 
                                    
                                                     | 
                
                 | 
                        if graph is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    516
                 | 
                                    
                                                     | 
                
                 | 
                            graph = tf.Graph()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    517
                 | 
                                    
                                                     | 
                
                 | 
                        with graph.as_default():  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    518
                 | 
                                    
                                                     | 
                
                 | 
                            # Inputs  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    519
                 | 
                                    
                                                     | 
                
                 | 
                            with tf.name_scope('input'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    520
                 | 
                                    
                                                     | 
                
                 | 
                                # X in the shape of (seq_length + num_skip, features)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    521
                 | 
                                    
                                                     | 
                
                 | 
                                self.x = tf.placeholder(tf.float32, shape=[None, num_features], name='input_x')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    522
                 | 
                                    
                                                     | 
                
                 | 
                                # length is the actual length of the sequence for each batch  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    523
                 | 
                                    
                                                     | 
                
                 | 
                                self.length = tf.placeholder(tf.int64, shape=[1], name='input_x_length')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    524
                 | 
                                    
                                                     | 
                
                 | 
                                self.init_state = tf.placeholder(tf.float32, shape=[2 * num_units], name='init_state')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    525
                 | 
                                    
                                                     | 
                
                 | 
                                self.y_ = tf.placeholder(tf.float32, shape=[None, num_classes], name='input_y')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    526
                 | 
                                    
                                                     | 
                
                 | 
                                self.y_skiped = self.y_[num_skip:, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    527
                 | 
                                    
                                                     | 
                
                 | 
                            # Input Hidden layers  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    528
                 | 
                                    
                                                     | 
                
                 | 
                            self.hidden_layer = HiddenLayer(num_features, num_units, 'Hidden', x=self.x)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    529
                 | 
                                    
                                                     | 
                
                 | 
                            # Recursive Layer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    530
                 | 
                                    
                                                     | 
                
                 | 
                            with tf.name_scope('rnn'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    531
                 | 
                                    
                                                     | 
                
                 | 
                                # Apply RNN  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    532
                 | 
                                    
                                                     | 
                
                 | 
                                self.cell = rnn.BasicLSTMCell(num_units=num_units, state_is_tuple=False)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    533
                 | 
                                    
                                                     | 
                
                 | 
                                # Outputs is a tensor with shape [seq_length + num_skip, num_units]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    534
                 | 
                                    
                                                     | 
                
                 | 
                                outputs, states = tf.nn.dynamic_rnn(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    535
                 | 
                                    
                                                     | 
                
                 | 
                                    self.cell, tf.reshape(self.hidden_layer.y, [1, -1, num_units]),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    536
                 | 
                                    
                                                     | 
                
                 | 
                                    sequence_length=(self.length + num_skip),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    537
                 | 
                                    
                                                     | 
                
                 | 
                                    initial_state=self.init_state, time_major=False)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    538
                 | 
                                    
                                                     | 
                
                 | 
                            # Apply Softmax Layer to all outputs in the valid items in the sequence.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    539
                 | 
                                    
                                                     | 
                
                 | 
                            self.output_layer = SoftmaxLayer(num_units, num_classes, 'SoftmaxLayer',  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    540
                 | 
                                    
                                                     | 
                
                 | 
                                                             x=outputs[1, num_skip:, :])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    541
                 | 
                                    
                                                     | 
                
                 | 
                            # Softmax Cross-Entropy Loss  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    542
                 | 
                                    
                                                     | 
                
                 | 
                            self.loss = tf.reduce_mean(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    543
                 | 
                                    
                                                     | 
                
                 | 
                                tf.nn.softmax_cross_entropy_with_logits(self.output_layer.logits, self.y_skiped,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    544
                 | 
                                    
                                                     | 
                
                 | 
                                                                        name='SoftmaxCrossEntropy')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    545
                 | 
                                    
                                                     | 
                
                 | 
                            )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    546
                 | 
                                    
                                                     | 
                
                 | 
                            # Setup Optimizer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    547
                 | 
                                    
                                                     | 
                
                 | 
                            if optimizer is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    548
                 | 
                                    
                                                     | 
                
                 | 
                                self.optimizer = tf.train.AdamOptimizer()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    549
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    550
                 | 
                                    
                                                     | 
                
                 | 
                                self.optimizer = optimizer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    551
                 | 
                                    
                                                     | 
                
                 | 
                            # Predicted Probability  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    552
                 | 
                                    
                                                     | 
                
                 | 
                            self.y = self.output_layer.y  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    553
                 | 
                                    
                                                     | 
                
                 | 
                            self.y_class = tf.argmax(self.y, 1)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    554
                 | 
                                    
                                                     | 
                
                 | 
                            # Evaluation  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    555
                 | 
                                    
                                                     | 
                
                 | 
                            self.correct_prediction = tf.equal(self.y_class, tf.argmax(self.y_skiped, 1))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    556
                 | 
                                    
                                                     | 
                
                 | 
                            self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    557
                 | 
                                    
                                                     | 
                
                 | 
                            # Fit Step  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    558
                 | 
                                    
                                                     | 
                
                 | 
                            with tf.name_scope('train'): | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    559
                 | 
                                    
                                                     | 
                
                 | 
                                self.fit_step = self.optimizer.minimize(self.loss)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    560
                 | 
                                    
                                                     | 
                
                 | 
                            # Setup Summaries  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    561
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries += self.hidden_layer.summaries  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    562
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries += self.output_layer.summaries  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    563
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries.append(tf.summary.scalar('cross_entropy', self.loss)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    564
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries.append(tf.summary.scalar('accuracy', self.accuracy)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    565
                 | 
                                    
                                                     | 
                
                 | 
                            self.merged = tf.summary.merge(self.summaries)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    566
                 | 
                                    
                                                     | 
                
                 | 
                            self.sess = None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    567
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    568
                 | 
                                    
                                                     | 
                
                 | 
                    def fit(self, x, y, num_skip=100, batch_size=100, iter_num=100, summaries_dir=None, summary_interval=10,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    569
                 | 
                                    
                                                     | 
                
                 | 
                            test_x=None, test_y=None, session=None, criterion='const_iteration'):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    570
                 | 
                                    
                                                     | 
                
                 | 
                        """Fit the model to the dataset  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    571
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    572
                 | 
                                    
                                                     | 
                
                 | 
                        Args:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    573
                 | 
                                    
                                                     | 
                
                 | 
                            x (:obj:`numpy.ndarray`): Input features of shape (num_samples, num_features).  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    574
                 | 
                                    
                                                     | 
                
                 | 
                            y (:obj:`numpy.ndarray`): Corresponding Labels of shape (num_samples) for binary classification,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    575
                 | 
                                    
                                                     | 
                
                 | 
                                or (num_samples, num_classes) for multi-class classification.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    576
                 | 
                                    
                                                     | 
                
                 | 
                            batch_size (:obj:`int`): Batch size used in gradient descent.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    577
                 | 
                                    
                                                     | 
                
                 | 
                            iter_num (:obj:`int`): Number of training iterations for const iterations, step depth for monitor based  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    578
                 | 
                                    
                                                     | 
                
                 | 
                                stopping criterion.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    579
                 | 
                                    
                                                     | 
                
                 | 
                            summaries_dir (:obj:`str`): Path of the directory to store summaries and saved values.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    580
                 | 
                                    
                                                     | 
                
                 | 
                            summary_interval (:obj:`int`): The step interval to export variable summaries.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    581
                 | 
                                    
                                                     | 
                
                 | 
                            test_x (:obj:`numpy.ndarray`): Test feature array used for monitoring training progress.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    582
                 | 
                                    
                                                     | 
                
                 | 
                            test_y (:obj:`numpy.ndarray): Test label array used for monitoring training progress.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    583
                 | 
                                    
                                                     | 
                
                 | 
                            session (:obj:`tensorflow.Session`): Session to run training functions.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    584
                 | 
                                    
                                                     | 
                
                 | 
                            criterion (:obj:`str`): Stopping criteria. 'const_iterations' or 'monitor_based'  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    585
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    586
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    587
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    588
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    589
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    590
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    591
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    592
                 | 
                                    
                                                     | 
                
                 | 
                        if summaries_dir is not None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    593
                 | 
                                    
                                                     | 
                
                 | 
                            train_writer = tf.summary.FileWriter(summaries_dir + '/train')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    594
                 | 
                                    
                                                     | 
                
                 | 
                            test_writer = tf.summary.FileWriter(summaries_dir + '/test')  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    595
                 | 
                                    
                                                     | 
                
                 | 
                        session.run(tf.global_variables_initializer())  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    596
                 | 
                                    
                                                     | 
                
                 | 
                        # Get Stopping Criterion  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    597
                 | 
                                    
                                                     | 
                
                 | 
                        if criterion == 'const_iteration':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    598
                 | 
                                    
                                                     | 
                
                 | 
                            _criterion = ConstIterations(num_iters=iter_num)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    599
                 | 
                                    
                                                     | 
                
                 | 
                        elif criterion == 'monitor_based':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    600
                 | 
                                    
                                                     | 
                
                 | 
                            num_samples = x.shape[0]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    601
                 | 
                                    
                                                     | 
                
                 | 
                            valid_set_len = int(1 / 5 * (num_samples - num_skip))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    602
                 | 
                                    
                                                     | 
                
                 | 
                            valid_x = x[num_samples - valid_set_len - num_skip:num_samples, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    603
                 | 
                                    
                                                     | 
                
                 | 
                            valid_y = y[num_samples - valid_set_len - num_skip:num_samples, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    604
                 | 
                                    
                                                     | 
                
                 | 
                            x = x[0:num_samples - valid_set_len, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    605
                 | 
                                    
                                                     | 
                
                 | 
                            y = y[0:num_samples - valid_set_len, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    606
                 | 
                                    
                                                     | 
                
                 | 
                            _criterion = MonitorBased(n_steps=iter_num,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    607
                 | 
                                    
                                                     | 
                
                 | 
                                                      monitor_fn=self.predict_accuracy,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    608
                 | 
                                    
                                                     | 
                
                 | 
                                                      monitor_fn_args=(valid_x, valid_y),  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    609
                 | 
                                    
                                                     | 
                
                 | 
                                                      save_fn=tf.train.Saver().save,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    610
                 | 
                                    
                                                     | 
                
                 | 
                                                      save_fn_args=(session, summaries_dir + '/best.ckpt'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    611
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    612
                 | 
                                    
                                                     | 
                
                 | 
                            logger.error('Wrong criterion %s specified.' % criterion) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    613
                 | 
                                    
                                                     | 
                
                 | 
                            return  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    614
                 | 
                                    
                                                     | 
                
                 | 
                        # Iteration Starts  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    615
                 | 
                                    
                                                     | 
                
                 | 
                        i = 0  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    616
                 | 
                                    
                                                     | 
                
                 | 
                        while _criterion.continue_learning():  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    617
                 | 
                                    
                                                     | 
                
                 | 
                            # Learning  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    618
                 | 
                                    
                                                     | 
                
                 | 
                            batch_x = x[i:num_skip + batch_size, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    619
                 | 
                                    
                                                     | 
                
                 | 
                            batch_y = y[i:num_skip + batch_size, :]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    620
                 | 
                                    
                                                     | 
                
                 | 
                            loss, accuracy, _ = session.run(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    621
                 | 
                                    
                                                     | 
                
                 | 
                                [self.loss, self.accuracy, self.fit_step],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    622
                 | 
                                    
                                                     | 
                
                 | 
                                feed_dict={self.x: batch_x, self.y_: batch_y, self.length: batch_size, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    623
                 | 
                                    
                                                     | 
                
                 | 
                                           self.init_state: np.zeros(2 * self.num_units)})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    624
                 | 
                                    
                                                     | 
                
                 | 
                            # Summary  | 
            
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 
                    625
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                            if summaries_dir is not None and (i % summary_interval == 0):  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    626
                 | 
                                    
                                                     | 
                
                 | 
                                summary, loss, accuracy = session.run(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    627
                 | 
                                    
                                                     | 
                
                 | 
                                    [self.merged, self.loss, self.accuracy],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    628
                 | 
                                    
                                                     | 
                
                 | 
                                    feed_dict={self.x: x, self.y_: y, self.length: num_samples - valid_set_len - num_skip, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    629
                 | 
                                    
                                                     | 
                
                 | 
                                               self.init_state: np.zeros(2 * self.num_units)}  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    630
                 | 
                                    
                                                     | 
                
                 | 
                                )  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    631
                 | 
                                    
                                                     | 
                
                 | 
                                train_writer.add_summary(summary, i)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    632
                 | 
                                    
                                                     | 
                
                 | 
                                logger.info('Step %d, train_set accuracy %g, loss %g' % (i, accuracy, loss)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    633
                 | 
                                    
                                                     | 
                
                 | 
                                if (test_x is not None) and (test_y is not None):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    634
                 | 
                                    
                                                     | 
                
                 | 
                                    merged, accuracy = session.run(  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    635
                 | 
                                    
                                                     | 
                
                 | 
                                        [self.merged, self.accuracy],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    636
                 | 
                                    
                                                     | 
                
                 | 
                                        feed_dict={self.x: test_x, self.y_: test_y, self.length: test_x.shape[0] - num_skip, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    637
                 | 
                                    
                                                     | 
                
                 | 
                                                   self.init_state: np.zeros(2*self.num_units)})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    638
                 | 
                                    
                                                     | 
                
                 | 
                                    test_writer.add_summary(merged, i)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    639
                 | 
                                    
                                                     | 
                
                 | 
                                    logger.info('test_set accuracy %g' % accuracy) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    640
                 | 
                                    
                                                     | 
                
                 | 
                            # Get Summary  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    641
                 | 
                                    
                                                     | 
                
                 | 
                            if i == x.shape[0] - num_skip:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    642
                 | 
                                    
                                                     | 
                
                 | 
                                i = 0  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    643
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    644
                 | 
                                    
                                                     | 
                
                 | 
                                i += 1  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    645
                 | 
                                    
                                                     | 
                
                 | 
                        # Finish Iteration  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    646
                 | 
                                    
                                                     | 
                
                 | 
                        if criterion == 'monitor_based':  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    647
                 | 
                                    
                                                     | 
                
                 | 
                            tf.train.Saver().restore(session, os.path.join(summaries_dir, 'best.ckpt'))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    648
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 
                    649
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                    def predict_proba(self, x, session=None, batch_size=500):  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    650
                 | 
                                    
                                                     | 
                
                 | 
                        """Predict probability (Softmax)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    651
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    652
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    653
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    654
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    655
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    656
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    657
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    658
                 | 
                                    
                                                     | 
                
                 | 
                        return session.run(self.y,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    659
                 | 
                                    
                                                     | 
                
                 | 
                                           feed_dict={self.x: x, self.length: x.shape[0] - self.num_skip, | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    660
                 | 
                                    
                                                     | 
                
                 | 
                                                      self.init_state: np.zeros(2*self.num_units)})  | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    661
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                                                    
                                                                                                        
            
            
                | 
                    662
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                    def predict(self, x, session=None):  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                        
                            
            
                                    
            
            
                | 
                    663
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    664
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    665
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    666
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    667
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    668
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    669
                 | 
                                    
                                                     | 
                
                 | 
                        return session.run(self.y_class,  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    670
                 | 
                                    
                                                     | 
                
                 | 
                                           feed_dict={self.x: x, self.length: x.shape[0] - self.num_skip, | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    671
                 | 
                                    
                                                     | 
                
                 | 
                                                      self.init_state: np.zeros(2*self.num_units)})  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    672
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 
                    673
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                    def predict_accuracy(self, x, y, session=None):  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    674
                 | 
                                    
                                                     | 
                
                 | 
                        """Get Accuracy given feature array and corresponding labels  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    675
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    676
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    677
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    678
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    679
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    680
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    681
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    682
                 | 
                                    
                                                     | 
                
                 | 
                        return session.run(self.accuracy,  | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    683
                 | 
                                    
                                                     | 
                
                 | 
                                           feed_dict={self.x: x, self.y_: y, self.length: x.shape[0] - self.num_skip, | 
            
            
                                                        
            
                                    
            
            
                | 
                    684
                 | 
                                    
                                                     | 
                
                 | 
                                                      self.init_state: np.zeros(2*self.num_units)})  |