1
|
|
|
import abc |
2
|
|
|
import logging |
3
|
|
|
import numpy as np |
4
|
|
|
from ..logging import logging_name |
5
|
|
|
|
6
|
|
|
logger = logging.getLogger(__file__) |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
# region Abstract FeatureRoutineTemplate Class |
10
|
|
|
class FeatureRoutineTemplate(metaclass=abc.ABCMeta): |
11
|
|
|
"""Feature Routine Class |
12
|
|
|
|
13
|
|
|
A routine that calculate statistical features every time the window slides. |
14
|
|
|
|
15
|
|
|
Attributes: |
16
|
|
|
name (:obj:`str`): Feature routine name. |
17
|
|
|
description (:obj:`str`): Feature routine description. |
18
|
|
|
enabled (:obj:`str`): Feature routine enable flag. |
19
|
|
|
""" |
20
|
|
|
def __init__(self, name, description, enabled=True): |
21
|
|
|
""" |
22
|
|
|
Initialization of Template Class |
23
|
|
|
:return: |
24
|
|
|
""" |
25
|
|
|
# Name |
26
|
|
|
self.name = name |
27
|
|
|
# Description |
28
|
|
|
self.description = description |
29
|
|
|
# enable |
30
|
|
|
self.enabled = enabled |
31
|
|
|
|
32
|
|
|
@abc.abstractmethod |
33
|
|
|
def update(self, data_list, cur_index, window_size, sensor_info): |
34
|
|
|
"""Abstract update method |
35
|
|
|
|
36
|
|
|
For some features, we will update some statistical data every time |
37
|
|
|
we move forward a data record, instead of going back through the whole |
38
|
|
|
window and try to find the answer. This function will be called every time |
39
|
|
|
we advance in data record. |
40
|
|
|
|
41
|
|
|
Args: |
42
|
|
|
data_list (:obj:`list`): List of sensor data. |
43
|
|
|
cur_index (:obj:`int`): Index of current data record. |
44
|
|
|
window_size (:obj:`int`): Sliding window size. |
45
|
|
|
sensor_info (:obj:`dict`): Dictionary containing sensor index information. |
46
|
|
|
""" |
47
|
|
|
return NotImplementedError() |
48
|
|
|
|
49
|
|
|
@abc.abstractmethod |
50
|
|
|
def clear(self): |
51
|
|
|
"""Clear Internal Data Structures if recalculation is needed |
52
|
|
|
""" |
53
|
|
|
return NotImplementedError() |
54
|
|
|
# endregion |
55
|
|
|
|
56
|
|
|
|
57
|
|
|
# region Abstract FeatureTemplate Class |
58
|
|
|
class FeatureTemplate(metaclass=abc.ABCMeta): |
59
|
|
|
"""Statistical Feature Template |
60
|
|
|
|
61
|
|
|
Args: |
62
|
|
|
name (:obj:`str`): Feature name. |
63
|
|
|
description (:obj:`str`): Feature description. |
64
|
|
|
per_sensor (:obj:`bool`): If the feature is calculated for each sensor. |
65
|
|
|
enabled (:obj:`bool`): If the feature is enabled. |
66
|
|
|
routine (:obj:`.FeatureRoutineTemplate`): Routine structure. |
67
|
|
|
normalized (:obj:`bool`): If the value of feature needs to be normalized. |
68
|
|
|
|
69
|
|
|
Attributes: |
70
|
|
|
name (:obj:`str`): Feature name. |
71
|
|
|
description (:obj:`str`): Feature description. |
72
|
|
|
index (:obj:`int`): Feature index. |
73
|
|
|
normalized (:obj:`bool`): If the value of feature needs to be normalized. |
74
|
|
|
per_sensor (:obj:`bool`): If the feature is calculated for each sensor. |
75
|
|
|
enabled (:obj:`bool`): If the feature is enabled. |
76
|
|
|
routine (:obj:`.FeatureRoutineTemplate`): Routine structure. |
77
|
|
|
_is_value_valid (:obj:`bool`): If the value calculated is valid |
78
|
|
|
""" |
79
|
|
|
def __init__(self, name, description, enabled=True, normalized=True, per_sensor=False, routine=None): |
80
|
|
|
self.name = name |
81
|
|
|
self.description = description |
82
|
|
|
self.index = -1 |
83
|
|
|
self.normalized = normalized |
84
|
|
|
self.per_sensor = per_sensor |
85
|
|
|
self.enabled = enabled |
86
|
|
|
self._is_value_valid = False |
87
|
|
|
# update Routine |
88
|
|
|
# For some feature, we will update statistical data every time we move forward |
89
|
|
|
# a data record. Instead of going back through previous window, the update function |
90
|
|
|
# in this routine structure will be called each time we advance to next data record |
91
|
|
|
self.routine = routine |
92
|
|
|
|
93
|
|
|
@abc.abstractmethod |
94
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
95
|
|
|
"""Abstract method to get feature value |
96
|
|
|
|
97
|
|
|
Args: |
98
|
|
|
data_list (:obj:`list`): List of sensor data. |
99
|
|
|
cur_index (:obj:`int`): Index of current data record. |
100
|
|
|
window_size (:obj:`int`): Sliding window size. |
101
|
|
|
sensor_info (:obj:`dict`): Dictionary containing sensor index information. |
102
|
|
|
sensor_name (:obj:`str`): Sensor Name. |
103
|
|
|
|
104
|
|
|
Returns: |
105
|
|
|
:obj:`double`: feature value |
106
|
|
|
""" |
107
|
|
|
return NotImplementedError() |
108
|
|
|
|
109
|
|
|
@property |
110
|
|
|
def is_value_valid(self): |
111
|
|
|
"""Statistical feature value valid check |
112
|
|
|
|
113
|
|
|
Due to errors and failures of sensors, the statistical feature calculated |
114
|
|
|
may go out of bound. This abstract method is used to check if the value |
115
|
|
|
calculated is valid. If not, it will not be inserted into feature vectors. |
116
|
|
|
|
117
|
|
|
Returns: |
118
|
|
|
:obj:`bool`: True if the result is valid. |
119
|
|
|
""" |
120
|
|
|
return self._is_value_valid |
121
|
|
|
# endregion |
122
|
|
|
|
123
|
|
|
|
124
|
|
|
class EventHour(FeatureTemplate): |
125
|
|
|
"""Show the hour of the time of current event |
126
|
|
|
""" |
127
|
|
|
def __init__(self, normalized=False): |
128
|
|
|
super().__init__(name='lastEventHour', |
129
|
|
|
description='Time of the last sensor event in window (hour)', |
130
|
|
|
normalized=normalized, |
131
|
|
|
per_sensor=False, |
132
|
|
|
enabled=True, |
133
|
|
|
routine=None) |
134
|
|
|
|
135
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
136
|
|
|
"""Get the hour when the last sensor event in the window occurred |
137
|
|
|
|
138
|
|
|
Note: |
139
|
|
|
Please refer to :meth:`~.FeatureTemplate.get_feature_value` for information about |
140
|
|
|
parameters. |
141
|
|
|
""" |
142
|
|
|
self._is_value_valid = True |
143
|
|
|
if self.normalized: |
144
|
|
|
return np.float(data_list[cur_index]['datetime'].hour)/24 |
145
|
|
|
else: |
146
|
|
|
return np.float(data_list[cur_index]['datetime'].hour) |
147
|
|
|
|
148
|
|
|
|
149
|
|
|
class EventSeconds(FeatureTemplate): |
150
|
|
|
"""Feature that shows the time (min, sec) of current event in seconds |
151
|
|
|
""" |
152
|
|
|
def __init__(self, normalized=False): |
153
|
|
|
super().__init__( |
154
|
|
|
name='lastEventSeconds', |
155
|
|
|
description='Time of the last sensor event in window in seconds', |
156
|
|
|
normalized=normalized, |
157
|
|
|
per_sensor=False, |
158
|
|
|
enabled=True, |
159
|
|
|
routine=None) |
160
|
|
|
|
161
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
162
|
|
|
"""Get the time within an hour when the last sensor event in the window occurred (in seconds) |
163
|
|
|
|
164
|
|
|
Note: |
165
|
|
|
Please refer to :meth:`~.FeatureTemplate.get_feature_value` for information about |
166
|
|
|
parameters. |
167
|
|
|
""" |
168
|
|
|
self._is_value_valid = True |
169
|
|
|
time = data_list[cur_index]['datetime'] |
170
|
|
|
if self.normalized: |
171
|
|
|
return np.float((time.minute * 60) + time.second)/3600 |
172
|
|
|
else: |
173
|
|
|
return np.float((time.minute * 60) + time.second) |
174
|
|
|
|
175
|
|
|
|
176
|
|
|
class WindowDuration(FeatureTemplate): |
177
|
|
|
"""Length of the window in seconds |
178
|
|
|
""" |
179
|
|
|
def __init__(self, normalized=False): |
180
|
|
|
super().__init__(name='windowDuration', |
181
|
|
|
description='Duration of current window in seconds', |
182
|
|
|
normalized=normalized, |
183
|
|
|
per_sensor=False, |
184
|
|
|
enabled=True, |
185
|
|
|
routine=None) |
186
|
|
|
|
187
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
188
|
|
|
"""Get the duration of the window in seconds. Invalid if the duration is greater than half a day. |
189
|
|
|
|
190
|
|
|
Note: |
191
|
|
|
Please refer to :meth:`~.FeatureTemplate.get_feature_value` for information about |
192
|
|
|
parameters. |
193
|
|
|
""" |
194
|
|
|
self._is_value_valid = True |
195
|
|
|
timedelta = data_list[cur_index]['datetime'] - data_list[cur_index - window_size + 1]['datetime'] |
196
|
|
|
window_duration = timedelta.total_seconds() |
197
|
|
|
if window_duration > 3600 * 12: |
198
|
|
|
self._is_value_valid = False |
199
|
|
|
# Window Duration is greater than a day - not possible |
200
|
|
|
# print('Warning: curIndex: %d; windowSize: %d; windowDuration: %f' % |
201
|
|
|
# (curIndex, windowSize, window_duration)) |
202
|
|
|
window_duration -= 3600 * 12 * (int(window_duration) / (3600 * 12)) |
203
|
|
|
# print('Fixed window duration %f' % window_duration) |
204
|
|
|
if data_list[cur_index]['datetime'].month != data_list[cur_index - 1]['datetime'].month or \ |
205
|
|
|
data_list[cur_index]['datetime'].day != data_list[cur_index - 1]['datetime'].day: |
206
|
|
|
date_advanced = (data_list[cur_index]['datetime'] - data_list[cur_index - 1]['datetime']).days |
207
|
|
|
hour_advanced = data_list[cur_index]['datetime'].hour - data_list[cur_index - 1]['datetime'].hour |
208
|
|
|
logger.warn(logging_name(self) + ': line %d - %d: %s' % |
209
|
|
|
(cur_index, cur_index + 1, data_list[cur_index - 1]['datetime'].isoformat())) |
210
|
|
|
logger.warn(logging_name(self) + ': Date Advanced: %d; hour gap: %d' % (date_advanced, hour_advanced)) |
211
|
|
|
if self.normalized: |
212
|
|
|
# Normalized to 12 hours |
213
|
|
|
return np.float(window_duration) / (3600 * 12) |
214
|
|
|
else: |
215
|
|
|
return np.float(window_duration) |
216
|
|
|
|
217
|
|
|
|
218
|
|
|
class LastSensor(FeatureTemplate): |
219
|
|
|
"""Get the last sensor in the window |
220
|
|
|
""" |
221
|
|
|
def __init__(self, per_sensor=False): |
222
|
|
|
super().__init__(name='lastSensorInWindow', |
223
|
|
|
description='Sensor ID in the current window', |
224
|
|
|
per_sensor=per_sensor, |
225
|
|
|
enabled=True, |
226
|
|
|
routine=None) |
227
|
|
|
|
228
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
229
|
|
|
"""Get the sensor which fired the last event in the sliding window. |
230
|
|
|
|
231
|
|
|
If it is configured as per-sensor feature, it returns 1 if the sensor specified |
232
|
|
|
triggers the last event in the window. Otherwise returns 0. |
233
|
|
|
If it is configured as a non-per-sensor feature, it returns the index of the |
234
|
|
|
index corresponding to the dominant sensor name that triggered the last event. |
235
|
|
|
|
236
|
|
|
Note: |
237
|
|
|
Please refer to :meth:`~.FeatureTemplate.get_feature_value` for information about |
238
|
|
|
parameters. |
239
|
|
|
""" |
240
|
|
|
self._is_value_valid = True |
241
|
|
|
sensor_label = data_list[cur_index]['sensor_id'] |
242
|
|
|
if self.per_sensor: |
243
|
|
|
if sensor_name is not None: |
244
|
|
|
if sensor_name == sensor_label: |
245
|
|
|
return 1 |
246
|
|
|
else: |
247
|
|
|
return 0 |
248
|
|
|
else: |
249
|
|
|
if sensor_info.get(sensor_label, None) is None: |
250
|
|
|
self._is_value_valid = False |
251
|
|
|
logger.warn(logging_name(self) + ': Cannot find sensor %s in sensor_info' % sensor_label) |
252
|
|
|
logger.debug(logging_name(self) + ': Available sensors are: ' + str(sensor_info.keys())) |
253
|
|
|
return 0 |
254
|
|
|
else: |
255
|
|
|
return sensor_info[sensor_label]['index'] |
256
|
|
|
|
257
|
|
|
|
258
|
|
|
class SensorCountRoutine(FeatureRoutineTemplate): |
259
|
|
|
"""Routine to count occurance of each sensor |
260
|
|
|
|
261
|
|
|
Attributes: |
262
|
|
|
sensor_count (:obj:`dict`): Dictionary that counts the occurrance of each sensor |
263
|
|
|
""" |
264
|
|
|
def __init__(self): |
265
|
|
|
super().__init__( |
266
|
|
|
name='SensorCountRoutine', |
267
|
|
|
description='Count Occurrence of all sensors in current event window', |
268
|
|
|
enabled=True |
269
|
|
|
) |
270
|
|
|
# Dominant Sensor |
271
|
|
|
self.sensor_count = {} |
272
|
|
|
|
273
|
|
|
def update(self, data_list, cur_index, window_size, sensor_info): |
274
|
|
|
"""Record the number of occurrence of each sensor in the sensor count dictionary. |
275
|
|
|
""" |
276
|
|
|
self.sensor_count = {} |
277
|
|
|
for sensor_label in sensor_info.keys(): |
278
|
|
|
if sensor_info[sensor_label]['enable']: |
279
|
|
|
self.sensor_count[sensor_label] = 0 |
280
|
|
|
for index in range(0, window_size): |
281
|
|
|
if data_list[cur_index - index]['sensor_id'] in self.sensor_count.keys(): |
282
|
|
|
self.sensor_count[data_list[cur_index - index]['sensor_id']] += 1 |
283
|
|
|
|
284
|
|
|
def clear(self): |
285
|
|
|
self.sensor_count = {} |
286
|
|
|
|
287
|
|
|
sensor_count_routine = SensorCountRoutine() |
288
|
|
|
|
289
|
|
|
|
290
|
|
|
class SensorCount(FeatureTemplate): |
291
|
|
|
"""Counts the occurrence of each sensor |
292
|
|
|
""" |
293
|
|
|
def __init__(self, normalized=False): |
294
|
|
|
super().__init__(name='sensorCount', |
295
|
|
|
description='Number of Events in the window related to the sensor', |
296
|
|
|
normalized=normalized, |
297
|
|
|
per_sensor=True, |
298
|
|
|
enabled=True, |
299
|
|
|
routine=sensor_count_routine) |
300
|
|
|
|
301
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
302
|
|
|
"""Counts the number of occurrence of the sensor specified in current window. |
303
|
|
|
""" |
304
|
|
|
count = self.routine.sensor_count.get(sensor_name, None) |
305
|
|
|
if count is None: |
306
|
|
|
logger.error(logging_name(self) + ': Cannot find sensor %s in sensor list' % sensor_name) |
307
|
|
|
self._is_value_valid = False |
308
|
|
|
else: |
309
|
|
|
self._is_value_valid = True |
310
|
|
|
if self.normalized: |
311
|
|
|
return float(count)/(window_size * 2) |
312
|
|
|
else: |
313
|
|
|
return float(count) |
314
|
|
|
|
315
|
|
|
|
316
|
|
|
class SensorElapseTimeRoutine(FeatureRoutineTemplate): |
317
|
|
|
"""Routine to record last occurrence of each sensor |
318
|
|
|
|
319
|
|
|
Attributes: |
320
|
|
|
sensor_fire_log (:obj:`dict`): Dictionary that record the last firing state of each sensor |
321
|
|
|
""" |
322
|
|
|
def __init__(self): |
323
|
|
|
super().__init__(name='SensorElapseTimeUpdateRoutine', |
324
|
|
|
description='Update Sensor Elapse Time for all enabled sensors', |
325
|
|
|
enabled=True) |
326
|
|
|
# Sensor Fire Log |
327
|
|
|
self.sensor_fire_log = {} |
328
|
|
|
|
329
|
|
|
def update(self, data_list, cur_index, window_size, sensor_info): |
330
|
|
|
"""Record the number of occurrence of each sensor in the sensor count dictionary. |
331
|
|
|
""" |
332
|
|
|
if not self.sensor_fire_log: |
333
|
|
|
for sensor_label in sensor_info.keys(): |
334
|
|
|
self.sensor_fire_log[sensor_label] = data_list[cur_index - window_size + 1]['datetime'] |
335
|
|
|
for i in range(0, window_size): |
336
|
|
|
self.sensor_fire_log[data_list[cur_index - i]['sensor_id']] = data_list[cur_index - i]['datetime'] |
337
|
|
|
self.sensor_fire_log[data_list[cur_index]['sensor_id']] = data_list[cur_index]['datetime'] |
338
|
|
|
|
339
|
|
|
def clear(self): |
340
|
|
|
self.sensor_fire_log = {} |
341
|
|
|
|
342
|
|
|
sensor_elapse_time_routine = SensorElapseTimeRoutine() |
343
|
|
|
|
344
|
|
|
|
345
|
|
|
class SensorElapseTime(FeatureTemplate): |
346
|
|
|
"""The time elapsed since last firing (in seconds) |
347
|
|
|
""" |
348
|
|
|
def __init__(self, normalized=False): |
349
|
|
|
super().__init__(name='sensorElapseTime', |
350
|
|
|
description='Time since each sensor fired (in seconds)', |
351
|
|
|
normalized=normalized, |
352
|
|
|
per_sensor=True, |
353
|
|
|
enabled=True, |
354
|
|
|
routine=sensor_elapse_time_routine) |
355
|
|
|
|
356
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
357
|
|
|
"""Get elapse time of specified sensor in seconds |
358
|
|
|
""" |
359
|
|
|
self._is_value_valid = True |
360
|
|
|
timedelta = data_list[cur_index]['datetime'] - self.routine.sensor_fire_log[sensor_name] |
361
|
|
|
sensor_duration = timedelta.total_seconds() |
362
|
|
|
if self.normalized: |
363
|
|
|
elapse_time = float(sensor_duration)/(12*3600) |
364
|
|
|
# If the sensor is not fired in past 12 hours, just round it up to 12 hours |
365
|
|
|
if elapse_time > 1: |
366
|
|
|
elapse_time = 1. |
367
|
|
|
return elapse_time |
368
|
|
|
else: |
369
|
|
|
return float(sensor_duration) |
370
|
|
|
|
371
|
|
|
|
372
|
|
|
class DominantSensorRoutine(FeatureRoutineTemplate): |
373
|
|
|
"""Routine to record the occurance of each sensor within the sliding window |
374
|
|
|
|
375
|
|
|
Attributes: |
376
|
|
|
dominant_sensor_list (:obj:`dict`): Dictionary that record the last firing state of each sensor |
377
|
|
|
""" |
378
|
|
|
def __init__(self): |
379
|
|
|
super().__init__(name='DominantSensorRoutine', |
380
|
|
|
description='DominantSensorUpdateRoutine', |
381
|
|
|
enabled=True) |
382
|
|
|
# Dominant Sensor |
383
|
|
|
self.dominant_sensor_list = {} |
384
|
|
|
|
385
|
|
|
def update(self, data_list, cur_index, window_size, sensor_info): |
386
|
|
|
"""Calculate the dominant sensor of current window and store |
387
|
|
|
the name of the sensor in the dominant sensor array. The |
388
|
|
|
information is fetched by dominant sensor features. |
389
|
|
|
""" |
390
|
|
|
if cur_index < window_size: |
391
|
|
|
logger.warn(logging_name(self) + ': current index %d is smaller than window size %d.' % (cur_index, window_size)) |
392
|
|
|
sensor_count = {} |
393
|
|
|
for index in range(0, window_size): |
394
|
|
|
if data_list[cur_index - index]['sensor_id'] in sensor_count.keys(): |
395
|
|
|
sensor_count[data_list[cur_index - index]['sensor_id']] += 1 |
396
|
|
|
else: |
397
|
|
|
sensor_count[data_list[cur_index - index]['sensor_id']] = 1 |
398
|
|
|
# Find the Dominant one |
399
|
|
|
max_count = 0 |
400
|
|
|
for sensor_label in sensor_count.keys(): |
401
|
|
|
if sensor_count[sensor_label] > max_count: |
402
|
|
|
max_count = sensor_count[sensor_label] |
403
|
|
|
self.dominant_sensor_list[cur_index] = sensor_label |
404
|
|
|
|
405
|
|
|
def clear(self): |
406
|
|
|
self.dominant_sensor_list = {} |
407
|
|
|
|
408
|
|
|
dominant_sensor_routine = DominantSensorRoutine() |
409
|
|
|
|
410
|
|
|
|
411
|
|
View Code Duplication |
class DominantSensor(FeatureTemplate): |
|
|
|
|
412
|
|
|
"""Dominant Sensor of current window |
413
|
|
|
""" |
414
|
|
|
def __init__(self, per_sensor=False): |
415
|
|
|
super().__init__(name='DominantSensor', |
416
|
|
|
description='Dominant Sensor in the window', |
417
|
|
|
normalized=True, |
418
|
|
|
per_sensor=per_sensor, |
419
|
|
|
enabled=True, |
420
|
|
|
routine=dominant_sensor_routine) |
421
|
|
|
|
422
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
423
|
|
|
"""If per_sensor is True, returns 1 with corresponding sensor Id. |
424
|
|
|
otherwise, return the index of last sensor in the window |
425
|
|
|
""" |
426
|
|
|
self._is_value_valid = True |
427
|
|
|
dominant_sensor_label = self.routine.dominant_sensor_list.get(cur_index, None) |
428
|
|
|
if dominant_sensor_label is None: |
429
|
|
|
logger.warn(logging_name(self) + ': cannot find dominant sensor label for window index %d' % cur_index) |
430
|
|
|
if self.per_sensor: |
431
|
|
|
if sensor_name is not None: |
432
|
|
|
if sensor_name == dominant_sensor_label: |
433
|
|
|
return 1 |
434
|
|
|
else: |
435
|
|
|
return 0 |
436
|
|
|
else: |
437
|
|
|
return sensor_info[dominant_sensor_label]['index'] |
438
|
|
|
|
439
|
|
|
|
440
|
|
View Code Duplication |
class DominantSensorPreviousWindow(FeatureTemplate): |
|
|
|
|
441
|
|
|
"""Dominant Sensor of previous window |
442
|
|
|
""" |
443
|
|
|
def __init__(self, per_sensor=False): |
444
|
|
|
super().__init__(name='DominantSensorPreviousWindow', |
445
|
|
|
description='Dominant Sensor in the previous window', |
446
|
|
|
normalized=True, |
447
|
|
|
per_sensor=per_sensor, |
448
|
|
|
enabled=True, |
449
|
|
|
routine=dominant_sensor_routine) |
450
|
|
|
|
451
|
|
|
def get_feature_value(self, data_list, cur_index, window_size, sensor_info, sensor_name=None): |
452
|
|
|
"""If per_sensor is True, returns 1 with corresponding sensor Id. |
453
|
|
|
otherwise, return the index of last sensor in the window |
454
|
|
|
""" |
455
|
|
|
dominant_sensor_label = self.routine.dominant_sensor_list.get([cur_index-1], None) |
456
|
|
|
if dominant_sensor_label is None: |
457
|
|
|
logger.warn(logging_name(self) + ': cannot find dominant sensor label for window index %d' % cur_index) |
458
|
|
|
if self.per_sensor: |
459
|
|
|
if sensor_name is not None: |
460
|
|
|
if sensor_name == dominant_sensor_label: |
461
|
|
|
return 1 |
462
|
|
|
else: |
463
|
|
|
return 0 |
464
|
|
|
else: |
465
|
|
|
return sensor_info[dominant_sensor_label]['index'] |
466
|
|
|
|