1
|
|
|
import math |
2
|
|
|
import tensorflow as tf |
3
|
|
|
from . import variable_summary |
4
|
|
|
|
5
|
|
|
|
6
|
|
View Code Duplication |
class HiddenLayer: |
|
|
|
|
7
|
|
|
""" Typical hidden layer for Multi-layer perceptron |
8
|
|
|
User is allowed to specify the non-linearity activation function. |
9
|
|
|
|
10
|
|
|
Args: |
11
|
|
|
n_in (:obj:`int`): Number of input cells. |
12
|
|
|
n_out (:obj:`int`): Number of output cells. |
13
|
|
|
name (:obj:`str`): Name of the hidden layer. |
14
|
|
|
x (:class:`tensorflow.placeholder`): Input tensor. |
15
|
|
|
W (:class:`tensorflow.Variable`): Weight matrix. |
16
|
|
|
b (:class:`tensorflow.Variable`): Bias matrix. |
17
|
|
|
activation_fn: Activation function used in this hidden layer. |
18
|
|
|
Common values :method:`tensorflow.sigmoid` for ``sigmoid`` function, :method:`tensorflow.tanh` for ``tanh`` |
19
|
|
|
function, :method:`tensorflow.relu` for RELU. |
20
|
|
|
|
21
|
|
|
Attributes: |
22
|
|
|
n_in (:obj:`int`): Number of inputs into this layer. |
23
|
|
|
n_out (:obj:`int`): Number of outputs out of this layer. |
24
|
|
|
name (:obj:`str`): Name of the hidden layer. |
25
|
|
|
x (:class:`tensorflow.placeholder`): Tensorflow placeholder or tensor that represents the input of this layer. |
26
|
|
|
W (:class:`tensorflow.Variable`): Weight matrix of current layer. |
27
|
|
|
b (:class:`tensorflow.Variable`): Bias matrix of current layer. |
28
|
|
|
variables (:obj:`list` of :class:`tensorflow.Variable`): variables of current layer. |
29
|
|
|
logits (:obj:`tensorflow.Tensor`): Tensorflow tensor of linear logits computed in current layer. |
30
|
|
|
y (:class:`tensorflow.Tensor`): Tensorflow tensor represents the output function of this layer. |
31
|
|
|
summaries (:obj:`list`): List of Tensorflow summary buffer. |
32
|
|
|
""" |
33
|
|
|
def __init__(self, n_in, n_out, name, x=None, W=None, b=None, activation_fn=tf.sigmoid): |
34
|
|
|
self.n_in = n_in |
35
|
|
|
self.n_out = n_out |
36
|
|
|
self.name = name |
37
|
|
|
with tf.name_scope(name): |
38
|
|
|
if x is None: |
39
|
|
|
self.x = tf.placeholder(tf.float32, shape=[None, n_in]) |
40
|
|
|
else: |
41
|
|
|
self.x = x |
42
|
|
|
if W is None: |
43
|
|
|
self.W = tf.Variable( |
44
|
|
|
tf.truncated_normal(shape=[n_in, n_out],stddev=1.0/math.sqrt(float(n_in))), |
45
|
|
|
name='weights' |
46
|
|
|
) |
47
|
|
|
else: |
48
|
|
|
self.W = W |
49
|
|
|
if b is None: |
50
|
|
|
self.b = tf.Variable(tf.zeros(shape=[n_out]), name='biases') |
51
|
|
|
else: |
52
|
|
|
self.b = b |
53
|
|
|
self.variables = [self.W, self.b] |
54
|
|
|
self.logits = tf.matmul(self.x, self.W) + self.b |
55
|
|
|
self.y = activation_fn(self.logits, name='activations') |
56
|
|
|
self.summaries = [] |
57
|
|
|
self.summaries += variable_summary(self.W, tag=name + '/weights') |
58
|
|
|
self.summaries += variable_summary(self.b, tag=name + '/bias') |
59
|
|
|
self.summaries.append(tf.summary.histogram(name + '/pre_act', self.logits)) |
60
|
|
|
self.summaries.append(tf.summary.histogram(name + '/act', self.y)) |
61
|
|
|
|
62
|
|
|
|
63
|
|
View Code Duplication |
class SoftmaxLayer: |
|
|
|
|
64
|
|
|
""" Softmax Layer as multi-class binary classification output layer |
65
|
|
|
|
66
|
|
|
Parameters: |
67
|
|
|
n_in (:obj:`int`): Number of input cells. |
68
|
|
|
n_out (:obj:`int`): Number of output cells. |
69
|
|
|
name (:obj:`str`): Name of the layer. |
70
|
|
|
x (:class:`tensorflow.placeholder`): Input tensor. |
71
|
|
|
W (:class:`tensorflow.Variable`): Weight matrix. |
72
|
|
|
b (:class:`tensorflow.Variable`): Bias matrix. |
73
|
|
|
|
74
|
|
|
Attributes: |
75
|
|
|
n_in (:obj:`int`): Number of inputs into this layer. |
76
|
|
|
n_out (:obj:`int`): Number of outputs out of this layer. |
77
|
|
|
name (:obj:`str`): Name of the hidden layer. |
78
|
|
|
x (:class:`tensorflow.placeholder`): Tensorflow placeholder or tensor that represents the input of this layer. |
79
|
|
|
W (:class:`tensorflow.Variable`): Weight matrix of current layer. |
80
|
|
|
b (:class:`tensorflow.Variable`): Bias matrix of current layer. |
81
|
|
|
variables (:obj:`list` of :class:`tensorflow.Variable`): variables of current layer. |
82
|
|
|
logits (:obj:`tensorflow.Tensor`): Tensorflow tensor of linear logits computed in current layer. |
83
|
|
|
y (:class:`tensorflow.Tensor`): Tensorflow tensor represents the output function of this layer. |
84
|
|
|
""" |
85
|
|
|
def __init__(self, n_in, n_out, name, x=None, W=None, b=None): |
86
|
|
|
self.n_in = n_in |
87
|
|
|
self.n_out = n_out |
88
|
|
|
with tf.name_scope(name): |
89
|
|
|
if x is None: |
90
|
|
|
self.x = tf.placeholder(tf.float32, shape=[None, n_in], name='input-x') |
91
|
|
|
else: |
92
|
|
|
self.x = x |
93
|
|
|
if W is None: |
94
|
|
|
self.W = tf.Variable( |
95
|
|
|
tf.truncated_normal(shape=[n_in, n_out],stddev=1.0/math.sqrt(float(n_in))), |
96
|
|
|
name='weights' |
97
|
|
|
) |
98
|
|
|
else: |
99
|
|
|
self.W = W |
100
|
|
|
if b is None: |
101
|
|
|
self.b = tf.Variable(tf.zeros(shape=[n_out]), name='biases') |
102
|
|
|
else: |
103
|
|
|
self.b = b |
104
|
|
|
self.variables = [self.W, self.b] |
105
|
|
|
self.logits = tf.matmul(self.x, self.W) + self.b |
106
|
|
|
self.name = name |
107
|
|
|
self.y = tf.nn.softmax(self.logits, name='softmax') |
108
|
|
|
self.summaries = [] |
109
|
|
|
self.summaries += variable_summary(self.W, tag=name + '/weights') |
110
|
|
|
self.summaries += variable_summary(self.b, tag=name + '/bias') |
111
|
|
|
self.summaries.append(tf.summary.histogram(name + '/pre_act', self.logits)) |
112
|
|
|
self.summaries.append(tf.summary.histogram(name + '/act', self.y)) |
113
|
|
|
|
114
|
|
|
|
115
|
|
|
class AutoencoderLayer(HiddenLayer): |
116
|
|
|
"""Autoencoder Layer |
117
|
|
|
|
118
|
|
|
Auto-encoder inherits hidden layer for feed-forward calculation, and adds self encoding |
119
|
|
|
tensor for unsupervised pre-training. |
120
|
|
|
|
121
|
|
|
Args: |
122
|
|
|
n_in (:obj:`int`): Number of input cells. |
123
|
|
|
n_out (:obj:`int`): Number of output cells. |
124
|
|
|
name (:obj:`str`): Name of the hidden layer. |
125
|
|
|
x (:class:`tensorflow.placeholder`): Input tensor. |
126
|
|
|
W (:class:`tensorflow.Variable`): Weight matrix. |
127
|
|
|
b (:class:`tensorflow.Variable`): Bias matrix. |
128
|
|
|
shared_weights (:obj:`bool`): If weights is shared between encoding and decoding. |
129
|
|
|
|
130
|
|
|
Attributes: |
131
|
|
|
n_in (:obj:`int`): Number of inputs into this layer. |
132
|
|
|
n_out (:obj:`int`): Number of outputs out of this layer. |
133
|
|
|
name (:obj:`str`): Name of the hidden layer. |
134
|
|
|
x (:class:`tensorflow.placeholder`): Tensorflow placeholder or tensor that represents the input of this layer. |
135
|
|
|
W (:class:`tensorflow.Variable`): Weight matrix used in encoding. |
136
|
|
|
b (:class:`tensorflow.Variable`): Bias matrix in encoding. |
137
|
|
|
W_prime (:obj:`tensorflow.Tensor`): Weight matrix used in self-decoding process. If weights are shared, it |
138
|
|
|
equals to transpose of encoding weight matrix. |
139
|
|
|
b_prime (:obj:`tensorflow.Tensor`): Bias matrix used in self-decoding process. |
140
|
|
|
variables (:obj:`list` of :class:`tensorflow.Variable`): variables of current layer. |
141
|
|
|
logits (:obj:`tensorflow.Tensor`): Tensorflow tensor of linear logits computed after encoding. |
142
|
|
|
|
143
|
|
|
y (:class:`tensorflow.Tensor`): Tensorflow tensor represents the output function of this layer. |
144
|
|
|
summaries (:obj:`list`): List of Tensorflow summary buffer. |
145
|
|
|
""" |
146
|
|
|
def __init__(self, n_in, n_out, name, x=None, W=None, b=None, shared_weights=True): |
147
|
|
|
super().__init__(n_in, n_out, name, x, W, b, tf.sigmoid) |
148
|
|
|
self.b_prime = tf.Variable(tf.zeros(shape=[n_in]), name='biases_prime') |
149
|
|
|
self.variables.append(self.b_prime) |
150
|
|
|
if shared_weights: |
151
|
|
|
self.W_prime = tf.transpose(self.W) |
152
|
|
|
else: |
153
|
|
|
self.W_prime = tf.Variable( |
154
|
|
|
tf.truncated_normal(shape=[n_out, n_in], stddev=1.0 / math.sqrt(float(n_in))), |
155
|
|
|
name='weights_prime' |
156
|
|
|
) |
157
|
|
|
self.variables.append(self.W_prime) |
158
|
|
|
self.encode_logit = tf.matmul(self.y, self.W_prime) + self.b_prime |
159
|
|
|
self.encode = tf.sigmoid(self.encode_logit) |
160
|
|
|
self.encode_loss = tf.reduce_mean(tf.pow(self.x - self.encode, 2)) |
161
|
|
|
self.summaries.append(tf.summary.scalar(name+'/ae_rmse', self.encode_loss)) |
162
|
|
|
self.merged = tf.summary.merge(self.summaries) |
163
|
|
|
|