|
1
|
|
|
import math |
|
2
|
|
|
import logging |
|
3
|
|
|
import numpy as np |
|
4
|
|
|
|
|
5
|
|
|
logger = logging.getLogger(__name__) |
|
6
|
|
|
|
|
7
|
|
|
|
|
8
|
|
|
class BatchInjector: |
|
9
|
|
|
"""Retrieving dataset values in batches |
|
10
|
|
|
|
|
11
|
|
|
Args: |
|
12
|
|
|
data_x (:obj:`numpy.ndarray`): Input feature array. |
|
13
|
|
|
data_y (:obj:`numpy.ndarray`): Input label array. |
|
14
|
|
|
batch_size (:obj:`int`): Batch size. |
|
15
|
|
|
num_batches (:obj:`int`): The number of batches in the input data. |
|
16
|
|
|
|
|
17
|
|
|
Attributes: |
|
18
|
|
|
size (:obj:`int`): Number of input vectors. |
|
19
|
|
|
batch_size (:obj:`int`): Batch size. |
|
20
|
|
|
num_batches (:obj:`int`): Number of batches in the input data. |
|
21
|
|
|
num_epochs (:obj:`int`): Number of epoch of current iteration. |
|
22
|
|
|
cur_batch (:obj:`int`): Current batch index. |
|
23
|
|
|
data_x (:obj:`numpy.ndarray`): Reference to input feature array. |
|
24
|
|
|
data_y (:obj:`numpy.ndarray`): Reference to input label array.s |
|
25
|
|
|
""" |
|
26
|
|
View Code Duplication |
def __init__(self, data_x, data_y=None, batch_size=-1, num_batches=-1): |
|
|
|
|
|
|
27
|
|
|
self.size = data_x.shape[0] |
|
28
|
|
|
if 0 < batch_size <= self.size: |
|
29
|
|
|
self.batch_size = batch_size |
|
30
|
|
|
self.num_batches = math.floor(self.size / self.batch_size) |
|
31
|
|
|
elif num_batches > 0: |
|
32
|
|
|
self.batch_size = math.floor(self.size / num_batches) |
|
33
|
|
|
self.num_batches = num_batches |
|
34
|
|
|
else: |
|
35
|
|
|
raise ValueError('Invalid batch_size or num_batches.') |
|
36
|
|
|
self.num_epochs = 0 |
|
37
|
|
|
self.cur_batch = 0 |
|
38
|
|
|
self.data_x = data_x |
|
39
|
|
|
self.data_y = data_y |
|
40
|
|
|
if data_y is not None: |
|
41
|
|
|
if self.data_x.shape[0] != self.data_y.shape[0]: |
|
42
|
|
|
raise ValueError('data_x, data_y provided have different number of rows.') |
|
43
|
|
|
|
|
44
|
|
|
def next_batch(self): |
|
45
|
|
|
"""Get Next Batch |
|
46
|
|
|
""" |
|
47
|
|
|
if self.cur_batch == self.num_batches - 1: |
|
48
|
|
|
start = self.batch_size * self.cur_batch |
|
49
|
|
|
end = self.size |
|
50
|
|
|
self.cur_batch = 0 |
|
51
|
|
|
self.num_epochs += 1 |
|
52
|
|
|
else: |
|
53
|
|
|
start = self.batch_size * self.cur_batch |
|
54
|
|
|
end = start + self.batch_size |
|
55
|
|
|
self.cur_batch += 1 |
|
56
|
|
|
if self.data_y is None: |
|
57
|
|
|
return self.data_x[start:end, :] |
|
58
|
|
|
else: |
|
59
|
|
|
return self.data_x[start:end, :], self.data_y[start:end, :] |
|
60
|
|
|
|
|
61
|
|
|
def reset(self): |
|
62
|
|
|
"""Reset all counters |
|
63
|
|
|
""" |
|
64
|
|
|
self.cur_batch = 0 |
|
65
|
|
|
self.num_epochs = 0 |
|
66
|
|
|
|
|
67
|
|
|
|
|
68
|
|
|
class BatchSequenceInjector: |
|
69
|
|
|
"""Retrieving dataset values in batches and form a sequence of events |
|
70
|
|
|
|
|
71
|
|
|
Args: |
|
72
|
|
|
data_x (:obj:`numpy.ndarray`): Input feature array. |
|
73
|
|
|
data_y (:obj:`numpy.ndarray`): Input label array. |
|
74
|
|
|
seq_len (:obj:`int`): Length of sequence. |
|
75
|
|
|
batch_size (:obj:`int`): Batch size. |
|
76
|
|
|
num_batches (:obj:`int`): The number of batches in the input data. |
|
77
|
|
|
|
|
78
|
|
|
Attributes: |
|
79
|
|
|
seq_len (:obj:`int`): Length of sequence. |
|
80
|
|
|
size (:obj:`int`): Number of input vectors. |
|
81
|
|
|
batch_size (:obj:`int`): Batch size. |
|
82
|
|
|
num_batches (:obj:`int`): Number of batches in the input data. |
|
83
|
|
|
num_epochs (:obj:`int`): Number of epoch of current iteration. |
|
84
|
|
|
cur_batch (:obj:`int`): Current batch index. |
|
85
|
|
|
data_x (:obj:`numpy.ndarray`): Reference to input feature array. |
|
86
|
|
|
data_y (:obj:`numpy.ndarray`): Reference to input label array.s |
|
87
|
|
|
""" |
|
88
|
|
View Code Duplication |
def __init__(self, data_x, data_y=None, seq_len=100, batch_size=-1, num_batches=-1): |
|
|
|
|
|
|
89
|
|
|
self.seq_len = seq_len |
|
90
|
|
|
self.size = data_x.shape[0] - seq_len |
|
91
|
|
|
if 0 < batch_size <= self.size: |
|
92
|
|
|
self.batch_size = batch_size |
|
93
|
|
|
self.num_batches = math.floor(self.size / self.batch_size) |
|
94
|
|
|
elif num_batches > 0: |
|
95
|
|
|
self.batch_size = math.floor(self.size / num_batches) |
|
96
|
|
|
self.num_batches = num_batches |
|
97
|
|
|
else: |
|
98
|
|
|
raise ValueError('Invalid batch_size or num_batches.') |
|
99
|
|
|
self.num_epochs = 0 |
|
100
|
|
|
self.cur_batch = 0 |
|
101
|
|
|
self.data_x = data_x |
|
102
|
|
|
self.data_y = data_y |
|
103
|
|
|
if data_y is not None: |
|
104
|
|
|
if self.data_x.shape[0] != self.data_y.shape[0]: |
|
105
|
|
|
raise ValueError('data_x, data_y provided have different number of rows.') |
|
106
|
|
|
|
|
107
|
|
|
def next_batch(self): |
|
108
|
|
|
"""Get Next Batch |
|
109
|
|
|
""" |
|
110
|
|
|
if self.cur_batch == self.num_batches - 1: |
|
111
|
|
|
start = self.batch_size * self.cur_batch |
|
112
|
|
|
end = self.size |
|
113
|
|
|
self.cur_batch = 0 |
|
114
|
|
|
self.num_epochs += 1 |
|
115
|
|
|
else: |
|
116
|
|
|
start = self.batch_size * self.cur_batch |
|
117
|
|
|
end = start + self.batch_size |
|
118
|
|
|
self.cur_batch += 1 |
|
119
|
|
|
return self.to_sequence(self.seq_len, self.data_x, self.data_y, start, end) |
|
120
|
|
|
|
|
121
|
|
|
def reset(self): |
|
122
|
|
|
"""Reset all counters |
|
123
|
|
|
""" |
|
124
|
|
|
self.cur_batch = 0 |
|
125
|
|
|
self.num_epochs = 0 |
|
126
|
|
|
|
|
127
|
|
|
@staticmethod |
|
128
|
|
|
def to_sequence(seq_len, x, y=None, start=None, end=None): |
|
129
|
|
|
"""Turn feature array as a sequence array where each new feature contains seq_len number of original features. |
|
130
|
|
|
|
|
131
|
|
|
Args: |
|
132
|
|
|
seq_len (:obj:`int`): Length of the sequence. |
|
133
|
|
|
x (:obj:`numpy.ndarray`): Feature array, with shape (num_samples, num_features). |
|
134
|
|
|
y (:obj:`numpy.ndarray`): Label array, with shape (num_samples. num_classes). |
|
135
|
|
|
start (:obj:`int`): Start index. |
|
136
|
|
|
end (:obj:`int`): End index |
|
137
|
|
|
|
|
138
|
|
|
Returns: |
|
139
|
|
|
(seq_x, seq_y) if y is provided, or seq_x if y is not provided. |
|
140
|
|
|
seq_x is a numpy array of shape (num_samples, seq_len, num_features), and seq_y is a numpy array |
|
141
|
|
|
of shape (num_samples, num_classes). |
|
142
|
|
|
num_samples is bounded by the value of start and end. |
|
143
|
|
|
If start or end are not specified, the code will use the full data provided, so that the |
|
144
|
|
|
array returned has (num_samples - seq_len) of samples. |
|
145
|
|
|
""" |
|
146
|
|
|
if start is None or end is None: |
|
147
|
|
|
start = 0 |
|
148
|
|
|
end = x.shape[0] - seq_len |
|
149
|
|
|
if (start+seq_len) > x.shape[0] or (end+seq_len) > x.shape[0]: |
|
150
|
|
|
logger.error('start/end out of bound.') |
|
151
|
|
|
return None |
|
152
|
|
|
batch_x = np.zeros((end - start, seq_len, x.shape[1]), np.float32) |
|
153
|
|
|
for i in range(start, end): |
|
154
|
|
|
batch_x[i-start, :, :] = x[i:i+seq_len, :] |
|
155
|
|
|
if y is None: |
|
156
|
|
|
return batch_x |
|
157
|
|
|
else: |
|
158
|
|
|
return batch_x, y[start+seq_len:end+seq_len, :] |