|
1
|
|
|
import time |
|
2
|
|
|
import logging |
|
3
|
|
|
import xlsxwriter |
|
4
|
|
|
import collections |
|
5
|
|
|
from . import overall_performance_index, per_class_performance_index, get_performance_array |
|
6
|
|
|
from ..logging import logging_name |
|
7
|
|
|
from ..CASAS.fuel import CASASFuel |
|
8
|
|
|
|
|
9
|
|
|
logger = logging.getLogger(__file__) |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
class LearningResult: |
|
13
|
|
|
"""LearningResult is a class that stores results of a learning run. |
|
14
|
|
|
It may be a single-shot run or a time-based analysis |
|
15
|
|
|
The result structure holds the parameters for the model as well as |
|
16
|
|
|
the evaluation result for easy plot. |
|
17
|
|
|
|
|
18
|
|
|
Parameters: |
|
19
|
|
|
name (:obj:`str`): Name of the learning run |
|
20
|
|
|
data (:obj:`str`): Name of the dataset or description of the dataset |
|
21
|
|
|
mode (:obj:`str`): valid choices are `single_shot`, `by_week` or `by_day` |
|
22
|
|
|
|
|
23
|
|
|
Attributes: |
|
24
|
|
|
name (:obj:`str`): Name of the learning run |
|
25
|
|
|
data (:obj:`str`): Path to the h5py dataset directory |
|
26
|
|
|
mode (:obj:`str`): valid choices are `single_shot`, `by_week` or `by_day` |
|
27
|
|
|
created_time (:obj:`float`): created time since Epoch in seconds |
|
28
|
|
|
modified_time (:obj:`float`): record modified time since Epoch in seconds |
|
29
|
|
|
overall_performance (:class:`numpy.array`): overall performance of the learning |
|
30
|
|
|
per_class_performance (:class:`numpy.array`): overall per-class performance of the learning |
|
31
|
|
|
confusion_matrix (:class:`numpy.array`): overall confusion matrix |
|
32
|
|
|
records (:obj:`collections.OrderedDict`): Ordered dictionary storing all records |
|
33
|
|
|
""" |
|
34
|
|
|
def __init__(self, name='', data='', mode='single_shot'): |
|
35
|
|
|
cur_time = time.time() |
|
36
|
|
|
self.name = name |
|
37
|
|
|
self.data = data |
|
38
|
|
|
self.mode = mode |
|
39
|
|
|
self.created_time = cur_time |
|
40
|
|
|
self.modified_time = cur_time |
|
41
|
|
|
self.overall_performance = None |
|
42
|
|
|
self.per_class_performance = None |
|
43
|
|
|
self.confusion_matrix = None |
|
44
|
|
|
self.records = collections.OrderedDict() |
|
45
|
|
|
|
|
46
|
|
|
def get_num_records(self): |
|
47
|
|
|
"""Get the length of result records in current instance |
|
48
|
|
|
""" |
|
49
|
|
|
if self.records is None: |
|
50
|
|
|
return 0 |
|
51
|
|
|
else: |
|
52
|
|
|
return len(self.records) |
|
53
|
|
|
|
|
54
|
|
|
def get_record_keys(self): |
|
55
|
|
|
"""Get List of keys to all the records |
|
56
|
|
|
""" |
|
57
|
|
|
if self.records is None: |
|
58
|
|
|
return [] |
|
59
|
|
|
else: |
|
60
|
|
|
return self.records.keys() |
|
61
|
|
|
|
|
62
|
|
|
def add_record(self, model, key='single_shot', confusion_matrix=None): |
|
63
|
|
|
"""Add a learning milestone record |
|
64
|
|
|
|
|
65
|
|
|
Args: |
|
66
|
|
|
model (:obj:`object`): snap shot of learning model parameters |
|
67
|
|
|
key (:obj:`str`): key string to represent current record |
|
68
|
|
|
confusion_matrix (:obj:`numpy.array`): Confusion Matrix |
|
69
|
|
|
""" |
|
70
|
|
|
if self.get_num_records() == 0: |
|
71
|
|
|
self.confusion_matrix = confusion_matrix.copy() |
|
72
|
|
|
else: |
|
73
|
|
|
# Check confusion matrix size |
|
74
|
|
|
if confusion_matrix.shape != self.confusion_matrix.shape: |
|
75
|
|
|
logger.error(logging_name(self) + ': confusion matrix shape mismatch. Original shape %s. New shape %s' |
|
76
|
|
|
% (str(self.confusion_matrix.shape), str(confusion_matrix.shape))) |
|
77
|
|
|
else: |
|
78
|
|
|
self.confusion_matrix += confusion_matrix |
|
79
|
|
|
self.overall_performance, self.per_class_performance = get_performance_array(self.confusion_matrix) |
|
80
|
|
|
overall_performance, per_class_performance = get_performance_array(confusion_matrix) |
|
81
|
|
|
cur_result = { |
|
82
|
|
|
'model': model, |
|
83
|
|
|
'confusion_matrix': confusion_matrix, |
|
84
|
|
|
'per_class_performance': per_class_performance, |
|
85
|
|
|
'overall_performance': overall_performance |
|
86
|
|
|
} |
|
87
|
|
|
self.records[key] = cur_result |
|
88
|
|
|
|
|
89
|
|
|
def get_record_by_key(self, key): |
|
90
|
|
|
""" |
|
91
|
|
|
Get result corresponding to specific key |
|
92
|
|
|
:param key: |
|
93
|
|
|
:return: |
|
94
|
|
|
""" |
|
95
|
|
|
if key in self.records.keys(): |
|
96
|
|
|
return self.records[key] |
|
97
|
|
|
else: |
|
98
|
|
|
logger.error(logging_name(self) + ': Cannot find record %s' % key) |
|
99
|
|
|
return None |
|
100
|
|
|
|
|
101
|
|
|
def export_to_xlsx(self, filename, home_info=None): |
|
102
|
|
|
"""Export to XLSX |
|
103
|
|
|
|
|
104
|
|
|
Args: |
|
105
|
|
|
filename (:obj:`str`): path to the file |
|
106
|
|
|
home_info (:class:`pyActLearn.CASAS.fuel.CASASFuel`): dataset information |
|
107
|
|
|
""" |
|
108
|
|
|
if home_info is None: |
|
109
|
|
|
home_info = CASASFuel(dir_name=self.data) |
|
110
|
|
|
workbook = xlsxwriter.Workbook(filename) |
|
111
|
|
|
records = self.get_record_keys() |
|
112
|
|
|
num_performance = len(per_class_performance_index) |
|
113
|
|
|
num_classes = self.confusion_matrix.shape[0] |
|
114
|
|
|
# Overall Performance Summary |
|
115
|
|
|
overall_sheet = workbook.add_worksheet('overall') |
|
116
|
|
|
overall_sheet.merge_range(0, 0, 0, len(overall_performance_index) - 1, 'Overall Performance') |
|
117
|
|
|
for c in range(len(overall_performance_index)): |
|
118
|
|
|
overall_sheet.write(1, c, str(overall_performance_index[c])) |
|
119
|
|
|
overall_sheet.write(2, c, self.overall_performance[c]) |
|
120
|
|
|
overall_sheet.merge_range(4, 0, 4, len(per_class_performance_index), 'Per-Class Performance') |
|
121
|
|
|
overall_sheet.write(5, 0, 'Activities') |
|
122
|
|
|
for c in range(len(per_class_performance_index)): |
|
123
|
|
|
overall_sheet.write(5, c + 1, str(per_class_performance_index[c])) |
|
124
|
|
|
for r in range(num_classes): |
|
125
|
|
|
label = home_info.get_activity_by_index(r) |
|
126
|
|
|
overall_sheet.write(r + 6, 0, label) |
|
127
|
|
|
for c in range(num_performance): |
|
128
|
|
|
overall_sheet.write(r + 6, c + 1, self.per_class_performance[r][c]) |
|
129
|
|
|
overall_sheet.merge_range(8 + num_classes, 0, 8 + num_classes, num_classes, 'Confusion Matrix') |
|
130
|
|
|
for i in range(num_classes): |
|
131
|
|
|
label = home_info.get_activity_by_index(i) |
|
132
|
|
|
overall_sheet.write(9 + num_classes, i + 1, label) |
|
133
|
|
|
overall_sheet.write(10 + num_classes + i, 0, label) |
|
134
|
|
|
for r in range(num_classes): |
|
135
|
|
|
for c in range(num_classes): |
|
136
|
|
|
overall_sheet.write(10 + num_classes + r, c + 1, self.confusion_matrix[r][c]) |
|
137
|
|
|
# Weekly Performance Summary |
|
138
|
|
|
weekly_sheet = workbook.add_worksheet('weekly') |
|
139
|
|
|
weekly_list_title = ['dataset', '#week'] + overall_performance_index |
|
140
|
|
|
for c in range(len(weekly_list_title)): |
|
141
|
|
|
weekly_sheet.write(0, c, str(weekly_list_title[c])) |
|
142
|
|
|
r = 1 |
|
143
|
|
|
for record_id in records: |
|
144
|
|
|
weekly_sheet.write(r, 0, 'b1') |
|
145
|
|
|
weekly_sheet.write(r, 1, record_id) |
|
146
|
|
|
for c in range(len(overall_performance_index)): |
|
147
|
|
|
weekly_sheet.write(r, c + 2, '%.5f' % self.get_record_by_key(record_id)['overall_performance'][c]) |
|
148
|
|
|
r += 1 |
|
149
|
|
|
dataset_list_title = ['activities'] + per_class_performance_index |
|
150
|
|
|
# Per Week Per Class Summary |
|
151
|
|
|
for record_id in self.get_record_keys(): |
|
152
|
|
|
cur_sheet = workbook.add_worksheet(record_id) |
|
153
|
|
|
for c in range(0, len(dataset_list_title)): |
|
154
|
|
|
cur_sheet.write(0, c, str(dataset_list_title[c])) |
|
155
|
|
|
for r in range(num_classes): |
|
156
|
|
|
label = home_info.get_activity_by_index(r) |
|
157
|
|
|
cur_sheet.write(r+1, 0, label) |
|
158
|
|
|
for c in range(num_performance): |
|
159
|
|
|
cur_sheet.write(r + 1, c + 1, self.get_record_by_key(record_id)['per_class_performance'][r][c]) |
|
160
|
|
|
workbook.close() |
|
161
|
|
|
|